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Getting a Grip on  
 



Packet Switch 

•  Fixed-capacity links 
•  Variable delay due to waiting time in buffers 
•  Delay depends on 

1.  Traffic  
2.  Scheduling 



Traffic Arrivals 

MPEG-Compressed Video Trace
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First-In-First-Out 



Static Priority (SP) 

•  Blind Multiplexing (BMux):  
 All “other traffic” has higher priority 



Earliest Deadline First (EDF) 

 Benchmark scheduling algorithm for meeting delay 
requirements 



Network 

  



Simplified Network 

...
Through 
flow

Cross
traffic

Cross
traffic

Cross
traffic

Computing delays in such networks is 
notoriously hard …  



 Over the last 20+ years, I have worked on 
problems relating to network delays: 

 

•  Worst-case delays 

•  Scheduling vs. statistical multiplexing 

•  Statistical bounds on end-to-end delays 

•  Difficult traffic types 

•  Scaling laws 

… but tempting 
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Disclaimer 

•  This talk makes a few simplifications  

•  Please see papers for complete details 

 



Traffic Description 

•  Traffic arrivals in time interval [s,t) is 

•  Burstiness can be reduced by “shaping” traffic 

Cumulative arrivals A  



Regulated 
arrivals 

Flows are 
shaped 
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•  Link capacity C 
•  Each flows j has 

•  arrival function Aj  

•  envelope Ej 

•  delay requirement dj 

 

What is the maximum number of 
shaped flows with delay 
requirements that can be put on a 
single buffered link? 



Delay Analysis of Schedulers 

• Consider arrival from flow i at t with t+di: 
 

• Tagged arrival departs by           if 

 Arrivals from flow j 

Tagged 
arrival 

t

• Consider a link scheduler with rate C 

Deadline of 
Tagged arrival 
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Arrivals from flow j 

 
with 

FIFO: 
 
Static Priority: 
 
EDF: 

.0=Δ ij
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Δ ij = −∞ (lower)  ,    0  (same)  ,    di (higher).
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Delay Analysis of Schedulers 
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Schedulability Condition 

We have: 

An arrival from class i never has a delay bound 
violation if 

Therefore: 

Condition is tight, when Ej is concave 

di � sup
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Plugging in …  

Let: 

FIFO 

Ej(t) = bj + rjt
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C = 45 Mbps 
 
MPEG 1 traces: 
 
Lecture: 
d = 30 msec 
 
Movie  
(Jurassic Park): 
d = 50 msec 
 Type 1 flows 

strong  
effective 
envelopes 

Numerical Result           (Sigmetrics 1995) 

EDF 
Static Priority 

(SP) Peak Rate 



Deterministic 
worst-case 

Expected  
case Probable worst-

case 



Statistical Multiplexing Gain 

Flow 1 
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Worst-case 
backlog 
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Arrivals 

With statistical multiplexing 

Backlog 



Statistical Multiplexing Gain 
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Statistical multiplexing gain is the raison d’être for packet networks. 



What is the maximum number of 
flows with delay requirements that 
can be put on a buffered link and 
considering statistical multiplexing? 

 Arrivals              are random processes 
 

•  Stationarity:       is  stationary random processes 

•  Independence: Any two flows     and                   
are stochastically independent 

Aj(s, t)



Envelopes for random arrivals 

•  Statistical envelope       :  

•  Statistical sample path envelope         :  

Statistical envelopes are non-random functions 

Statistical envelope bounds arrival from flow j with 
high certainty 



Aggregating arrivals 

Arrivals from group of flows:  
 
with deterministic envelopes:  
 
 
with statistical envelopes:  GC �

�

j

Gj � EC



Statistical envelope for group of indepenent 
(shaped) flows  

•  Exploit independence and extract statistical 
multiplexing gain when calculating  

 
•  For example, using the Chernoff Bound, we can 

obtain 



Statistical    vs.  Deterministic  
Envelope    Envelopes 
 
 
 
 
Type 1 flows: 
P =1.5 Mbps 
ρ = .15 Mbps 
σ =95400 bits 
 
Type 2 flows: 
P = 6 Mbps 
ρ = .15 Mbps 
σ = 10345 bits 
 Type 1 flows 

 
statistical 
envelopes 

(JSAC 2000) 

� = 10�6

E(t) = min(Pt,⇥ + �t)



Traffic rate at t = 50 ms 
Type 1 flows 

Statistical  vs.  Deterministic  
Envelope   Envelopes              (JSAC 2000) 



Deterministic Service 
Never a delay bound violation if: 

Scheduling Algorithms 

•  Work-conserving scheduler  
that serves Q classes 

•  Class-q has delay bound dq 

•  Δ-scheduling algorithm 

 

Scheduler 
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Statistical Multiplexing vs. Scheduling (JSAC 2000) 

Statistical multiplexing  
makes a big difference 

Scheduling  
has small impact 

Example: MPEG videos with delay constraints at C= 622 Mbps 
    Deterministic service vs. statistical service (ε = 10-6)   

Thick lines: EDF Scheduling 
Dashed lines: SP scheduling 

 

dterminator=100 ms  
dlamb=10 ms 



More interesting traffic types 

•  So far: Traffic of each flow was shaped 
•  Next:  

•  On-Off traffic 
•  Fraction Brownian Motion (FBM) traffic  

Approach:  
•  Exploit literature on  

Effective Bandwidth  
•  Derived for many traffic  

types 

MPEG-Compressed Video Trace
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Statistical Envelopes and Effective Bandwidth  

Effective Bandwidth (Kelly 1996) 

Given          , an effective envelope is given by 



Comparisons of statistical service guarantees for 
different schedulers and traffic types 

Schedulers: 
SP- Static Priority 
EDF – Earliest 
Deadline First 
GPS – Generalized 
Processor Sharing 

Traffic: 
Regulated – leaky 
bucket 
On-Off – On-off 
source 
FBM – Fractional 
Brownian Motion 

C= 100 Mbps,  ε = 10-6 

Different Traffic Types    (ToN 2007)  



Delays on a path with multiple nodes: 
•  Impact of Statistical Multiplexing 
•  Role of Scheduling  

  
•  How do delays scale with path length?  
•  Does scheduling still matter in a large network?  



•  Systems theory for networks 
in (min,+) algebra  
 
developed by  
Rene Cruz,  C. S. Chang, JY LeBoudec (1990’s) 

•  Service curve S characterizes node 

•  Used to obtain  
worst-case bounds  
on delay and  
backlog 

...
..

..
......
......
.......

D(t)

A(t)

s

........... .
backlog=B(s)

delay=W(s)

Deterministic Network Calculus (1/3) 

A D
arrivals departures

Node

S



W (t) � inf{d|E(s) � S(s + d)⇤s ⇥ 0}

Deterministic Network Calculus (2/3) 

•  Worst-case view of  
•  arrivals:  
•  service :  

•  Implies worst-case bounds 
•  backlog: 
•  delay :  

•  (min,+) algebra operators 
•  Convolution: 

•  Deconvolution: 

 

A D
arrivals departures

Node

S

B(t) ⇥ E � S(0)

A(s, t) ⇤ E(t� s)
D(t) ⌅ A ⇥ S(t)



Deterministic Network Calculus (3/3) 

•  Main result: 
If                        describes the service at each node, then  
 
 

describes the service given by the network as a whole. 

  

Receiver 
S3 S1 S2 

Sender 

Sender Receiver 

S 
network 

S      = S  * S  * S 
network 1 2 3 

A      (t) 
network D      (t) 

network 

A      (t) 
network D      (t) 

network 

Receiver 
S3 S1 S2 

Sender 

Sender Receiver 

S 
network 

S      = S  * S  * S 
network 1 2 3 

A      (t) 
network D      (t) 

network 

A      (t) 
network D      (t) 

network 

S1,S2,S3

Sender ReceiverSender Receiver

Snet = S1 � S2 � S3



Stochastic Network Calculus 
 
•  Probabilistic view on arrivals and service 

•  Statistical Sample Path Envelope 

•  Statistical Service Curve 

•  Results on performance bounds carry over, e.g.: 
•  Backlog Bound 

Pr{sup
s�t

(A(s, t)�H(t� s)) > �} ⇥ ⇥(�)

Pr{D(t)�A ⇥ S(t) > �} ⇤ ⇥(�)



Stochastic Network Calculus 

•  Hard problem: Find          so that 

•  Technical difficulty: 

     is a 
random 
variable! 



Statistical Network Service Curve     (Sigmetrics 2005) 

•  Notation:	



•  Theorem: If                        are statistical service 
curves, then for any         : 

    is a statistical network service curve with some 
finite violation probability. 



EBB model 

•  Traffic with Exponentially Bounded Burstiness 
(EBB) 

  	


	



  
•  Sample path statistical envelope obtained  via 

union bound 

 

P
�
A(s, t)� �(t� s) > ⇥

⇥
⇥Me��⇥



Example: Scaling of Delay Bounds 

•  Traffic is Markov Modulated On-Off Traffic  
(EBB model) 

•  All links have capacity C 
•  Same cross-traffic (not independent!) at each node  
•  Through flow has lower priority:  

...

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Through
Flows

Through
Flows

Node HNode 2Node 1



Example: Scaling of Delay Bounds 

•  Two methods to compute delay bounds: 
1.  Add per-node bounds:  

Compute delay bounds at each node and sum up 
2.  Network service curve:  

Compute single-node delay bound with statistical 
network service curve 

...

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Through
Flows

Through
Flows

Node HNode 2Node 1



Example: Scaling of Delay Bounds    (Sigmetrics 2005) 

•  Peak rate: P = 1.5 Mbps 
Average rate: ρ = 0.15 Mbps 

•  T= 1/µ + 1/λ = 10 msec 

•  C = 100 Mbps 
•  Cross traffic = through traffic  
•   ε = 10-9 

•  Addition of per-
node bounds 
grows O(H3) 

•  Network service 
curve bounds 
grow O(H log H) 



•  M/M/1 queues with identical exponential  service 
at each node 

 

Result: Lower Bound on E2E Delay     (ToN 2011) 

Theorem: E2E delay        satisfies for all  
 

 

Corollary:  -quantile           of        satisfies  



Numerical examples 

•  Tandem network without cross traffic 
•  Node capacity:     
•  Arrivals are compound Poisson process 

•  Packet arrival rate: 
•  Packet size:                     

•  Utilization: 

...
Through 
flow

Node HNode 2Node 1



Upper and Lower Bounds on E2E Delays  (ToN 2011) 
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Superlinear Scaling of Network Delays  

•  For traffic satisfying “Exponential Bounded 
Burstiness”,  E2E delays follow a scaling law of 

•  This is different than predicted by  
 …  worst-case analysis 
 …  networks satisfying “Kleinrock’s independence  

 assumption” 



Back to scheduling …  

So far:  
Through traffic has lowest  
priority and gets leftover  
capacity 

à Leftover Service 
 or Blind Multiplexing 

BMux C 

How do end-to-end delay bounds look 
like for different schedulers?  
Does link scheduling matter on long 
paths?  



Service curves vs. schedulers   (JSAC 2011)  

•  How well can a service curve describe a scheduler? 

•  For schedulers considered earlier, the following is 
ideal:  

 with indicator function             and parameter 



Example: End-to-End Bounds 

•  Traffic is Markov Modulated On-Off Traffic  
(EBB model) 

•  Fixed capacity link 

...

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Cross
Flows

Through
Flows

Through
Flows

Node HNode 2Node 1



Example: Deterministic E2E Delays      (Infocom ‘11) 

•  Peak rate: E(t) = b+rt 
Average rate: r = 0.15 Mbps 

•  C = 100 Mbps 
•  Link utilization: 90% (through: 1.5%) 
  BMUX 

EDF 
(delay-tolerant) 

FIFO 

EDF 
(delay intolerant 



Example: Statistical E2E Delays         (Infocom`11) 

•  Peak rate: P = 1.5 Mbps 
Average rate: τ = 0.15 Mbps 
EBB traffic 

•  C = 100 Mbps 
•   ε = 10-9 

•  Link utilization: 90% (through: 1.5%) 



How about an overloaded scheduler ?  

  
•  Delays are of course unbounded?  
•  But how about throughput? 



CBR traffic at a FIFO scheduler 

•  Problem appeared in probing method for bandwidth estimation  

•  FIFO system 

•  Output: 

•  Service curve: 
 

D(t)
C

Probing  traffic
A(t) = rt

Cross traffic
rc t

S(t) = [Ct� rc]
+t



Overloaded systems 

•  FIFO shares bandwidth proportional to input 
•  Service curve becomes BMUX 

•  The same holds  

•  for any Δ-scheduler with finite Δs 
•  for any traffic type with an average traffic rate 

 



Can we compute scaling of delays for 
nasty traffic ? 

  



•  A heavy-tailed process      satisfies 
        
      
     with 

•  A self-similar process satisfies   

            
     Hurst Parameter 

Heavy-Tailed Self-Similar Traffic 



End-to-End Delays 

 

Cross 
traffic 

Node        
1 

Node        
2 

Node        
H … 

Cross 
traffic 

Cross 
traffic 

Through 
traffic 
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Worst-case delays 
Θ (N) 

  (e.g., LeBoudec and Thiran 2000) 

Exponentially bounded  traffic  
Θ (N log N) 
 (Sigmetrics 2005, Infocom 2007) 
      



•  Heavy-tailed self-similar (htss) envelope: 

•  Main difficulty: Backlog and delay bounds require 
sample path envelopes of the form  

•  Key contribution (not shown):  
Derive sample path bound for htss traffic  

htts Traffic Envelope 



Example: Node with Pareto Traffic       (Infocom 2010)      

Traffic parameters: 
 

Node: 
•  Capacity C=100 Mbps 

with packetizer 
•  No cross traffic 

  
Compared with: 
•  Lower bound from  

ToN 2011 paper 
•  Simulations  



Example: Nodes with Pareto Traffic (End-to-end) 

Parameters: 
 

Compared with: 
•  Lower bound  from  

ToN 2011 paper 
•  Simulation traces of 108 

packets  



Upper Bound:    
Lower Bound:   

Bounds: α = 1.5 	



Illustration of scaling bounds   (Infocom 2010)   
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Summary of insights  

①  Satisfying delay bounds does not require peak rate 
allocation for complex traffic 

②  Statistical multiplexing gain dominates gain due to 
link scheduling 

③        scaling law of end-to-end delays 
④  New laws for heavy-tailed traffic 
⑤  Link scheduling plays a role on long path 

 

1995 2000 2005 2010 

(1)  (2)  (3)  (4), (5)  



 Example: Pareto Traffic 

•  Size of i–th arrival: 

•  Arrivals are evenly spaced 
with gap    : 

•  With Generalized Central 
Limit Theorem …   
 … and tail bound 

•  ... we get htss envelope 

α-stable  
distribution 



Example: Envelopes for Pareto Traffic  (Infocom 2010) 

Parameters: 
 

Comparison of envelopes: 
•  htss GCLT envelope 
•  Average rate 
•  Trace-based 

•  deterministic envelope  
•  htts trace envelope  



Single Node Delay Bound 

•  htss envelope: 

•  ht service curve:  

•  Delay bound:  


