
Generalizing Network Calculus Analysis to Derive

Performance Guarantees for Multicast Flows

Steffen Bondorf
Distributed Computer Systems (DISCO) Lab

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

bondorf@cs.uni-kl.de

Fabien Geyer
Airbus Group Innovations

Dept. TX2P
D-81663 Munich, Germany

fabien.geyer@airbus.com

ABSTRACT
Guaranteeing performance bounds of data flows is an essen-
tial part of network engineering and certification of networks
with real-time constraints. A prevalent analytical method
to derive guarantees for end-to-end delay and bu↵er size is
Deterministic Network Calculus (DNC). Due to the DNC
system model, one decisive restriction is that only unicast
flows can be analyzed. Previous attempts to analyze net-
works with multicast flows circumvented this restriction in-
stead of overcoming it. E.g., they replaced the system model
with an overly-pessimistic one that consists of unicast flows
only. Such approaches impair modeling accuracy and thus
inevitably result in inaccurate performance bounds.

In this paper, we approach the problem of multicast flows
di↵erently. We start from existing DNC analyses and gener-
alize them to handle multicast flows. We contribute a novel
analysis procedure that leaves the network model unaltered,
preserves its accuracy, allows for DNC principles such as pay
multiplexing only once, and therefore derives more accurate
performance bounds than existing approaches.

CCS Concepts
•Networks ! Network performance evaluation; Net-
work performance analysis; Network performance modeling;
•Computing methodologies ! Symbolic and alge-

braic algorithms; Symbolic calculus algorithms;

Keywords
Delay bounds, deterministic network calculus, feed-forward
networks, multicast flows

1. INTRODUCTION
Distributed embedded electronic applications communi-

cating via packet networks have become the norm in various
industries such as automotive, avionic or automation. In
such industrial applications, real-time constraints on packet
delay and jitter are usually required in order to ensure the

ACM ISBN .

DOI:

specified processes behavior. Due to certification of systems
as well as reliability demands, formal methods are applied to
validate these timing constraints. They allow for hard guar-
antees via upper bounds. While di↵erent analytical methods
have been proposed in the literature, Deterministic Network
Calculus (DNC) established itself as common tool to ana-
lyze asynchronous communications in packet networks. A
concrete example of this is Avionic Full-Duplex Ethernet
(AFDX), a communication technology based on Ethernet
and already deployed in avionic systems. Network calculus
has proven a key tool for the certification of the deterministic
property of the networks used for fly-by-wire [10].

An important property of those industrial networks is
that communications are usually based on the multicast
paradigm, where packets being sent by one sender are dupli-
cated by switching elements in the network and received by
multiple receivers. Using DNC on such multicast protocols
requires some adaptations, since this method is restricted to
the analysis of unicast communications. As detailed later,
in Section 3, previous attempts for using DNC to analyze
multicast communications only circumvented its current re-
striction. They do not provide a solution to overcome this
limitation. Those approaches cannot benefit from all DNC
capabilities to provide accurate end-to-end guarantees and
networks designed based on them will be over-dimensioned.

We address the open issue of multicast flow analysis with
DNC. We contribute two approaches that turn out to be
steps generalizing existing analyses. The first one, Explicit
Intermediate Bounds (EIB), is an approach where multicast
flows are cut into sequences of unicast sub-flows. End-to-end
performance bounds are then derived from sub-flow results.
It does not require a transformation of the network, however,
it amends a step to the analysis. Our second generalization
finally leads to a DNC multicast feed-forward analysis. Nei-
ther transforming the network nor cutting any flows is re-
quired. Therefore, more accurate bounds are obtained since
existing DNC principles can be applied in order to reduce
e↵ects such as flow multiplexing or burstiness. We numeri-
cally evaluate our proposed methods on two AFDX networks
given in the literature and show that our DNC results are
on par with other analytical methods or outperform them.

This paper is organized as follows: Section 2 gives a brief
background on deterministic network calculus and we de-
rive the foundation for our generalizations. In Section 3,
we present related work on multicast flow analysis. Sec-
tions 4 and 5 contribute generalizations of DNC analyses
for the study of multicast flow guarantees. We evaluate our
approaches in Section 6 and Section 7 concludes the paper.

2. NETWORK CALCULUS BACKGROUND
We present in this section a brief overview of deterministic

network calculus. For a more in-depth description, we refer
the reader to [9] and [14].

2.1 Flow and Server Modeling
In network calculus, flows correspond to unidirectional

and unicast communications between two servers. They are
modeled as functions of their cumulative arrival of data.
More formally, those functions belong to the following set
F

0

of non-negative, wide-sens increasing functions:

F
0

= {f : R! R+ | f(0) = 0, 80  s < t : f(s) < f(t)}

In order to compute bounds on the flows, we are interested
in the functions A(t) corresponding to the data arriving in
a given server s at time t, and A0(t) the amount of data
processed by the server at time t. Using this formalism, the
following delay definition can then be derived:

Definition 1 (Flow delay). Assume a flow with in-
put A and crosses a server s and results in the output A0.
The (virtual) delay for a data unit arriving at time t is

D(t) = inf{⌧ � 0 | A(t)  A0(t+ ⌧)}

Instead of directly working withA, network calculus makes
use of the concept of arrival curves, which is a function
bounding the maximal arrivals of a flow:

Definition 2 (Arrival curve). Given a flow with in-
put A, a function ↵ 2 F

0

is an arrival curve for A i↵

A(t)�A(s)  ↵(t� s), 8t, s, 0  s  t

Definition 3 (Service curve). If the service provided
by a server s for a given input A results in an output A0,
then s o↵ers a service curve � 2 F

0

i↵

A0(t) � inf
0st

{A(t� s) + �(s)}, 8t

2.2 (min, +) Algebra
Network calculus was formalized as a (min,+)-algebraic

framework in [9, 14], enabling an easier description of oper-
ations on flow and server descriptions.

Definition 4 ((min,+) operations). The (min,+) con-
volution and deconvolution of two functions f, g 2 F

0

are
defined as:

Convolution: (f ⌦ g)(t) = inf
0st

{f(t� s) + g(s)}

Deconvolution: (f ↵ g)(t) = sup
s�0

{f(t+ s)� g(s)}

Using those (min,+) operations, one can rewrite the pre-
vious definitions as A0 � A⌦ � and A⌦ ↵ � A.

Moreover, (min,+) convolution allows DNC to concate-
nate the service of consecutive servers h1, . . . , ni, so-called
tandems, into a single service curve:

Theorem 1 (Concatenation of servers). Consider
a single flow f crossing a tandem of servers s

1

, . . . , sn where
each server si o↵ers a service curve �i. The overall service
curve for f is their concatenation by convolution:

�i ⌦ · · ·⌦ �n =
nO

i=1

�i

Given a strict service curve that guarantees a minimum
output of � if data is present at a server, we lower bound
the service left-over for a specific flow:

Theorem 2 (Left-over service curve). Consider a
server s that o↵ers a strict service curve �. Let s be crossed
by flows f

0

and f
1

, with arrival curves ↵
0

, respectively ↵
1

.
Then the worst-case residual resource share under arbitrary
multiplexing of f

1

at s is:

�l.o.f1 = � ↵
0

with (� ↵)(d) = sup{(� � ↵)(u) | 0  u  d} denoting the
non-decreasing upper closure of (� � ↵)(d).

Last, we use these curves to derive performance bounds.

Theorem 3 (Performance bounds [14]). Consider a
flow f with arrival curve ↵ traversing a server s with a ser-
vice curve �. The following bounds can be derived:

Backlog: Q(t)  sup
s�0

{↵(s)� �(s)} = (↵↵ �)(0)

Delay: D(t)  inf{d � 0 | (↵↵ �)(�d)  0}
Output: ↵0(d) = (↵↵ �)(d)

with ↵0 being an output arrival curve for A0.

2.3 Network Analysis
Using the definitions and theorems presented above, the

end-to-end performances of flows interacting on a network
of servers can be computed. We call the analyzed flow flow
of interest, abbreviated foi.

2.3.1 Tandems of Servers
The foi’s path defines the sequence (tandem) of servers

that defines its end-to-end delay. For bounding this delay,
di↵erent methods have been proposed in the literature.

Total Flow Analysis (TFA) [14].
The TFA first computes per-server delay bounds. Each

one holds for the sum of all the tra�c arriving to a server,
i.e., these bounds are independent of the foi. The flow’s end-
to-end delay bound is derived by summing up the individual
server delay bounds on its path. The TFA’s server-isolating
approach constitutes a direct application of Theorem 3; it is
known to be inferior to the following analyses [14, 18].

Separated Flow Analysis (SFA) [14].
The SFA is a direct application of other theorems: first

compute the left-over service of each server on the foi’s path
using Theorem 2, then concatenate them using Theorem 1
and finally derive the end-to-end delay bound using Theo-
rem 3. Deriving the end-to-end delay bound using only one
service curve will consider the burst term of the foi only
once, a property called Pay Burst Only Once (PBOO).

Pay Multiplexing Only Once (PMOO) [18].
The PMOO analysis first convolves the tandem of servers

before subtracting the cross-tra�c. Using this order, the
bursts of the cross-tra�c appear only a single time compared
to the SFA analysis where the bursts are included at each
server. Therefore, multiplexing with cross-tra�c is only paid
for once. However, [17] showed that the PMOOmethod does
not necessarily outperform the SFA.

2.3.2 Feed-forward Networks
For more involved feed-forward networks, a procedure to

combine tandem analyses to a network analysis exists. In
order to integrate the analysis of multicast flows into DNC,
we derive this procedure in great detail. Here, we contribute
the following result: a precise structure of the steps taken by
any DNC network analysis. The well-elaborated structure
we establish in this section, also serves us to judge and com-
pare di↵erent approaches to aiming for performance bounds
in feed-forward networks with multicast flows.

In previous work, two basic steps of the analysis have al-
ready been identified [5]: 1) cross-tra�c arrival bounding
and 2) flow of interest performance bounding. They are tai-
lored to a compositional unicast flow analysis. We call it the
unicastFFA and derive its steps in unprecedented detail:

unicastFFA Step 1: Cross-traffic Arrival Bounding. The
first unicastFFA step abstracts from the feed-forward net-
work to the foi’s path – a tandem of servers that can be
analyzed with one of the existing procedures. In detail, this
step proceeds as follows:

(i) Starting at the locations of interference with the foi,
cross-flows are backtracked to their sources. This pro-
cedure derives the dependencies between the foi, its
cross-flows, their cross-flows, etc., in a recursive fash-
ion. A new instance of this sub-step is started for any
cross-flow of the current cross-flow under considera-
tion. Due to the network’s feed-forward property, the
recursion is guaranteed to terminate.

(ii) Next, the dependencies are converted into equations,
i.e., a sequence of algebraic operations for each location
of interference with the foi. They capture the worst-
case transformation of flow arrivals towards foi.

(iii) Finally, the equations are solved to obtain the bounds
on cross-tra�c arrivals.

After these substeps, all cross-flows’ arrivals are bounded
with arrival curves (arrival bounds).

unicastFFA Step 2: foi Performance Bounding. Given
the cross-tra�c arrival bounds from step 1, step 2 does not
need to consider the part of the network traversed by these
flows nor the potentially complex interference patterns they
are subject to. The foi’s end-to-end delay bound in the feed-
forward network is derived with a tandem analysis.

Note, that this step provides information required in the
previous one. It defines the flow of interest and thus its
cross-flows as well as their locations of interference used in
step 1(i). This step is strongly based on the tandem analysis
that, in turn, is derived from the aim to analyze a unicast
flow from end to end. It is not directly applicable to the
analysis of multicast flows and thus needs generalization.

2.4 Multicast Flows
As defined at the beginning of this section, flows and net-

work analysis in network calculus have been mostly focused
on the modeling of unidirectional and unicast communica-
tions. Such a model is not directly applicable to multicast
network protocols, where packets are duplicated at certain
points of the network in order to provide one-to-many com-
munications as illustrated in Figure 1.

s1

s2

s3

(a) Illustrative example.

s1 s2

s3 s4

s5 s6

f3

f1
f2

(b) Running example.

Figure 1: Multicast networks.

We define the following terms for describing parts of a
multicast flow:

Definition 5 (Trajectory and fork). A trajectory
of a given source-sink pair corresponds to the equivalent uni-
cast flow going from the source to the sink. A fork corre-
sponds to a server where packets are duplicated.

In the following, we will provide an illustration as well as
a running example. They are meant to serve two distinct
purposes: On the one hand, we depict the basic idea behind
the approaches to handle multicast flows with the minimal
network of Figure 1a. Additionally, we will analyze the net-
work of Figure 1b with the given approach. Analyzing flow
f
2

makes this network minimal w.r.t. covering all e↵ects
relevant to DNC and multicast flows: There one multicast
flow in each step of the analysis, cross-tra�c arrival bound-
ing (f

1

) as well as flow of interest analysis (f
2

). Moreover,
a unicast flow is present and this network allows us to ob-
serve the impact of di↵erent flow analyses described earlier
in Section 2.3.1 (TFA, SFA with the PBOO e↵ect, PMOO).

3. RELATED WORK
In this related work section, we provide two DNC ap-

proaches to the analysis of multicast flows. For both, we
focus on how these approaches enable the unicastFFA of the
previous section to analyze networks with multicast flows.

unicastFFA Transformation: A Set of Unicast Flows
A first approach to circumvent this issue is to transform a
multicast flow to a set of unicast flows. It was mentioned as
a possibility to cope with multicast flows in [6]. Each trajec-
tory will become one independent unicast flow, as illustrated
in our two sample networks (Figures 2a and 2b).

From a procedural point of view, the unicast transforma-
tion does not integrate into the unicastFFA. It only enables
for using it by a preceding step that transforms the network.
This step is static, i.e., it does not consider the unicastFFA’s
information like the flow(s) that are under analysis.

The foremost problem of this approach is its overly pes-
simistic assumption about resource demand of multicast flows.
On common sub-paths of a multicast flows’ trajectories, i.e.,
the servers before a fork, multiple unicast flows compete for
resources. The unicastFFA thus models the worst case with
mutual interference between these flows that are not present
in the original network model.

On the other hand, this approach allows for the PBOO
and the PMOO principle in the unicastFFA.

Multicast TFA
Grieu [11] proposes a procedure to apply the TFA presented
in Section 2.3.1 in the analysis of multicast flows. It is tai-
lored to the TFA and shares its inherent isolation of servers.

s1

s2

s3

(a) unicastFFA trans-

formation illustration.

s1 s2

s3 s4

s5 s6

f3

fA
1

fA
2

fB
1

fB
2

(b) unicastFFA transformation

applied to the running example.

s1

s2

s3

(c) Multicast TFA

illustration.

s1 s2

s3 s4

s5 s6

f3

f0
1

fA
2

fB
2

fB
1

fA
1

f0
2

(d) Multicast TFA applied to the

running example.

Figure 2: Existing DNC approaches to the multicast analysis applied to the networks presented in Figure 1.

Thus, it does not integrate into the unicastFFA for deriv-
ing delay bounds. Figures 2c and 2d depict this procedure
on the illustration and the running example, respectively.
Flows are cut between all servers, the arrivals are aggre-
gated and a server-local delay bound is computed. In a
second step, the server delay bounds on the trajectory of
interest are summed up. As this last step is similar to the
unicastFFA step 1, it inherits its decisive TFA shortcomings.
I.e., neither the PMOO nor the PBOO principle are imple-
mented and the delay bounds are known to be inaccurate.

Related Approaches
The existing DNC approaches both have significant draw-
backs. Therefore, the literature created novel multicast anal-
yses based on the DNC system description.

The Trajectory Approach (TA) is an adaptation to the
study of network delays of the holistic approach [19]. It
was originally developed to give bounds on the scheduling of
tasks on a processor. The approach was initially proposed in
[16] and later extended to FIFO systems in [15]. [1] applied
TA to the study of avionic networks with multicast flows
and showed, via numerical evaluations, that it outperforms
the multicast TFA.

The Forward End-To-End Delay Approach (FA) has been
proposed more recently in [13]. It addresses the shortcom-
ings of the TA. Similarly to the TA, FA is also an adaptation
of the holistic approach to the case of FIFO networks. [13]
and [12] applied the FA to the performance evaluation of
avionic networks with multicast flows and showed that this
approach outperforms the multicast TFA as well.

Although FA sets its focus on the end-to-end analysis –
similar to the DNC tandem analyses – neither FA nor TA
have been benchmarked against a modern DNC that imple-
ments PBOO or PMOO. This can be attributed to the lack
of such an analysis for multicast flows. In this paper, we will
generalize multicast TFA as well as the unicastFFA in order
to provide such DNC solutions and benchmarking results.

4. EXPLICIT INTERMEDIATE BOUNDS
Explicit Intermediate Bounds (EIB) analysis is the gener-

alization of the multicast TFA analysis. We do not create
an entirely new analysis (unlike TA and FA) but adapt the
model such that we can analyze it with our NC tools. EIB
combines the strengths of the two related approaches from
above. Like the TFA, it follows the foi’s trajectory of interest
without additional cross-tra�c assumptions. Moreover, it
proceeds in tandems like the set of unicast flows. Therefore,
it can benefit from both the PBOO and the PMOO principle
on these tandems – unlike the server-local approach respon-
sible for TFA’s general inferiority w.r.t. delay bounds.

s1 s2

s3 s4

s5 s6

f3

f0
1

fA
2

fB
2

fB
1

fA
1

f0
2

Figure 3: Application of the EIB analysis to the studied
scenario: multicast flows are cut into unicast sub-flows.

We achieve this by an approach consisting of two parts:

1. A static, preceding step takes the network description
and transforms it for analysis. In contrast to the mul-
ticast TFA, we cut multicast flows after forking lo-
cations only; not after every server. These are the
locations of explicit intermediate bounds. In our illus-
trative example, the result is equal to the multicast
TFA (Figure 2c). However, we transform the network
into tandems that are crossed by parts of the multi-
cast flows. This is revealed by our running example.
For instance, compare the tandems h1, 2i and h3, 4i of
multicast TFA (Figure 2d) with EIB (Figure 3).

2. The locations of cuts is static, i.e., only defined by the
network, not the foi. The EIB analysis can be viewed
to create a global worst case for all flows, independent
of the foi. Afterwards it runs a unicastFFA in its sec-
ond part.

These two steps are, however, not as separated as in the
literature’s multicast TFA. We integrate the EIB idea into
the unicastFFA is as follows:

• Step 1: An adaptation of the cross-tra�c arrival bound-
ing is required at the locations of explicit intermedi-
ate bounds. Previously, tandems for analysis were de-
fined by the common path of flow aggregates [6]. Using
EIB, we have an additional restriction for the tandem
lengths as we derive the output bound at the server
a multicast flow forks. I.e., when the backtracking
reaches such a server, the search for a tandem to op-
erate on terminates. A new instance of unicastFFA
step 1 is started with this server being the last one for
the next tandem in the analysis.

• Step 2: The flow of interest analysis actually becomes
a “trajectory of interest” analysis. Yet, for multicast
flows it is not able to analyze the trajectory in an
end-to-end fashion with a single left-over service curve.

A multicast flow’s entire trajectory will consist of at
least two tandems as it has at least one fork location
to cut at. Thus, the PMOO principle cannot be im-
plemented entirely; similar to the FIFO multiplexing
tandem analysis LUDB [2].

We call this integrated procedure EIB unicastFFA; the
name emphasizes the application of this specific way to ob-
tain results with the EIB idea. Regarding the results them-
selves, EIB unicastFFA and EIB are synonymous as both of
the above procedures yield the same performance bounds.

Analysis of the Running Example
As mentioned above, the di↵erence between multicast TFA
and EIB unicastFFA becomes apparent in more involved
networks. We derive the left-over service curves for multicast
flow f

2

of our running example (Figure 3) to depict the new
analysis. We follow the EIB unicastFFA procedure that does
not reveal a preceding EIB step.

EIB unicastFFA step 1. Bounding the delay of f
2

requires
to bound the interference of multicast cross-flow f

1

. The
first location of interference with f

2

is at s
5

where we need
to backtrack fB

1

. EIB enforces a cut after f
1

’s fork at server

s
2

that we need to consider. We get ↵
fB
1

5

= ↵
f0
1

5

, i.e., the
backtracking is stopped there. In a second instance of EIB
unicastFFA step 1, f0

1

is backtracked in order to derive its
explicit intermediate bound at the output of s

2

/ at the
input of server s

5

:

↵
fB
1

5

= ↵f0
1 ↵ �

l.o.f0
1

h1,2i

In contrast to the multicast TFA, we can benefit from ei-

ther SFA/PBOO or PMOO in the derivation of �
l.o.f0

1
h1,2i . The

according derivation that applies both alternatives is called
aggregate arrival bounding, aggrAB, [6]:

↵f0
1 ↵ �

l.o.f0
1

h1,2i =
⇣
↵f0

1 ↵
⇣⇣

�
1

 ↵f3
⌘
⌦

⇣
�
2

 ↵f3
2

⌘⌘⌘
^
⇣
↵f0

1 ↵
⇣
(�

1

⌦ �
2

) ↵f3
⌘⌘

where ↵f3
2

corresponds to the arrival bound of f
3

at s
2

.
At the second location of interference between f

1

and f
2

,
server s

4

, we need to backtrack trajectory fA
1

. This yields

↵
fA
1

4

= ↵
fB
1

5

↵ �
3

=
⇣
↵f0

1 ↵ �
l.o.f0

1
h1,2i

⌘
↵ �

3

= ↵f0
1 ↵

⇣
�
l.o.f0

1
h1,2i ⌦ �

3

⌘
Note, that we cannot derive a left-over service curve �

l.o.fA
1

h1,2,3i
due to the cut enforced by EIB. In general, this prevents the
implementing of the PMOO principle.

EIB unicastFFA step 2. Next, we bound the delay of tra-
jectory fA

2

. Again, it cannot be done with a single, PMOO
left-over service curve due to EIB’s cut between s

5

and s
6

.
In this case, the cut means SFA is the only analysis option:

�l.o.fA
2 = �

l.o.fA
2

h5,4i

(cut enforced by EIB, no single-tandem analysis)

= �
l.o.fA

2
5

⌦ �
l.o.fA

2
4

=
⇣
�
5

 ↵
fB
1

5

⌘
⌦

⇣
�
4

 ↵
fA
1

4

⌘

where ↵
fB
1

5

and ↵
fA
1

4

have been derived in EIB unicastFFA
step 1, the cross-tra�c arrival bounding.

In the analysis of f
2

, the delay bound for trajectory fB
2

remains to be bounded. Again, we need to derive the accord-
ing left-over service curve that illustrates the proceedings of
EIB unicastFFA:

�l.o.fB
2 = �

l.o.fB
2

h5,6i

(cut enforced by EIB, no single-tandem analysis)

= �
l.o.fB

2
5

⌦ �
l.o.fB

2
6

=
⇣
�
5

 ↵
fB
1

5

⌘
⌦

⇣
�
6

 ↵
fB
1

6

⌘
Most notably, fB

2

sees multi-hop interference by fB
1

but the
left-over service curve derivation cannot make use of the
PMOO principle. EIB inhibits an end-to-end analysis in
this unicastFFA step 2, only SFA/PBOO can be applied

Theoretical Evaluation
We conclude this section by a theoretical evaluation of the
EIB approach against the previous DNC approaches:

• Relation to multicast TFA:
The integration into the unicastFFA constitutes a gen-
eralization of the multicast TFA. On every tandem to
analyze in either of the two unicastFFA steps, we can
apply the TFA depicted in Section 2.3. Then, an addi-
tional intermediate step that separates the individual
servers is executed and the per-server results are com-
posed to the respective tandem result. The multicast
TFA delay bounds cannot outperform those of EIB
with either SFA or PMOO analysis on all tandems.

• Relation to unicastFFA transformation:
In contrast to this section’s EIB, the unicastFFA trans-
formation allows for a single end-to-end left-over ser-
vice curve for every trajectory of interest. I.e., it can
fully benefit from the PMOO principle. However, the
cuts enforced by EIB can also have a positive e↵ect.
They break the ⌦’s commutativity, allowing to better
exploit service rates on the tandem. This is a variant
of the problem shown in [17], but with a handicapped
PMOO. None of the alternatives is strictly superior.

5. A MULTICAST FEED-FORWARD
ANALYSIS PROCEDURE

In this section, we generalize the unicastFFA presented
in Section 2.3.2 to networks with multicast flows. We call
this generalized method multicast Feed-Forward Analysis, or
mcastFFA. This allows us to make use of the knowledge
only available in the unicastFFA itself. In contrast to the
existing DNC approaches and the EIB analysis, no network
transformation is amended to the analysis. We do not cre-
ate a network-wide worst-cast setting for all flows before
executing the unicastFFA. Instead, our generalization solely
constructs a single flow of interest’s worst case during anal-
ysis – a less pessimistic setting than the network-wide one
for all flows at once. With this approach, the mcastFFA
analysis obtains best results by exploiting the PMOO and
PBOO principles to a larger extent than the EIB.

Figure 4a illustrates the basic idea behind our solution:
If we analyze this multicast flow’s trajectory crossing s

2

,

s1

s2

s3

(a) mcastFFA illustration.

s1 s2

s3 s4

s5 s6

f3

f1

fA
2

(b) Running example, trajectory fA
2

.

s1 s2

s3 s4

s5 s6

f3

fB
1

fB
2

(c) Running example, trajectory fB
2

.

Figure 4: Application of mcastFFA. The dashed lines depict parts of flows that are not considered in the current analysis.

the other trajectory crossing s
3

becomes irrelevant for the
delay bound computation. We neither need to add an entire
cross-flow for it nor do we require the output bound from
s
1

. Thus, mcastFFA can treat the multicast trajectory (or
unicast flow) of interest in an end-to-end fashion and apply,
for instance, the PMOO principle.

The main challenge of this approach is to reduce the net-
work to relevant servers as well as (partial) flows and multi-
cast flow trajectories. This may constitute considerable ef-
fort in large networks. Therefore, we present a solution that
generalizes the unicastFFA analysis in order to gain from
its e�ciency [3]. I.e., deriving the sub-network relevant to
a specific foi is part of the analysis proceedings, not cov-
ered by a separate step. Our mcastFFA solution is mainly
based on the newly derived sub-step 1(i) of the unicastFFA:
backtracking of dependencies.

In this step, dependencies of a flow on others are de-
rived by traversing the network in the opposite direction
of links [5]. The entire unicastFFA starts this procedure
with the flow of interest. Our mcastFFA will iterate over all
n trajectory of interest and execute separate analyses. In
case of a unicast flow, we get n = 1; for multicast flows n
equals the amount of trajectories (source/sink-pairs). Mul-
ticast cross-flows are traversed backwards, too, such that
their fork locations do not enforce to cut the tandem to an-
alyze; the relevant trajectory of the cross-flow is known and
can be treated similar to a unicast cross-flow. Namely, the
mcastFFA is a generalization of the known unicastFFA and
thus it operates on longer tandems than EIB.

Whereas the EIB required to explicitly consider each loca-
tion a multicast flow forks, the mcastFFA implicitly restricts
the analysis to the trajectory relevant for the analysis. Af-
ter the backtracking, we know the entire sub-network whose
servers and (partial) flows appear in the analysis equation
of unicastFFA step 1(ii). I.e., we rely on the detailed under-
standing of unicastFFA that we derived in Section 2.3.2.

Analysis of the Running Example
We will derive the left-over service curves for f

2

’s trajecto-
ries in order to compare them against the EIB unicastFFA.
For brevity, we restrict the depiction to fA

2

’s cross-tra�c ar-
rival bounding (mcastFFA step 1, Figure 4b) and fB

2

’s delay
bounding (mcastFFA step 2, Figure 4c). These derivations
depict the crucial improvement of mcastFFA’s proceedings
in both of the analysis steps. They point out the reduction
of the network and the increased tandem lengths.

mcastFFA step 1. We consider fA
2

’s cross-tra�c arrival
bounding. Backtracking will be “local” to a single trajectory
of a multicast cross-flow. In our example, we finally have es-

tablished the possibility to apply the PMOO-principle when
computing fA

1

’s aggregate arrival bound aggrAB at server s
4

[6]. See ↵
fA
1

4

in the follwoing left-over service curve deriva-
tion we require to bound cross-tra�c arrivals:

�l.o.fA
2 = �

l.o.fA
2

h5,4i

(only single-hop interference so cutting is fine)

= �
l.o.fA

2
5

⌦ �
l.o.fA

2
4

=
⇣
�
5

 ↵
fB
1

5

⌘
⌦

⇣
�
4

 ↵
fA
1

4

⌘
=

⇣
�
5

⇣
↵f1 ↵ �l.o.f1

h1,2i

⌘⌘
⌦

⇣
�
4

⇣
↵f1 ↵ �

l.o.fA
1

h1,2,3i

⌘⌘
A cut of �

l.o.fA
1

h1,2,3i into �l.o.f1
h1,2i ⌦ �

l.o.fA
1

3

was needed in the EIB
analysis, meaning that PMOO could not be implemented.

This advantage is also depicted in Figure 4b where f
1

retains its multicast shape in the mcastFFA’s point of view.

mcastFFA step 2. For the second trajectory of f
2

, fB
2

, our

mcastFFA derives �l.o.fB
2 = �

l.o.fB
2

h5,6i . Again, we are not en-

forced to cut this trajectory’s path (see Figure 4c) and in
contrast to EIB we can apply alternative tandem analyses:

• SFA/PBOO:

�l.o.fB
2 = �

l.o.fB
2

h5,6i

(cut enforced by SFA, no single-tandem analysis)

= �
l.o.fB

2
5

⌦ �
l.o.fB

2
6

=
⇣
�
5

 ↵
fB
1

5

⌘
⌦

⇣
�
6

 ↵
fB
1

6

⌘
=

⇣
�
5

⇣
↵f1 ↵ �l.o.f1

h1,2i

⌘⌘
⌦

⇣
�
6

⇣
↵f1 ↵ �

l.o.fB
1

h1,2,5i

⌘⌘
Note, that the actual trajectory of the cross-flow, f

1

or fB
1

, was automatically chosen correctly by the back-
tracking. Moreover, note the contrast to EIB: We can
derive fB

1

’s arrivals at s
6

with an end-to-end left-over
service curve that, in turn, can make use of aggrAB.

• PMOO:

�l.o.fB
2 = �

l.o.fB
2

h5,6i

(there is no enforced cut)

= (�
5

⌦ �
6

) ↵f1
5

= (�
5

⌦ �
6

)
⇣
↵f1 ↵ �l.o.f1

h1,2i

⌘
where �l.o.f1

h1,2i can be computed either applying the left-

over service curve derivation of SFA/PBOO or PMOO.

ES 1

ES 2

ES 3

ES 4

S1

S21

S22

S4

S31

S51

S32

S52

v1

v1 v1, v3v2

v3, v4

v5, v6

v3, v4

v3

v2 v2

v3, v4, v5

v5
v6

v6

(a) AFDX network.

From [13] u. trans. EIB mcastFFA
Flow ta fa pmoo

1

tfa

2

sfa pmoo sfa pmoo

v
1

82 82 82 82 82 82 82 82

v
2

72 72 72 72 72 72 72 72

v
3

(S31) 82 82 92 82 82 82 82 82

v
3

(S51) 82 112 92 102 102 92 102 82

v
4

82 112 92 102 102 92 102 82

v
5

- 112 92 102 102 92 102 92

v
6

72 82 72 82 82 72 82 72

(b) Delay bounds (values given in µs, least bounds in bold).

Figure 5: Simple AFDX network evaluation of [13], extended with DNC’s EIB and mcastFFA delay bounds.

This derivation is illustrated in Figure 4c. Compared to
Figure 3, we indeed notice the longer tandem for the second
trajectory of f

2

.

Theoretical Evaluation
We conclude this section by a theoretical evaluation of mcast-
FFA against the related DNC approaches:

• Relation to unicastFFA (Section 2.3.2):
The mcastFFA is a generalization of the unicastFFA.
Analysis of unicast flows in either of the two steps re-
mains una↵ected (see f

3

in the running example).

• Relation to unicastFFA transformation (Section 3):
Like the unicastFFA transformation, the mcastFFA is
able to derive a PMOO end-to-end left-over service
curve. However, it does so without the additional
cross-tra�c assumptions introduced by the unicast-
FFA transformation. I.e., there are less cross-flows to
consider in the analysis, left-over service curves will be
larger and delay bounds will be smaller. Thus, mcast-
FFA outperforms unicastFFA transformation.

• Relation to EIB unicastFFA:
In comparison to EIB, we gained the ability to oper-
ate on end-to-end tandems. This constitutes increased
flexibility to cut this tandem during the analysis: Our
mcastFFA is compatible with SFA/PBOO, PMOO,
aggrAB, or [3] for best attainable left-over service curves.
This best solution to cut a tandem and combine sub-
tandem results might coincide with EIB’s enforced al-
ternative, i.e., mcastFFA is indeed a generalization of
EIB unicastFFA.

Before evaluating our contributions, let us briefly clar-
ify their impact on the server backlog bound Q presented
in Theorem 3. Deriving these bounds requires the arrival
bounds of all flows at a server. I.e., in the DNC analysis pro-
cedures, (EIB) unicastFFA and mcastFFA, step 1 is crucial
for the result accuracy; step 2 is not required. As shown with
the running example, we improved of cross-tra�c arrival
bounding in case there are multicast flows present. Thus,
backlog bounds are also improved by our contribution.

6. NUMERICAL EVALUATION
We have shown in Sections 4 and 5 that our proposed ap-

proaches are superior to the previous network calculus ones,
presented as related work in Section 3. We investigate now
in this section the gains in terms of accuracy of end-to-end

delay bounds via a numerical evaluation. We study the two
AFDX networks presented in [13] and [12]. This allows us
to benchmark our proposed approaches with the TA and
FA since numerical results are given in the literature. Note,
that [12] extends the TA and FA by a grouping property that
accounts for serialization of packetized flows when crossing
links. We leave its implementation in the generalized DNC
solutions, based on [8], to future work and restrict our com-
parison to the non-serialized results. This also allows us to
use the range of established SFA/PBOO and PMOO �l.o.

derivations implemented in the DiscoDNC tool [4] as well as
the aggrAB arrival bounding. I.e., we inherit the DiscoDNC
assumptions of a fluid model and curves that can be decom-
posed into a set of either token buckets or rate latencies.

The first network, illustrated in Figure 5a, is a simple
AFDX scenario with only one multicast flow (v

3

) and a sim-
ple flow interference pattern. The second network, illus-
trated in Figure 6a, is a more complex AFDX scenario with
two multicast flows (v

2

and v
9

). Numerical results on the
end-to-end delay bounds of the di↵erent flows are shown in
Figures 5b and 6b, respectively. Key observations w.r.t. the
performance of DNC analyses confirm our conjectures:

• mcastFFA with PMOO produces gains of 8.74% and
13.08% respectively compared to the multicast TFA.

• mcastFFA produces more accurate bounds than the
EIB analysis, since it can operate on longer tandems.

• For some flows, all results are equal. These are sim-
plistic cases that become less in the larger network.

Next, we compare mcastFFA to TA and FA. We observe
that mcastFFA results are never inferior to these contenders.
Moreover, cases of equal results often coincide with the sim-
plistic ones where even mutlicast TFA is competitive. This
is especially visible in the second scenario with less com-
petitive TA and FA bounds. A maximum gain of 5.86%
compared to TA and 18.58% compared to FA is achieved
in this small AFDX scenario. AFDX networks as deployed
in existing Airbus aircraft are already far bigger and more
involved than the ones of Figures 5a and 6a. They consist
of ⇠1000 multicast flows (virtual links, VLs) that have an
average of ⇠6.5 trajectories per VL. Therefore, the improve-
ments we achieve with DNC’s PMOO in conjunction with
mcastFFA is expected to be considerably larger in practice.
1unicastFFA transformation approach with the stated
PMOO end-to-end left-over service curve derivation.
2Remember, that EIB with TFA corresponds to the multi-
cast TFA analysis presented as related work in Section 3.

ES 2

ES 1

ES 4

ES 5

S11

S12

S3

S41

S42

S2

v3

v1, v2, v6

v5

v7

v8, v9

v1

v2, v3

v1, v2, v5

v7, v9

v2, v6

v4
v8, v9

ES 6

ES 3
v4, v8, v9

v6, v7, v9

v2

(a) AFDX Network.

From [12] u. trans. EIB mcastFFA
Flow ta fa pmoo

1

tfa

2

sfa pmoo sfa pmoo

v
1

142 192 142 182 182 142 182 122

v
2

(S2) 122 122 142 122 122 122 122 122

v
2

(S41) 142 192 142 182 182 162 182 142

v
3

66 56 56 56 56 56 56 56

v
4

56 66 56 56 56 56 56 56

v
5

106 106 96 96 96 96 96 96

v
6

142 192 142 182 182 142 182 122

v
7

- 152 142 142 142 142 142 132

v
8

92 122 102 112 112 102 112 92

v
9

(S41) - 162 142 152 152 142 152 132

v
9

(S42) 92 122 102 112 112 102 112 92

(b) Delay bounds (values given in µs, least bounds in bold).

Figure 6: More complex AFDX network evaluation of [12], extended with DNC’s EIB and mcastFFA delay bounds.

7. CONCLUSION
In this paper, we tackled the problem of analyzing mul-

ticast flows with deterministic network calculus. DNC was
tailored to the analysis of unicast flows – a property that
was assumed to invariantly hold. Therefore, previous ap-
proaches for the DNC analysis of multicast flows tried to
adjust to this restriction by, e.g., pessimistic re-modeling of
the network. This lead to inaccurate performance bounds
and the development of alternative, non-DNC analyses to
derive multicast flow guarantees. In contrast, we general-
ized DNC unicast feed-forward analysis to a multicast one.

We took two crucial steps to achieve this, both consti-
tuting an analysis approach of their own: the EIB analysis
and the mcastFFA. In theoretical and numerical evaluations
we showed that this paper contributes a single best DNC
analysis for multicast flows, the mcastFFA. Not only does
it outperform any other DNC approach, the evaluation of
AFDX scenarios from the literature also shows that DNC
achieves at least the results of competing analyses (Trajec-
tory Approach and Forward Analysis). Moreover, the pre-
sented mcastFFA has the flexibility to be combined with
any DNC tandem analysis and improvement thereof. For
instance, [7], [3], FIFO multiplexing service analysis [2] or
packetization [8] can tighten guarantees in AFDX networks.

8. REFERENCES
[1] H. Bauer, J. Scharbarg, and C. Fraboul. Applying and

Optimizing Trajectory approach for performance
evaluation of AFDX avionics network. In Proc. IEEE
ETFA, 2009.

[2] L. Bisti, L. Lenzini, E. Mingozzi, and G. Stea.
Numerical Analysis of Worst-Case End-to-End Delay
Bounds in FIFO Tandem Networks. Springer
Real-Time Systems Journal, 2012.

[3] S. Bondorf, P. Nikolaus, and J. B. Schmitt. Delay
bounds in feed-forward networks – a fast and accurate
network calculus solution. arXiv:1603.02094, 2016.

[4] S. Bondorf and J. B. Schmitt. The DiscoDNC v2 – A
Comprehensive Tool for Deterministic Network
Calculus. In Proc. EAI ValueTools, 2014.

[5] S. Bondorf and J. B. Schmitt. Boosting Sensor
Network Calculus by Thoroughly Bounding
Cross-Tra�c. In Proc. IEEE INFOCOM, 2015.

[6] S. Bondorf and J. B. Schmitt. Calculating Accurate

End-to-End Delay Bounds – You Better Know Your
Cross-Tra�c. In Proc. EAI ValueTools, 2015.

[7] S. Bondorf and J. B. Schmitt. Improving Cross-Tra�c
Bounds in Feed-Forward Networks – There is a Job
for Everyone. In Proc. GI/ITG MMB & DFT, 2016.

[8] M. Boyer and P. Roux. A common framework
embedding network calculus and event stream theory.
hal-01311502, 2016. Working paper or preprint.

[9] C.-S. Chang. Performance Guarantees in
Communication Networks. Springer, 2000.

[10] F. Geyer and G. Carle. Network engineering for
real-time networks: comparison of automotive and
aeronautic industries approaches. IEEE
Communications Magazine, 2016.

[11] J. Grieu. Analyse et évaluation de techniques de
commutation Ethernet pour l’interconnexion des
systèmes avioniques. PhD thesis, INPT, 2004.

[12] G. Kemayo, N. Benammar, F. Ridouard, H. Bauer,
and P. Richard. Improving AFDX End-to-End delays
analysis. In Proc. of IEEE ETFA, 2015.

[13] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard. A
Forward end-to-end delays Analysis for packet
switched networks. In Proc. of RTNS, 2014.

[14] J.-Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet. Springer, 2001.

[15] S. Martin and P. Minet. Schedulability analysis of
flows scheduled with FIFO: application to the
expedited forwarding class. In Proc. of IPDPS, 2006.

[16] J. Migge. L’ordonnancement sous contraintes
temps-réel un modèle à base de trajectoires. PhD
thesis, INRIA Sophia Antipolis, 1999.

[17] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay
Bounds under Arbitrary Multiplexing: When Network
Calculus Leaves You in the Lurch ... In Proc. IEEE
INFOCOM, 2008.

[18] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic.
Improving Performance Bounds in Feed-Forward
Networks by Paying Multiplexing Only Once. In Proc.
of GI/ITG MMB, 2008.

[19] K. Tindell and J. Clark. Holistic schedulability
analysis for distributed hard real-time systems.

Microprocessing and Microprogramming, 1994.

