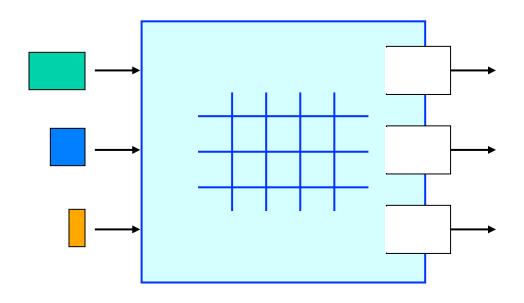
Getting a Grip on Delays in Packet Networks

Jorg Liebeherr
Dept. of ECE
University of Toronto

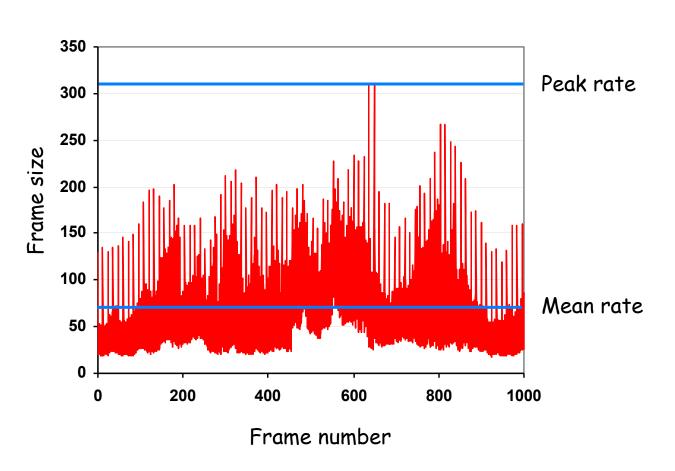
Packet Switch



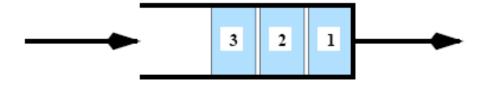
- Fixed-capacity links
- Variable delay due to waiting time in buffers
- · Delay depends on
 - 1. Traffic
 - 2. Scheduling

Traffic Arrivals

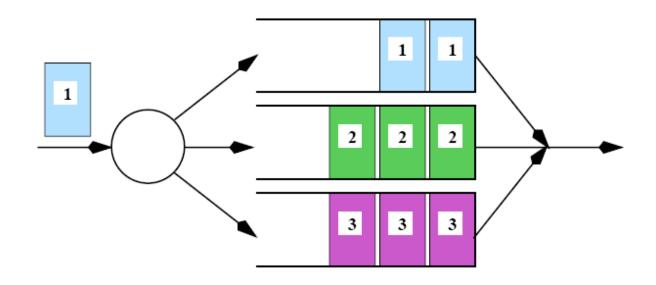
MPEG-Compressed Video Trace



First-In-First-Out

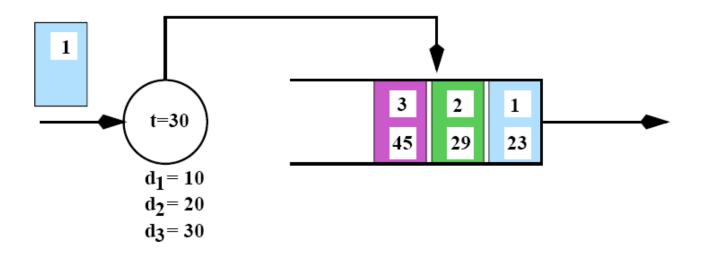


Static Priority (SP)



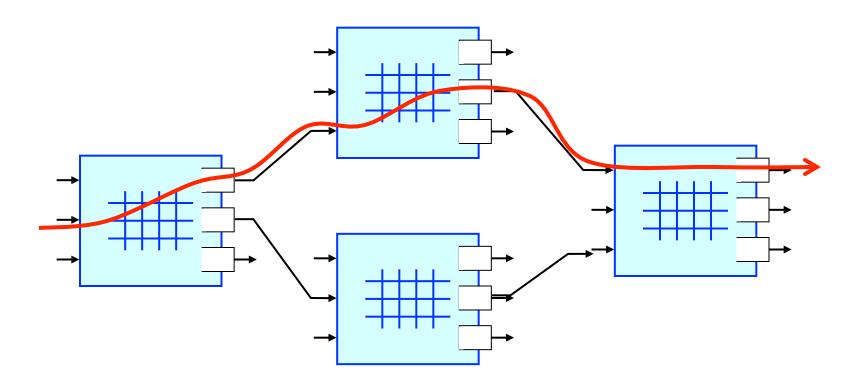
Blind Multiplexing (BMux):
 All "other traffic" has higher priority

Earliest Deadline First (EDF)

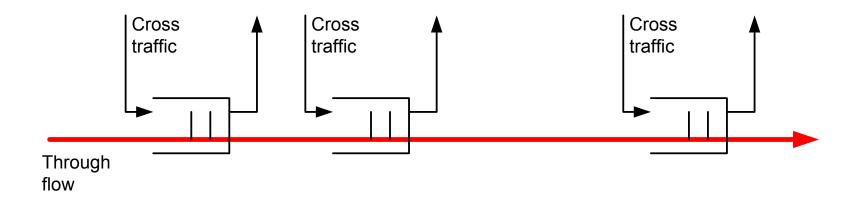


Benchmark scheduling algorithm for meeting delay requirements

Network



Simplified Network



Computing delays in such networks is notoriously hard ...

... but tempting

Over the last 20+ years, I have worked on problems relating to network delays:

- Worst-case delays
- Scheduling vs. statistical multiplexing
- Statistical bounds on end-to-end delays
- Difficult traffic types
- Scaling laws

Collaborators

- Domenico Ferrari
- Dallas Wrege
- Hui Zhang
- Ed Knightly
- Almut Burchard
- Robert Boorstyn
- Chaiwat Oottamakorn
- Stephen Patek
- · Chengzhi Li
- Florin Ciucu
- · Yashar Ghiassi-Farrokhfal

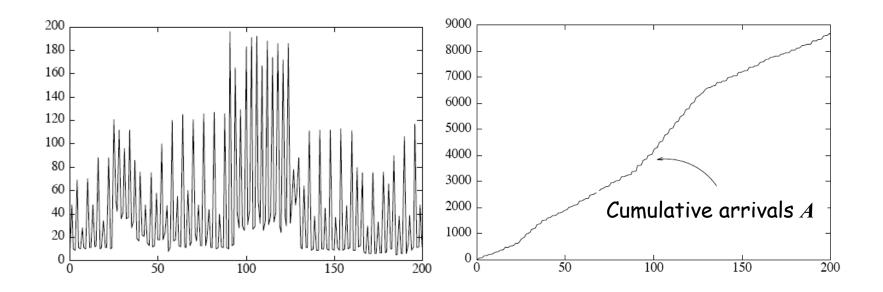
Papers (relevant to this talk)

- J.Liebeherr, D. E. Wrege, D. Ferrari, "Exact admission control for networks with a bounded delay service," ACM/IEEE Trans. Netw. 4(6), 1996.
- E. W. Knightly, D. E. Wrege, H. Zhang, J. Liebeherr, "Fundamental Limits and Tradeoffs of Providing Deterministic Guarantees to VBR Video Traffic," ACM Sigmetrics, 1995.
- R. Boorstyn, A. Burchard, J. Liebeherr, C. Oottamakorn. "Statistical Service Assurances for Packet Scheduling Algorithms", IEEE JSAC, Dec. 2000.
- A. Burchard, J. Liebeherr, S. D. Patek, "A Min-Plus Calculus for End-to-end Statistical Service Guarantees," IEEE Trans. on IT, Sep. 2006.
- F. Ciucu, A. Burchard, J. Liebeherr, "A Network Service Curve Approach for the Stochastic Analysis of Networks", ACM Sigmetrics 2005.
- C. Li, A. Burchard, J. Liebeherr, "A Network Calculus with Effective Bandwidth," ACM/IEEE Trans. on Networking, Dec. 2007.
- J. Liebeherr, Y. Ghiassi-Farrokhfal, A. Burchard, "On the Impact of Link Scheduling on End-to-End Delays in Large Networks," IEEE JSAC, May 2011.
- J. Liebeherr, Y. Ghiassi-Farrokhfal, A. Burchard, "The Impact of Link Scheduling on Long Paths: Statistical Analysis and Optimal Bounds", INFOCOM 2011.
- A. Burchard, J. Liebeherr, F. Ciucu, "On Superlinear Scaling of Network Delays, ACM/IEEE Trans. Netw., August 2011
- J. Liebeherr, A. Burchard, F. Ciucu, "Delay Bounds in Communication Networks with Heavy-Tailed and Self-Similar Traffic," IEEE Trans. on IT, Feb. 2012.

Disclaimer

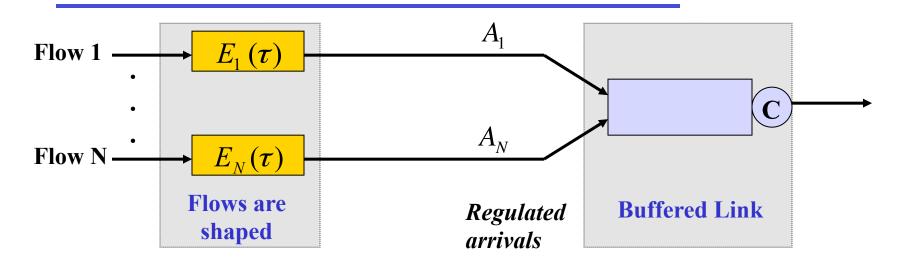
- · This talk makes a few simplifications
- · Please see papers for complete details

Traffic Description



- Traffic arrivals in time interval [s,t) is A(s,t)
- · Burstiness can be reduced by "shaping" traffic

Shaped Arrivals

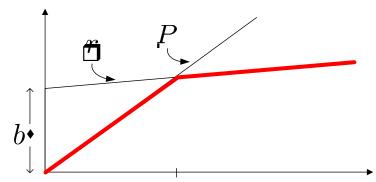


Traffic A_j is shaped by an envelope E_j such that:

$$E(t-s) \ge \sup_{s \le t} \{A(s,t)\}$$

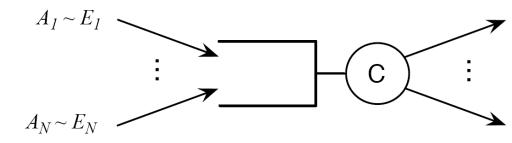
Popular envelope: "token bucket"

$$E(s) = \min(Ps, b + rt)$$



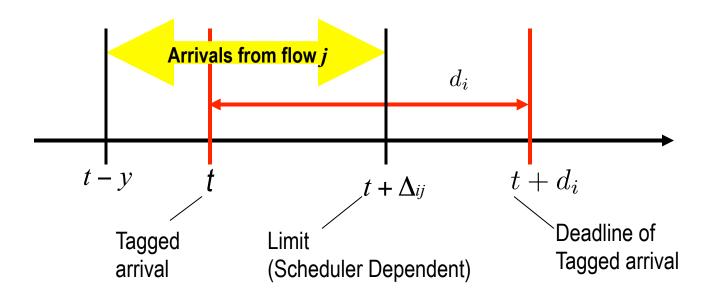
What is the maximum number of shaped flows with delay requirements that can be put on a single buffered link?

- Link capacity C
- · Each flows j has
 - arrival function A_j
 - envelope E_j
 - delay requirement d_j



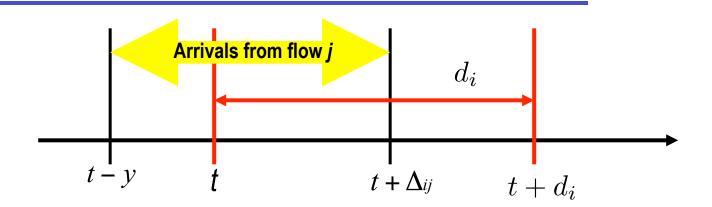
Delay Analysis of Schedulers

- Consider a link scheduler with rate C
- Consider arrival from flow i at t with $t+d_i$:



$$\Delta_{ij}(x) := \min\{\Delta_{ij}, x\}$$

Delay Analysis of Schedulers



$$d_i \ge \sup_{s \ge 0} \frac{1}{C} \left\{ \sum_j A_k(t - s, t + \Delta_{ij}(d_i)) - Cs \right\}$$

with

FIFO: $\Delta_{ii} = 0$.

Static Priority: $\Delta_{ij} = -\infty$ (lower), 0 (same), d_i (higher).

EDF: $\Delta_{ij} = d_i - d_j$

Schedulability Condition

We have: $E_j(t-s) \ge A_j(s,t) \quad \forall s \le t$

Therefore:

An arrival from class i <u>never</u> has a delay bound violation if

$$d_i \ge \sup_{s \ge 0} \frac{1}{C} \left\{ \sum_j E_j(s + \Delta_{ij}(d_i) - Cs) \right\}$$

Condition is tight, when E_j is concave

Plugging in ...

Let:
$$E_j(t) = b_j + r_j t$$

$$d_j \ge \frac{1}{C} \sum_j b_j$$

SP

$$d_p \ge \frac{\sum_{q=p}^{P} b_p}{C - \sum_{q=p+1}^{P} r_q}$$

EDF

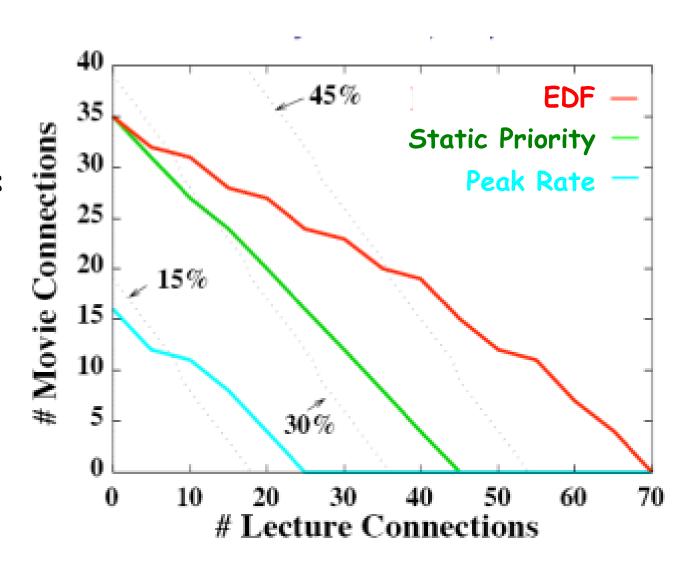
$$d_{j} \geq \frac{\sum_{k=1}^{j} b_{k} - \sum_{k=1}^{j-1} r_{k} d_{k}}{C - \sum_{k=1}^{j-1} r_{k}}$$

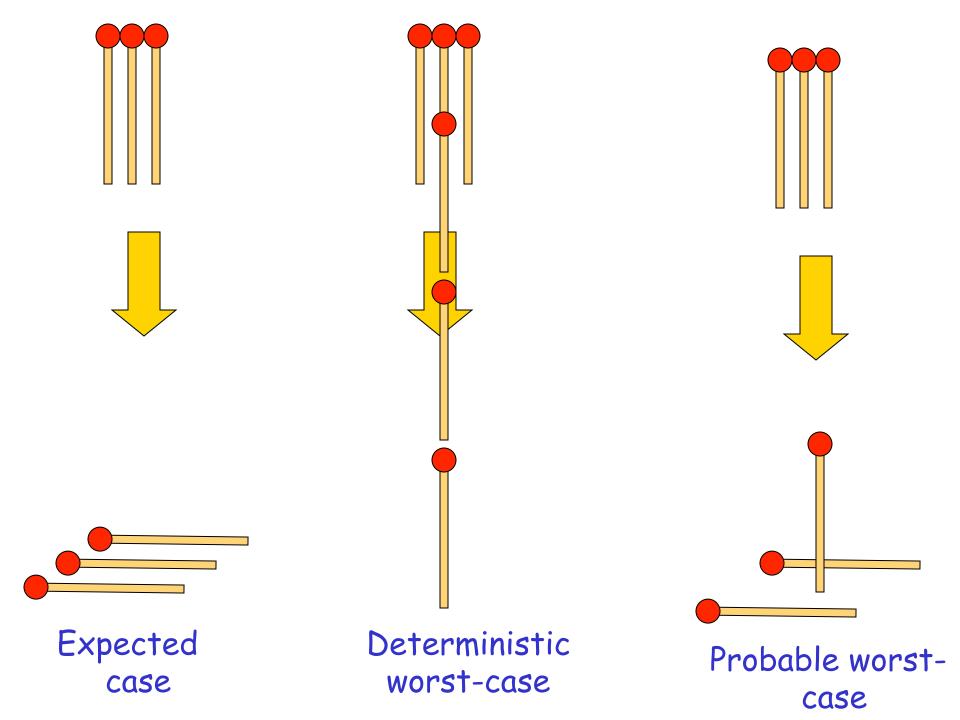
C = 45 Mbps

MPEG 1 traces:

Lecture: d = 30 msec

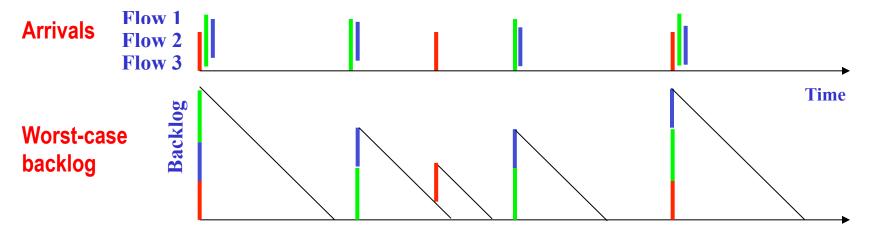
Movie (Jurassic Park): d = 50 msec





Statistical Multiplexing Gain

Worst-case arrivals



Statistical Multiplexing Gain

Statistical multiplexing gain is the raison d'être for packet networks.

What is the maximum number of flows with delay requirements that can be put on a buffered link and considering statistical multiplexing?

Arrivals $A_j(s,t)$ are random processes

- Stationarity: A_j is stationary random processes
- Independence: Any two flows A_i and $A_j (i \neq j)$ are stochastically independent

Envelopes for random arrivals

Statistical envelope bounds arrival from flow j with high certainty

• Statistical envelope \mathcal{G} :

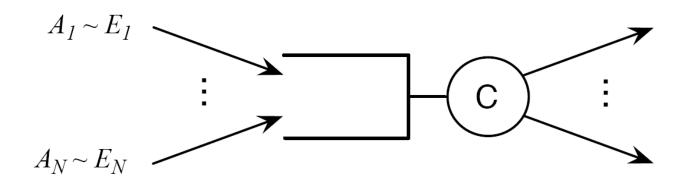
$$Pr\{A(s,t) > \mathcal{G}(t-s) + \sigma\} < \varepsilon(\sigma) \quad \forall s, t$$

· Statistical sample path envelope \mathcal{H} :

$$Pr\{\sup_{s\leq t} \{A(s,t) - \mathcal{H}(t-s)\} > \sigma\} < \varepsilon(\sigma)$$

Statistical envelopes are <u>non-</u>random functions

Aggregating arrivals



Arrivals from group of flows:

$$A_{\mathcal{C}} = \sum_{j} A_{j}$$

with deterministic envelopes:

$$E_{\mathcal{C}} = \sum_{j} E_{j}$$

with statistical envelopes:

$$\mathcal{G}_{\mathcal{C}} \ll \sum_{j} \mathcal{G}_{j} \ll E_{\mathcal{C}}$$

Statistical envelope for group of indepenent (shaped) flows

- Exploit independence and extract statistical multiplexing gain when calculating $\mathcal{G}_{\mathcal{C}}$
- For example, using the Chernoff Bound, we can obtain

$$\mathcal{G}_{\mathcal{C}}(t) = \inf_{s>0} \frac{1}{s} (\sum_{j \in \mathcal{C}} \log \overline{M}_j(s,t) - \log \varepsilon)$$

$$\overline{M}_{j}(s,t) = 1 + \frac{\rho_{j} t}{E_{j}(t)} (e^{sE_{j}(t)} - 1)$$

$$\rho_{j} = \lim_{\tau \to \infty} E_{j}(\tau) / \tau$$

Statistical vs. Envelope

Deterministic Envelopes

(JSAC 2000)

$$E(t) = \min(Pt, \sigma + \rho t)$$

Type 1 flows:

P = 1.5 Mbps

 ρ = .15 Mbps

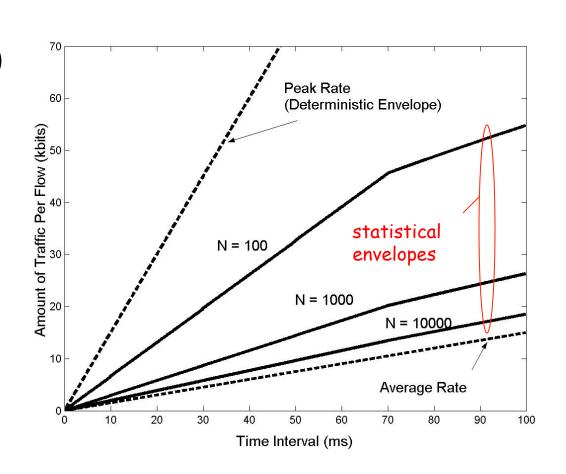
 σ =95400 bits

Type 2 flows:

P = 6 Mbps

 ρ = .15 Mbps

 σ = 10345 bits

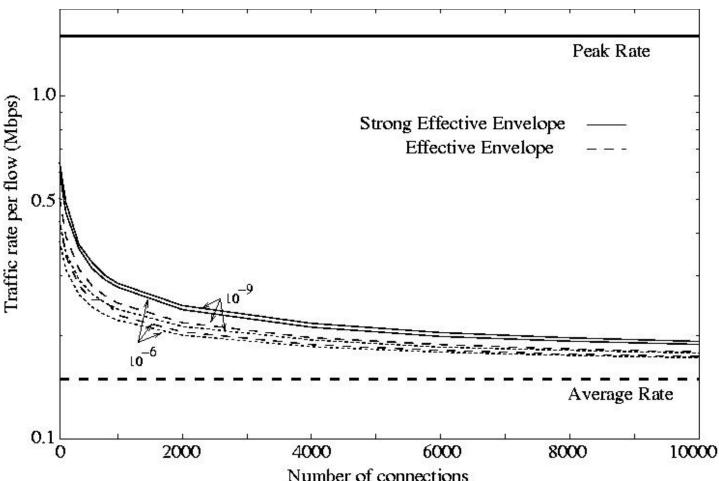


Type 1 flows

$$\varepsilon = 10^{-6}$$

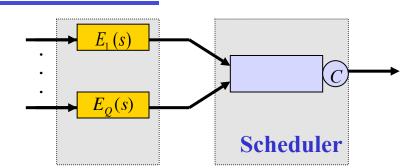
(JSAC 2000)

Traffic rate at t = 50 ms Type 1 flows



Scheduling Algorithms

- Work-conserving scheduler that serves Q classes
- Class-q has delay bound d_q
- Δ -scheduling algorithm



Deterministic Service

Never a delay bound violation if:

$$\sup_{s} \left\{ \sum_{p} E_{\mathcal{C}_{p}}(s + \Delta_{qp}) - Cs \right\} \le Cd_{q}$$

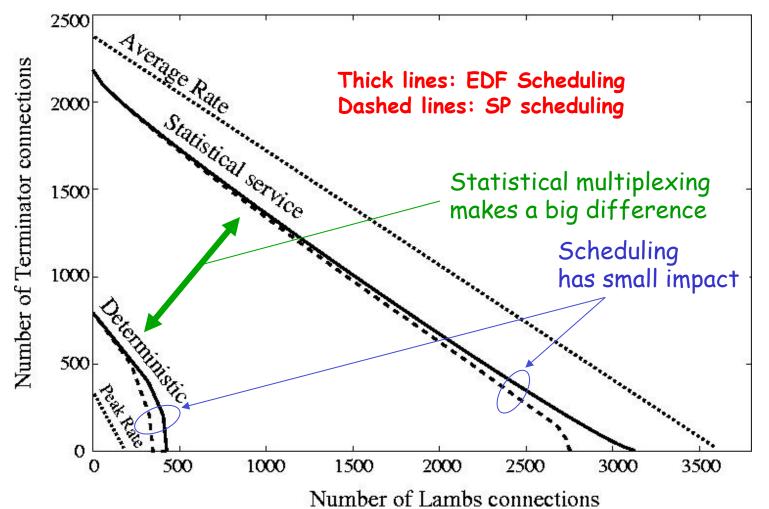
Statistical Service

Delay bound violation with ε if:

$$\sup_{s} \left\{ \sum_{p} \mathcal{H}_{\mathcal{C}_{p}}(s + \Delta_{qp}) - Cs \right\} \le Cd_{q}$$

Statistical Multiplexing vs. Scheduling (JSAC 2000)

Example: MPEG videos with delay constraints at C=622 Mbps Deterministic service vs. statistical service ($\epsilon=10^{-6}$)



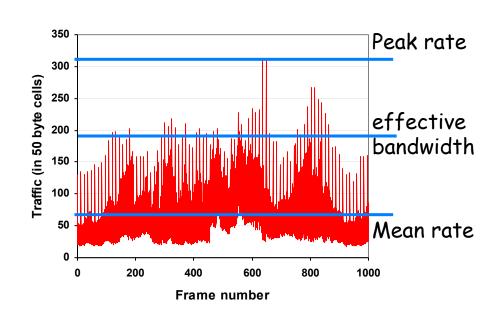
 $d_{terminator}$ =100 ms d_{lamb} =10 ms

More interesting traffic types

- · So far: Traffic of each flow was shaped
- · Next:
 - · On-Off traffic
 - Fraction Brownian Motion (FBM) traffic

Approach:

- Exploit literature on Effective Bandwidth
- Derived for many traffic types



Statistical Envelopes and Effective Bandwidth

Effective Bandwidth (Kelly 1996)

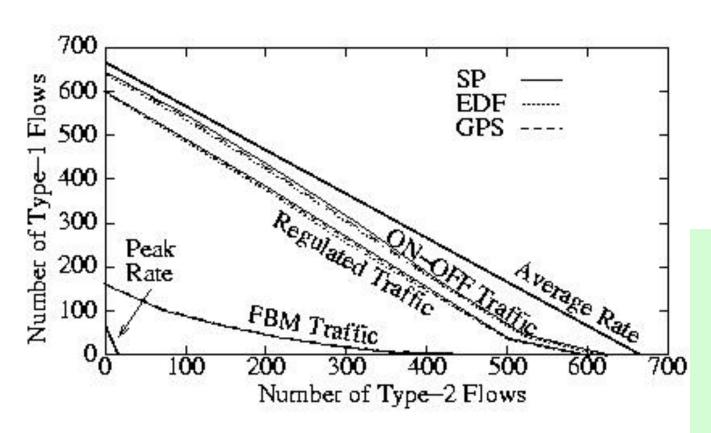
$$\alpha(s,\tau) = \sup_{t \ge 0} \left\{ \frac{1}{s\tau} \log E[e^{s(A(t+\tau) - A(t))}] \right\}$$

$$s, \tau \in (0, \infty)$$

Given $\alpha(s,\tau)$, an effective envelope is given by

$$\mathcal{G}^{\varepsilon}(\tau) = \inf_{s>0} \{ \tau \alpha(s,\tau) - \frac{\log \varepsilon}{s} \}$$

Comparisons of statistical service guarantees for different schedulers and traffic types



Schedulers:

SP- Static PriorityEDF – EarliestDeadline FirstGPS – GeneralizedProcessor Sharing

Traffic:

Regulated – leaky bucket On-Off – On-off source FBM – Fractional

Brownian Motion

C= 100 Mbps, $\varepsilon = 10^{-6}$

Delays on a path with multiple nodes:

- Impact of Statistical Multiplexing
- · Role of Scheduling

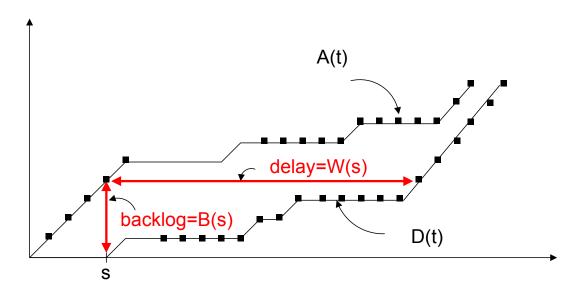
- How do delays scale with path length?
- Does scheduling still matter in a large network?

Deterministic Network Calculus (1/3)

 Systems theory for networks in (min,+) algebra A Node departures

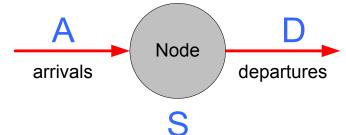
developed by Rene Cruz, C. S. Chang, JY LeBoudec (1990's)

- Service curve 5 characterizes node
- Used to obtain worst-case bounds on delay and backlog



Deterministic Network Calculus (2/3)

- Worst-case view of
 - arrivals: $A(s,t) \leq E(t-s)$
 - service: $D(t) \ge A * S(t)$

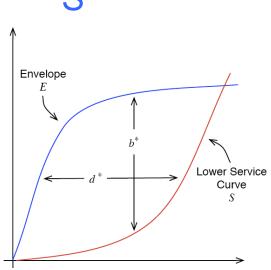


- Implies worst-case bounds
 - backlog: $B(t) \leq E \oslash S(0)$
 - delay: $W(t) \le \inf\{d|E(s) \le S(s +$
- · (min,+) algebra operators
 - · Convolution:

$$f * g(t) = \inf_{0 \le s \le t} (f(s) + g(t - s))$$

Deconvolution:

$$f \oslash g(t) = \sup_{s \ge 0} \left(f(t+s) - g(s) \right)$$

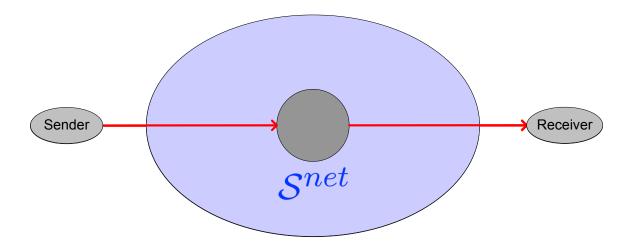


Deterministic Network Calculus (3/3)

Main result:

If $\mathcal{S}^1,\mathcal{S}^2,\mathcal{S}^3$ describes the service at each node, then $\mathcal{S}^{net}=\mathcal{S}^1*\mathcal{S}^2*\mathcal{S}^3$

describes the service given by the network as a whole.



Stochastic Network Calculus

- Probabilistic view on arrivals and service
 - Statistical Sample Path Envelope

$$Pr\{\sup_{s \le t} (A(s,t) - \mathcal{H}(t-s)) > \sigma\} \le \varepsilon(\sigma)$$

Statistical Service Curve

$$Pr\{D(t) - A * S(t) > \sigma\} \le \varepsilon(\sigma)$$

- Results on performance bounds carry over, e.g.:
 - Backlog Bound

$$Pr(B(t) > \mathcal{H} \oslash \mathcal{S}(0)) \leq \varepsilon$$

Stochastic Network Calculus

• Hard problem: Find \mathcal{S}^{net} so that $S^{net} = \mathcal{S}^1 * \mathcal{S}^2 * \dots * \mathcal{S}^H$

Technical difficulty:

$$D^{1} = A^{2}$$

$$D^{2}(t) = \inf_{0 \le s \le t} \left(A^{2}(s) + S^{2}(t - s) \right)$$

$$= A^{2}(s_{0}) + S^{2}(t - s_{0})$$

$$A^{1} * S^{1}(s_{0}) + S^{2}(t - s_{0})$$

$$A^{1} * S^{1} * S^{2}(t)$$

$$S_{0} \text{ is a random variable!}$$

• Notation: $S_{-\delta}(t) = S(t) - \delta t$

• Theorem: If S^1, S^2, \dots, S^H are statistical service curves, then for any $\delta > 0$:

$$\mathcal{S}^{net} = \mathcal{S}^1 * \mathcal{S}^2_{-\delta} * \cdots * \mathcal{S}^H_{-(H-1)\delta}$$

is a statistical network service curve with some finite violation probability.

EBB model

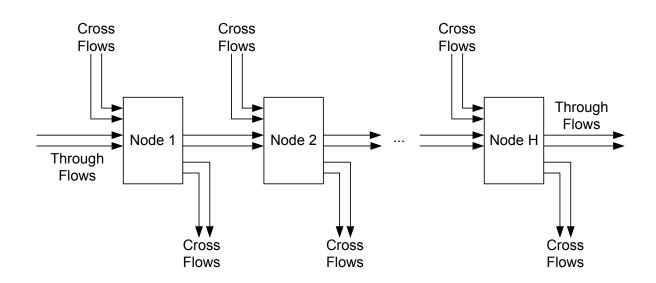
 Traffic with Exponentially Bounded Burstiness (EBB)

$$P(A(s,t) - \rho(t-s) > \sigma) \le Me^{-\alpha\sigma}$$

$$\mathcal{G}(t-s;\sigma) \qquad \varepsilon(\sigma)$$

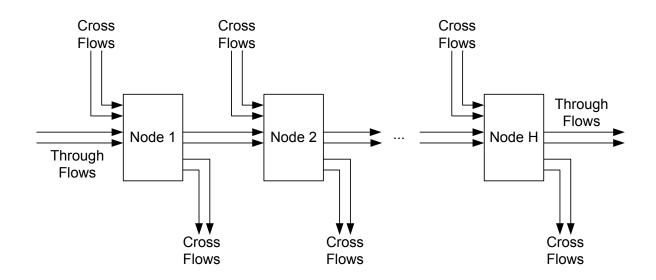
 Sample path statistical envelope obtained via union bound

Example: Scaling of Delay Bounds



- Traffic is Markov Modulated On-Off Traffic (EBB model)
- All links have capacity C
- · Same cross-traffic (not independent!) at each node
- \cdot Through flow has lower priority: $\mathcal{S}_j = [Ct \mathcal{H}_c(t)]_+$

Example: Scaling of Delay Bounds



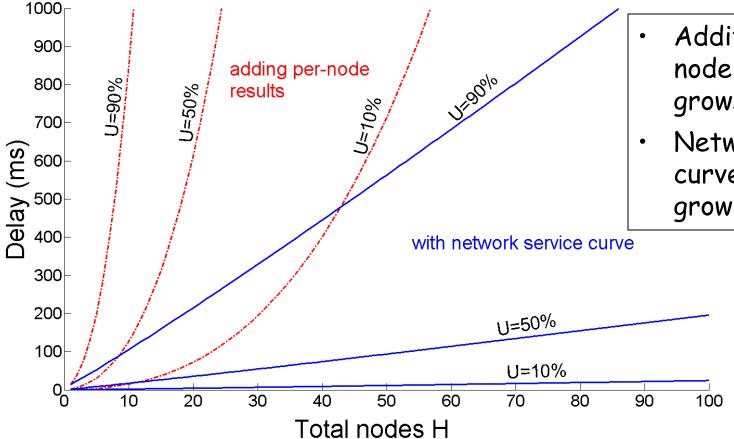
- Two methods to compute delay bounds:
 - 1. Add per-node bounds:
 Compute delay bounds at each node and sum up
 - 2. Network service curve:
 Compute single-node delay bound with statistical network service curve

Example: Scaling of Delay Bounds

(Sigmetrics 2005)

- Peak rate: P = 1.5 Mbps
 Average rate: ρ = 0.15 Mbps
- T= $1/\mu + 1/\lambda = 10$ msec

- *C* = 100 Mbps
- Cross traffic = through traffic
- $\varepsilon = 10^{-9}$



- Addition of pernode bounds grows O(H³)
- Network service curve bounds grow O(H log H)

Result: Lower Bound on E2E Delay

(ToN 2011)

 M/M/1 queues with identical exponential service at each node

Cross traffic

Through Node 1

Node 2

Node H

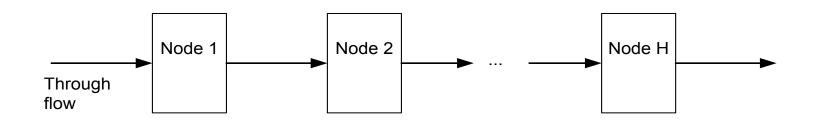
Theorem: E2E delay W_H satisfies for all 0 < z < 1

$$Pr(W_H \le \gamma_1 H \log(\gamma_2 H)) \le z$$

Corollary: z-quantile $w_H(z)$ of W_H satisfies

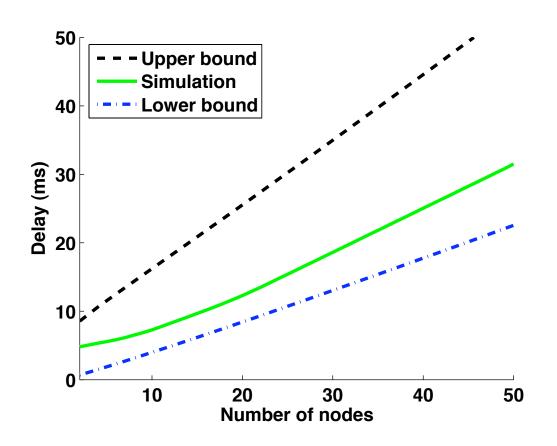
$$w_H(z) = \Omega(H \log H)$$

Numerical examples



- Tandem network without cross traffic
- Node capacity:
- · Arrivals are compound Poisson process
 - Packet arrival rate: λ
 - Packet size: $Y_i \sim exp(\mu)$
- Utilization: $\rho = \lambda/(\mu C)$

Upper and Lower Bounds on E2E Delays (ToN 2011)



Capacity

$$C = 100 \ Mbps$$

Mean packet size

$$\frac{1}{u} = 400 \text{ Bytes}$$

Load factor

$$\rho = 90\%$$

Violation probability

$$\varepsilon = 10^{-6}$$

Superlinear Scaling of Network Delays

• For traffic satisfying "Exponential Bounded Burstiness", E2E delays follow a scaling law of $\Theta(H \log H)$

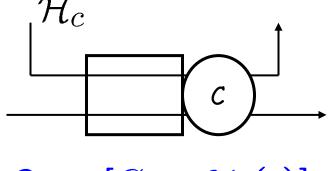
- · This is different than predicted by
 - ... worst-case analysis
 - ... networks satisfying "Kleinrock's independence assumption"

Back to scheduling ...

So far:

Through traffic has lowest priority and gets leftover capacity

→ Leftover Service or Blind Multiplexing

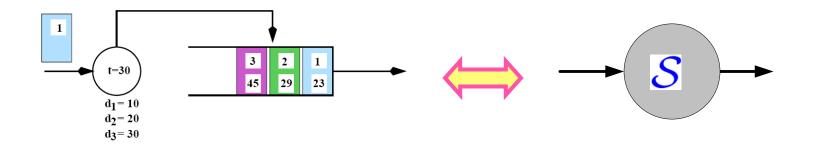


$$S_j = [Ct - \mathcal{H}_c(t)]_+$$

How do end-to-end delay bounds look like for different schedulers?

Does link scheduling matter on long paths?

How well can a service curve describe a scheduler?

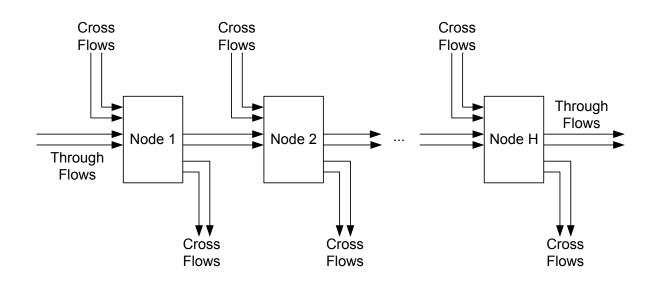


 For schedulers considered earlier, the following is ideal:

$$S_j(t;\theta) = [Ct - \mathcal{H}_c(t - \theta + \Delta_{j,k}(\theta))]_+ I(t > \theta)$$

with indicator function I(expr) and parameter $\theta \geq 0$

Example: End-to-End Bounds

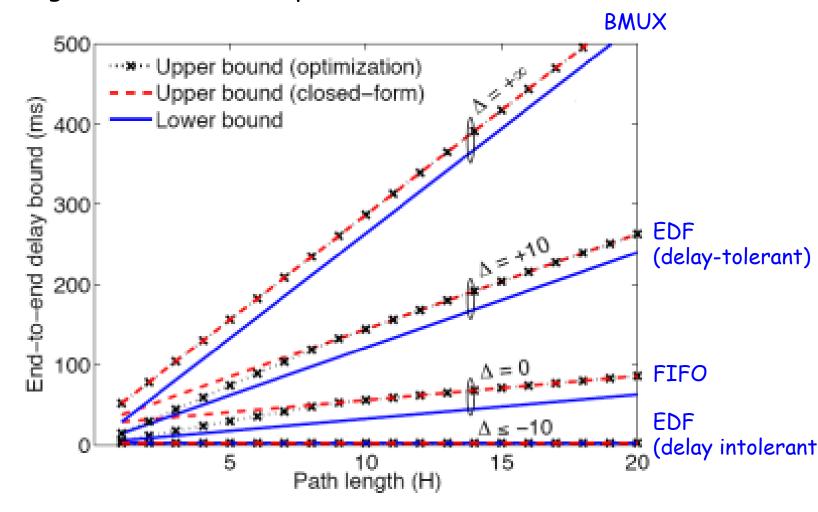


- Traffic is Markov Modulated On-Off Traffic (EBB model)
- Fixed capacity link

Example: Deterministic E2E Delays

(Infocom '11)

- Peak rate: E(t) = b+rtAverage rate: r = 0.15 Mbps
- *C* = 100 Mbps
- Link utilization: 90% (through: 1.5%)

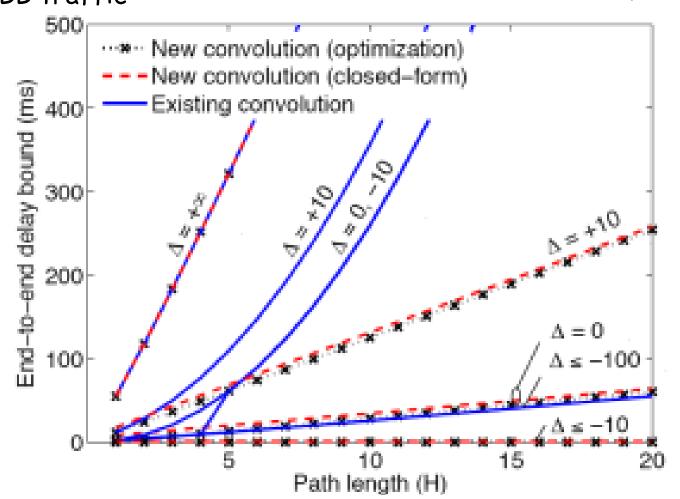


Example: Statistical E2E Delays

(Infocom`11)

Peak rate: P = 1.5 Mbps
 Average rate: τ = 0.15 Mbps
 EBB traffic

- C = 100 Mbps
- $\epsilon = 10^{-9}$
 - Link utilization: 90% (through: 1.5%)



How about an overloaded scheduler?

- Delays are of course unbounded?
- But how about throughput?

CBR traffic at a FIFO scheduler

Problem appeared in probing method for bandwidth estimation

FIFO system

• Output:

$$D(t) = \begin{cases} rt, & \text{if } r \leq C - r_c, \\ \frac{r}{r + r_c} Ct, & \text{if } r > C - r_c. \end{cases}$$

Service curve:

$$S(t) = [Ct - r_c]^+ t$$

Overloaded systems

- FIFO shares bandwidth proportional to input
- Service curve becomes BMUX
- The same holds
 - for any Δ -scheduler with finite Δ s
 - · for any traffic type with an average traffic rate

Can we compute scaling of delays for nasty traffic?

Heavy-Tailed Self-Similar Traffic

• A heavy-tailed process X satisfies

$$Pr(X(t) > x) \sim Kx^{-\alpha}$$

with $1 < \alpha < 2$

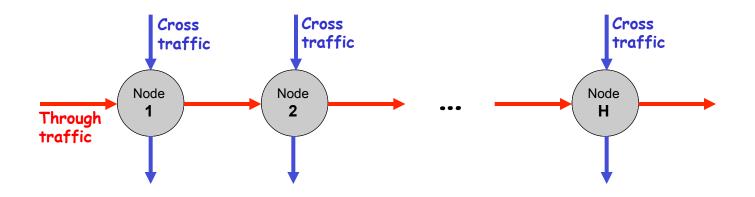
· A self-similar process satisfies

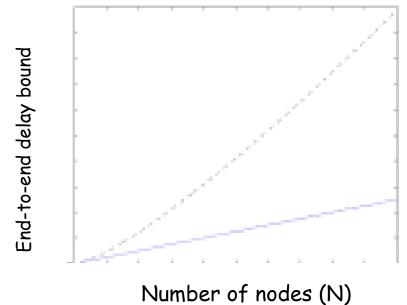
$$X(t) \sim_{dist} a^{-H} X(at)$$

$$a>0$$

 $H\in (0,1)$ Parameter

End-to-End Delays





Exponentially bounded traffic Θ (N log N) (Sigmetrics 2005, Infocom 2007)

Worst-case delays Θ (N)

(e.g., LeBoudec and Thiran 2000)

htts Traffic Envelope

Heavy-tailed self-similar (htss) envelope:

$$Pr(A(s,t) > r(t-s) + \sigma(t-s)^{H}) \leq K\sigma^{-\alpha}$$

$$\mathcal{G}(t-s;\sigma) \qquad \varepsilon(\sigma)$$

 Main difficulty: Backlog and delay bounds require sample path envelopes of the form

$$Pr(\sup_{s \le t} \{A(s,t) - \overline{\mathcal{G}}(t-s;\sigma)\} > 0) \le \varepsilon(\sigma)$$

Key contribution (not shown):
 Derive sample path bound for htss traffic

(Infocom 2010)

Traffic parameters:

$$\alpha = 1.6$$

$$b = 150 Byte$$

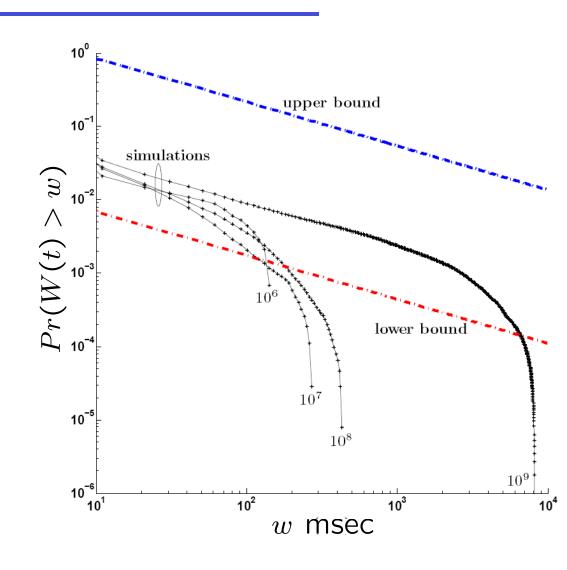
$$\lambda = 75 Mbps$$

Node:

- Capacity C=100 Mbps with packetizer
- No cross traffic

Compared with:

- Lower bound from ToN 2011 paper
- Simulations



Example: Nodes with Pareto Traffic (End-to-end)

Parameters:

$$N = 1, 2, 4, 8$$

Compared with:

- Lower bound from ToN 2011 paper
- Simulation traces of 10⁸ packets

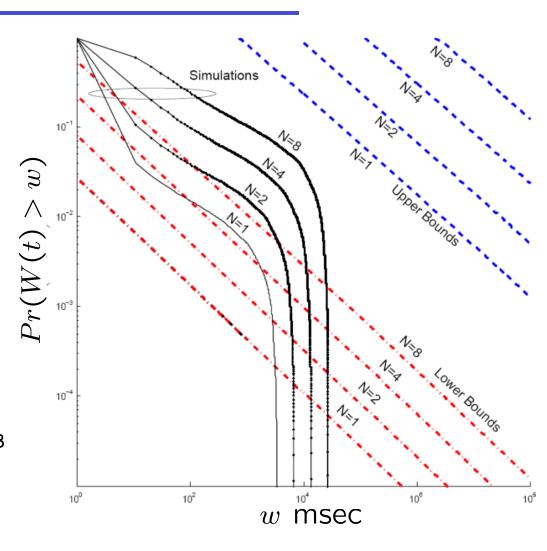
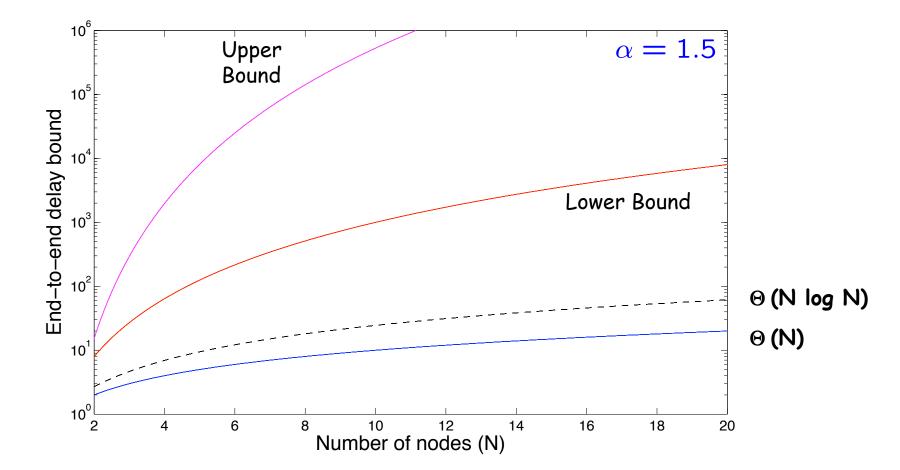


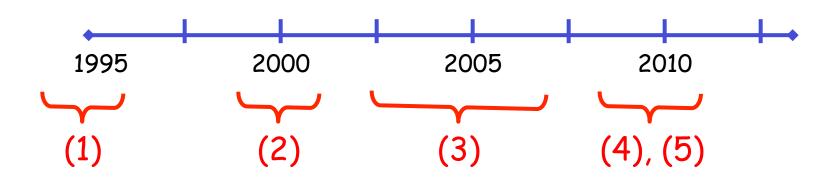
Illustration of scaling bounds

(Infocom 2010)

Upper Bound: $O(N^{\frac{\alpha+1}{\alpha-1}}(\log N)^{\frac{1}{\alpha-1}})$ Lower Bound: $\Theta(N^{\frac{\alpha}{\alpha-1}})$



Summary of insights



- Satisfying delay bounds does not require peak rate allocation for complex traffic
- 2 Statistical multiplexing gain dominates gain due to link scheduling
- $(3) \ominus (H \log H)$ scaling law of end-to-end delays
- 4 New laws for heavy-tailed traffic
- 5 Link scheduling plays a role on long path

Example: Pareto Traffic

Size of i-th arrival:

- $Pr(X_i > x) = \left(\frac{x}{b}\right)^{-\alpha}$ $A(t) = \sum_{i=0}^{N(t)} X_i$
- Arrivals are evenly spaced with gap λ :
- With Generalized Central Limit Theorem ...
 - ... and tail bound

$$A(t) \approx \lambda t E[X] + c_{\alpha}(\lambda t)^{1/\alpha} S_{\alpha}$$
 $Pr(S_{\alpha} > \sigma) \sim (c_{\alpha}\sigma)^{-\alpha}$

$$Pr(S_{\alpha} > \sigma) \sim (c_{\alpha}\sigma)^{-\alpha}$$

 α -stable distribution

... we get htss envelope

$$\mathcal{G}(t;\sigma) = \lambda E[X]t + \sigma t^{1/\alpha}$$
$$\varepsilon(\sigma) = \lambda \sigma^{-\alpha}$$

Example: Envelopes for Pareto Traffic (Infocom 2010)

Parameters:

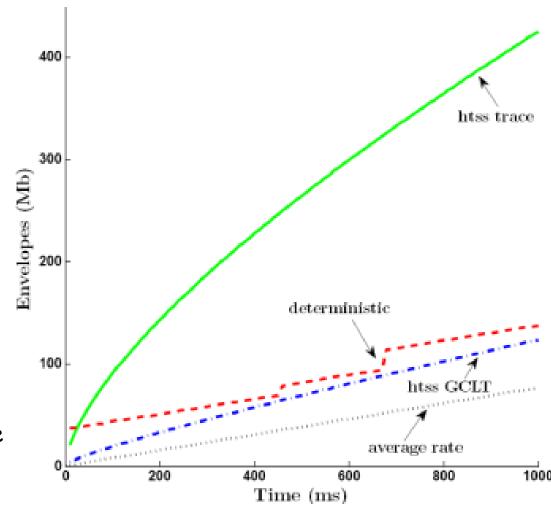
$$\alpha = 1.6$$

b = 150 Byte

 $\lambda = 75 Mbps$

Comparison of envelopes:

- htss GCLT envelope
- Average rate
- Trace-based
 - deterministic envelope
 - htts trace envelope



Single Node Delay Bound

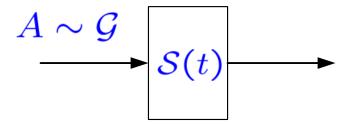
htss envelope:

$$\mathcal{G}(t;\sigma) = rt + \sigma t^{H}$$
$$\varepsilon(\sigma) = K\sigma^{-\alpha}$$

ht service curve:

$$S(t;\sigma) = [Rt - \sigma]_{+}$$

$$\varepsilon(\sigma) = L\sigma^{-\beta}$$



Delay bound:

$$Pr(W(t) > w) \le M(Rw)^{-\min\{\alpha(1-H),\beta\}}$$