
On the Potential to Improve Accuracy of
Network Calculus Analyses

Steffen Bondorf and Jens B. Schmitt

Distributed Computer Systems (DISCO) Lab,
University of Kaiserslautern, Germany,

Technical Report 392/15

Abstract The continuous evolution of network calculus led to a set of
different analyses. Among them, there is a single analysis that can de-
rive tights bounds in arbitrary feed-forward server graphs. However, the
approach it takes results in the analysis being NP-hard and no efficient
analysis algorithm is known. Therefore, the authors propose to confine
to a less complex analysis based on their approach instead. Like previous
network calculus analyses, it derives tight bounds for some networks and
valid bounds with varying accuracy for any other network. In this paper,
we examine the work on accurate network calculus analyses regarding
their relative accuracy and the potential to improve these analyses.

1 Introduction to Network Calculus

We start with an in-depth introduction to network calculus that allows to derive
the delay bounds used for accuracy evaluation.

1.1 The System Description

Network calculus was built around a simple system description [17] consisting of
two parts:

Data Arrivals and Forwarding Service Flows are characterized by functions
cumulatively counting their data. They belong to the set F0 of non-negative,
wide-sense increasing functions:

F0=
�
f : R! R+

1 | f (0) = 0, 8s  t : f (s)f (t)

,

R+
1 :

= [0,+1) [{+1} .

We are particularly interested in the functions A(t) and A

0
(t) cumulatively

counting a flow’s data put into a server s and put out from s, both up until time
t. These functions allow for a straight-forward derivation of flow delays.

Definition 1. (Flow Delay) Assume a flow with input A crosses a server s and
results in the output A

0. The (virtual) delay for a data unit arriving at time t is

D(t) = inf {⌧ � 0 | A(t)  A

0
(t + ⌧)}.

Note that the order of data within the flow needs to be retained for the
(virtual) delay calculation [27].

Network calculus operates in the interval time domain, i.e., its functions of
F0 bound the maximum data arrivals of a flow during any duration of length d.

Definition 2. (Arrival Curve) Given a flow with input A, a function ↵ 2 F0 is
an arrival curve for A iff

8t 8d 0  d  t : A(t)�A(t� d)  ↵(d).

AFDX networks reserve resources for a maximum packet size b periodically
sent with a minimum inter-arrival time t

�

such that flows have a maximum data
arrival rate of r =

b

t�
in the fluid model of F0. This shape of arrival curve is

commonly referred to as token bucket and belongs to the class FTB ✓ F0:

FTB = {�
r,b

| �
r,b

(0)= 0, 8d > 0 : �

r,b

(d)= b + r · d}.

Scheduling and buffering leading to the output function A

0
(t) depend on a

server’s forwarding service. It is lower bounded in interval time as well.

Definition 3. (Service Curve) If the service provided by a server s for a given
input A results in an output A

0, then s offers a service curve � 2 F0 iff

8t : A

0
(t) � inf

0dt

{A(t� d) + �(d)}.

For instance, service offered by ethernet connections can be described by
rate-latency curves FRL ✓ F0:

FRL = {�
R,T

|�
R,T

(d) = max{0, R · (d� T)} .

A number of servers fulfill a stricter definition of service curves that guar-
antees a higher output during periods of queued data, the so-called backlogged
periods of a server.

Definition 4. (Strict Service Curve) Let � 2 F0. Server s offers a strict service
curve � to a flow iff, during any backlogged period of duration d, the output of
the flow is at least equal to �(d).

The Network In general, networks are modeled as graphs where a node rep-
resents a network device like a router or a switch. Devices can have multiple
inputs and multiple outputs to connect to other devices (Figure 1a). This net-
work model does not fit well with network calculus’ server model for queueing
analysis. DNC therefore analyzes so-called server graphs. Assuming that a net-
work device’s input buffer is served at line speed, queueing effects manifest at
the output buffers. These are modeled by the graph’s servers (see Figure 1b).
AFDX equipment employs output buffering [16]. In wireless sensor networks,
nodes usually possess a single transmitter. Thus, one sensor node corresponds
to one server and the transmission range defines the server graph’s links [3,5].

�

�

... ...

�

�

... ...

�

�

... ...

(a) Network Graph.

�

�

...

�

�

...

�

�

...

(b) Server Graph.

Figure 1: A graph of network devices with output buffering (a) and its server
graph connecting the devices’ queues (b).

1.2 Algebraic Network Calculus

Network calculus was cast in a (min,+)-algebraic framework in [25,15]. We will
first depict the basic operations and then present their combination for flow
analysis.

(min,+)-Operations The following operations allow to manipulate arrival and
service curve while retaining their worst-case semantic.

Definition 5. ((min,+)-Operations) The (min,+)-aggrega-tion, -convolution and
-deconvolution of two functions f, g 2 F0 are defined as

aggregation:(f + g)(t) = f(t) + g(t),

convolution:(f ⌦ g)(t) = inf

0st

{f(t� s) + g(s)},

deconvolution:(f ↵ g)(t) = sup

u�0
{f(t + u)� g(u)}.

The system description’s service curve definition then translates to A

0 �
A⌦�, the arrival curve definition to A⌦↵ � A, and performance characteristics
can be bounded with the deconvolution ↵↵ �:

Theorem 1. (Performance Bounds) Consider a server s that offers a service
curve �. Assume a flow f with arrival curve ↵ traverses the server. Then we
obtain the following performance bounds for f :

delay:8t 2 R+
: D (t)  inf {d � 0 |(↵↵ �) (�d)  0} ,

output:8d 2 R+
: ↵

0
(d)= (↵↵ �) (d),

where the delay bound holds independent of t and ↵

0 is an arrival curve for A

0.

Analyzing an entire flow with cross-traffic on its path is enabled by the fol-
lowing theorems. Table 1 depicts the notation required to analyze a sequence
(tandem) of servers.

Theorem 2. (Concatenation of Servers) Consider a single flow f crossing a
tandem of servers s1, . . . , sn

where each s

i

offers a service curve �

si . The overall
service curve for f is their concatenation by convolution

�

s1 ⌦ . . .⌦ �

sn =

O
n

i=1
�

si

Theorem 3. (Left-Over Service Curve) Consider a server s that offers a strict
service curve �

s

. Let s be crossed by two flow aggregates F0 and F1 with aggregate
arrival curves ↵

F0 and ↵

F1 , respectively. Then F1’s worst-case residual resource
share under arbitrary multiplexing at s, i.e., its left-over service curve at s, is

�

l.o.F1
s

= �

s

 ↵

F0

with (� ↵) (d)

:

= sup {0  u  d | (� � ↵) (u)} denoting the non-decreasing up-
per closure of (� � ↵) (d).

Quantifier Definition

foi Flow of interest
F Aggregate of flows

{f
n

, ..., f

m

} Flow aggregate containing flows f

n

, ..., f

m

F (s) Set of flows at server s

F

src

(s) Set of flows originating at server s

x(f), x (F) Cross-traffic of flow f , aggregate F
hs

x

, . . . , s

y

i Tandem of consecutive servers s

x

to s

y

↵

f , ↵F Arrival curve of flow f , set of flows F
↵

f

s

, ↵F
s

Arrival bound at server s

�

s

Service curve of server s

�

l.o.f , �l.o.F Left-over service curve
Table 1: Network Calculus Notation.

Algebraic Network Calculus Analysis A network calculus analysis com-
putes the end-to-end delay bound for a specific flow (flow of interest, foi). From
a conceptual point of view, algebraic network calculus analyses proceed in two
steps [4,5]:

1. First, the analysis abstracts from the feed-forward network to the analyzed
flow’s path (tandem of servers). This step is enabled by recursive decompos-
ing the server graph into tandems [28,19] and bounding the output arrivals of
cross-traffic with Theorem 1, the output bound. Then, the worst-case shape

of cross-flows is known at the location of interference with the foi. Thanks to
this step, the next one need not consider the part of the network traversed
by cross-flows nor the interference pattern they are subject to.

2. The foi’s end-to-end delay bound in the feed-forward network can now be
calculated with a less complex tandem analysis. The flow’s end-to-end service
curve is derived and the delay bound computed.

The second step of the algebraic feed-forward analysis procedure has seen much
treatment in the literature. Effort constantly focused on improving the ability
to capture flow scheduling and cross-traffic multiplexing effects and thus provide
more accurate delay bounds. The main results are:

The Separate Flow Analysis and the PBOO-effect [25]: Algebraic DNC tandem
analyses result in a left-over service curve used for delay bound derivation with
Theorem 1. Currently, there are two alternatives to compute the left-over service
curve of a tandem: The Separate Flow Analysis (SFA) and the Pay Multiplex-
ing Only Once (PMOO) analysis. The SFA is a straight-forward, hop-by-hop
application of Theorems 3 and 2: First subtract cross-traffic arrivals and then
concatenate the left-over service curves. Deriving the delay bound with a single,
end-to-end left-over service curve will consider the flow of interest’s burst term
only once. This effect is therefore called Pay Bursts Only Once (PBOO). How-
ever, for cross-flows present at multiple consecutive hops, their bursts appear
multiple times in the PBOO left-over service curve derivation.

The PMOO analysis /-effect [30]: The PMOO analysis provides an alternative
containing each burst term only once. Its left-over service curve derivation re-
verses the operations, i.e., it convolves the tandem of servers before subtracting
cross-traffic. Due to this end-to-end approach for all flows on the analyzed tan-
dem, the PMOO analysis was considered superior to SFA. Yet, [29] shows that
the SFA can arbitrarily outperform a PMOO tandem analysis. Both algebraic
analyses thus complement each other. [29] also provides a left-over service curve
derivation that outperforms both algebraic ones. It transforms the network cal-
culus system description to an optimization-based analysis (OBA); departing
from the algebraic methodology.

Optimization Based Network Calculus Analysis Based on the insight of
[29], an optimization-based, tight feed-forward analysis was proposed in [9]. Its
distinguishing factors allowing for tight bounds are:

– The server graph is not decomposed into tandems anymore. Instead, the new
analysis transforms the entire feed-forward server graph into a set of linear
programs (LPs) to optimize.

– Whereas the OBA of [29] optimizes the burstiness increase of flows, the LP
analysis of [9] optimizes the start of backlogged periods propagating through
the network.

– Moreover, the LP approach departs from the need to decompose arrival
curves into multiple token buckets and service curves into multiple rate la-
tencies in order to analyze all combinations individually [30]. The inferiority
of curve decomposition is conceptually proven by examples in [22] and [8,9].

The LP analysis was, however, shown to be NP-hard. Therefore, the authors
propose to confine to a less complex, accurate analysis based on their approach
instead. This analysis is known as the unique LP (ULP). We provide a high-
level wrap-up of the LP in order to answer the question how the ULP is derived
from it. Clarifying where the ULP trades accuracy against computational effort
allows us to judge the ULP’s potential for improvement later. Intuitively, LP
delay analysis proceeds as follows:

1. Starting from the flow of interest’s sink server, flows as well as their respec-
tive cross-flows are recursively traced towards their sources. For every link
traversed backwards, the start of backlogged periods at the link’s source and
its sink are related. This step terminates as soon as all flows are traced to
their sources. The result is a partial order where, for example, there is no
known order between the starts of backlogged periods for servers in different
branches of a tree.

2. The second step is to extend the partial order to the set of all compatible to-
tal orders. This procedure enumerates all potential entanglements of events
that define the start of backlogged periods at servers. For the above exam-
ple, the entanglement of flow interference on distinct branches of a tree are
enumerated such that all outcomes at these branches’ common root server
can be considered later. Special care must be taken of relations caused by
rejoining flows. Each total orders resulting from this step constitutes the
basis for one LP to solve with the help of a solver software like LpSolve or
CPLEX.

3. This step transforms each total orders to one linear program. The order
between the start of backlogged periods as well as the network calculus
model (strict service curves, arrival curves, non-decreasing functions, non-
negativity, flow constraint) are used to derive the constraints of each LP.

4. In the final step, all LPs need to be solved. The LPs model all potential
entanglements of flows via the backlogged periods they influence, therefore
only the maximum among the solutions is a valid worst-case bound for the
flow of interest’s delay. I.e., the LP analysis constitutes an all-or-nothing
approach.

The second step suffers from combinatorial explosion [26] and known algorithms
for linear extension like the Varol-Rotem algorithm [31] do not allow for the
analysis of large networks. For this reason, the authors of the LP approach
propose to skip this step with the ULP. The unique linear program consists of
only the common constraints of the LPs. This effectively means executing the
transformation of step 3 on the partial order that resulted from step 1; deriving
the LPs to identify the common constraints is not required. Obviously, the ULP
neither relates the flow entanglement between different branches in a tree nor

does it handle the rejoining flows setting in any explicit way. For both situations
the worst-case assumptions of network calculus ensure valid upper bounds.

2 Improving the Accuracy of Analyses

Given that the combinatorial explosion forces the LP approach to dismiss the
tight bound derivation in general feed-forward networks such that accurate
bounds are derived instead, we want to address the question of potential ac-
curacy improvement among alternative network calculus analyses.

Improving the ULP The ULP constitutes the return to accurate, yet, untight
bounds in general feed-forward networks. However, for some special networks it
derives tight bounds nonetheless. The special case holds in tandem server graphs
(see Figure 3) where all servers are crossed by the flow of interest. Then, the
partial order happens to be a total order and the second step of the LP analysis
does not have any impact. For more involved server graphs, we only know that
the ULP will have less constraints than any of the LPs. Improving the ULP’s
result can only be achieved by adding more constraints to it. Judging the addi-
tion of constraints regarding the ability to improve bounds while simultaneously
guaranteeing to retain their validity is, however, an open problem – it is probably
even undecidable considering the computationally infeasible all-or-nothing ap-
proach it takes to identify the complete set of constraints for tight bounding. The
ULP therefore does not seem to have much potential for accuracy improvements.

Algebraic Analyses Improving the algebraic network calculus analyses seems
to have more potential than the ULP. We base this conclusion on following obser-
vations: The work pioneering optimization approaches in network calculus [29]
also proves that the PMOO bound is in fact tight for tandem server graphs with
a single sink and monotonically decreasing residual service rates. I.e, the PMOO
analysis constitutes an algebraic solution to the optimization problem for this
specific server graph. Recently, the cross-traffic arrival bounding step required
for algebraic feed-forward analysis has seen a substantial improvement [6] over
the state-of-the art approach at the time the ULP analysis was constructed [7].
This shows that algebraic network calculus analyses possess untapped potential
for improvement. In the remainder of this paper we will address the questions if
exploiting this potential is meaningful with respect to the currently known ac-
curacy gap to the ULP (Section 3) and computational effort of analyses (Section
4).

3 Accuracy Evaluation Network Calculus Analyses

In this section, we want to address the question of accuracy of the existing
network calculus analyses. For the ULP, we strive for insight on the impact of
omitting step 2 from the LP approach, and regarding the algebraic analyses,
we aim to illustrate the advantage of the three distinguishing factors of the LP
approach.

In order to do so, we need to rely on the evaluation and tooling provided
by the authors of [9] and their additional material (incl. a tool) available online
[2]. In contrast to algebraic network calculus, there is no comprehensive tool
support available for the LP analysis of feed-forward networks as we will se in the
following. Unfortunately, [2] neither provides the algebraic calculations resulting
in the bounds shown in [8,9,20,7,10] nor could we verify them. Therefore, we
provide an entire re-evaluation of the (U)LP as well as the SFA. We omit the
Total Flow Analysis (TFA) for being known to result in inferior end-to-end delay
bounds but contribute PMOO analysis results.

We apply the measure of accuracy used in [9]: �LP (analysis) =

D(analysis)
D(LP) .

Knowing that the LP will result in the tight bound, this measure starts at a
value of 1.0 in network settings where analysis2 {ULP,PMOO,SFA} derives the
tight bound as well.

3.1 The Non-Nested Tandem

Analyzing tandem networks with the LP is made possible with a tool available
online [2]. It transforms a text file describing the tandem (servers, service curves,
flows, paths, arrival curves) into the (U)LP – given as an LpSolve lp file. In [9],
the so-called tandem with non-nested interference is analyzed. It consists of a
sequence of servers crossed by the flow of interest and overlapping interference
of cross-flows such that there are three flows at every server (see Figure 2). This
tandem constitutes a standard example in network calculus; it is already used
for introducing the PMOO analysis [30].

�� ��

↵

foi

↵

xf

↵

xf

↵

xf

↵

xf

↵

xf

...

Figure 2: Tandem server graph with homogeneous service and homogeneous non-
nested cross-traffic arrivals.

Two evaluations are carried out: One that evaluates the impact of tandem
length, and another one varying the utilization for the tandem of length 20. For
algebraic DNC, we provide a sample computation for the tandem of length 2, the
minimum tandem length where the PMOO effect can be exploited. These com-
putation illustrate the algebraic procedure as implemented in the DiscoDNC [4],
our tool for algebraic DNC server graph analysis that we used for the remaining
computations. For further reading about the computations behind the following
(min,+)-operations, please refer to [25,30,11] as well as the documentation of
the DiscoNC tool found online [1].

The 2-tandem server graph is constructed as follows; servers are enumerated
to be s1 and s2 and the flow configuration is:

– The flow of interest (foi) crosses s1 and s2,
– Cross-flow xf1 crosses server s1,
– Cross-flow xf2 crosses servers s1 and s2, and
– Cross-flow xf3 crosses server s2.

Arrival curves and service curves are provided in [9]: Both evaluations assign
rate-latency service �

R,L

= �10,

1
10

, the evaluation under varying utilization u 2
{0.1, . . . , 0.9} operates with token bucket arrival curves of ↵ = �

r,b

= �

10u
3 ,1

where 10u

3 is rounded to two decimal digits. The evaluation of tandem length is
carried out at a utilization of 0.2.

Separate Flow Analysis (SFA) First, we derive the flow of interest’s end-to-
end left-over service curve:

�

l.o.foi
hs1,s2i = �

l.o.foi
s1

⌦ �

l.o.foi
s2

=

�
�

s1
�
↵

xf1
s1

+ ↵

xf2
s1

��
⌦
�
�

s2
�
↵

xf2
s2

+ ↵

xf3
s2

��
=

�
�

s1
�
↵

xf1
+ ↵

xf2
��
⌦
�
�

s2
��

↵

xf2
s1
↵ �

l.o.xf2
s1

�
+ ↵

xf3
��

=

�
�

s1
�
↵

xf1
+ ↵

xf2
��
⌦
�
�

s2
��

↵

xf2 ↵
�
�

s1 ↵

xf1
��

+ ↵

xf3
��

= (�10,0.1 (�0.67,1 + �0.67,1))⌦ (�10,0.1 ((�0.67,1 ↵ (�10,0.1 �0.67,1)) + �0.67,1))

= (�10,0.1 �1.34,2)⌦
⇣
�10,0.1

⇣⇣
�0.67,1 ↵ �9.33,

2
9.33

⌘
+ �0.67,1

⌘⌘
= �8.66,

3
8.66

⌦
⇣
�10,0.1

⇣
�0.67,1+ 1.34

9.33
+ �0.67,1

⌘⌘
= �8.66,

3
8.66

⌦
⇣
�10,0.1 �1.34,2+ 1.34

9.33

⌘
= �8.66,

3
8.66

⌦ �

8.66,

3 1.34
9.33
8.66

= �

8.66,

6 1.34
9.33
8.66

And next, we compute the delay bound:

D

SFA
= h

⇣
↵

foi
, �

l.o.f1

hs3,s4i

⌘
= h

✓
�

2
3 ,1, �

8.66,

6 1.34
9.33
8.66

◆
=

1 + 8.66 · 6 1.34
9.33

8.66

8.66

=

7

1.34
9.33

8.66

= 0.8248986977

In this bound derivation, we can see that the PMOO property is not fulfilled. We
need to pay for xf2’s arrivals at every server it shares with the flow of interest.
I.e., not only at s1 it starts to interfere, but also at s2 where xf2’s (increased)
worst-case burstiness impacts the derivation (see the occurrence of ↵

xf2 on both
sides of the convolution ⌦). For this reason, the SFA result will be worst than
the PMOO results.

Pay Multiplexing Only Once (PMOO) analysis We start with the left-over
service curve derivation again:

�

l.o.foi
hs1,s2i = �

R

l.o.foi

hs1,s2i,T
l.o.foi

hs1,s2i

R

l.o.foi
hs1,s2i =

�
R

s1 � r

xf1 � r

xf2
�
^
�
R

s2 � r

xf2 � r

xf3
�

= (10� 0.67� 0.67) ^ (10� 0.67� 0.67)

= 8.66

T

l.o.foi
hs1,s2i = T

s1 + T

s2 +

b

xf1
s1

+ b

xf2
s1

+ b

xf3
s2

+

�
r

xf1
s1

+ r

xf2
s1

�
· T

s1 +

�
r

xf2
s2

+ r

xf3
s2

�
· T

s2

R

l.o.foi
hs3,s4i

= 0.1 + 0.1 +

1 + 1 + 1 + (0.67 + 0.67) · 0.1 + (0.67 + 0.67) · 0.1
8.66

= 0.2 +

3.268

8.66

=

5

8.66

=

=

�

l.o.foi
hs1,s2i = �8.66,

5
8.66

And compute the delay bound:

D

PMOO
= h

⇣
↵

foi
, �

l.o.foi
hs1,s2i

⌘
= h

⇣
�

2
3 ,1, �8.66,

5
8.66

⌘
=

1 + 8.66

5
8.66

8.66

=

6

8.66

= 0.6928406467

In contrast to the SFA, the xf2’s burstiness only appears once in the �

l.o.foi
hs1,s2i-

derivation. From the flow of interest’s point of view, multiplexing with cross-
traffic in payed for only once.

Linear Programming (LP) analysis and comparison The results for the
LP analysis are depicted alongside the PMOO and SFA delay bounds in Tables
2a and 2b.

The results for the non-nested tandem do not come at a surprise: PMOO
was designed to counteract the burstiness increase being considered in the flow
of interest analysis multiple times. Therefore, it performs better on the non-
nested tandem than the SFA. Moreover, the weakness of the PMOO analysis
only surfaces in tandems with unbalanced (left-over) service rates [29]. This is
not the case in the non-nested tandem setting chosen in [9]. Therefore, it was to
be expected that the PMOO result equals any optimization based analysis delay
bound, i.e., �LP (PMOO) = 1.00. Similarly, the increased utilization is uniform
among the servers such that PMOO and LP delay bounds increase in lockstep,
starting from the same value.

The SFA performs worse due to the PMOO effect not being exploited by
it. Increasing the tandem length, this leads to an initial gap, yet, the growth
of �LP (SFA) is slowing down fast and does not to change significantly anymore
when adding another server to ten ore more existing ones. When increasing the
utilization, the SFA performs considerably worse than the other analyses due to
the lack of PMOO effect.

Servers LP PMOO �

LP

(PMOO) SFA �

LP

(SFA)

1 0.46189376 0.46189376 1.00 0.46189376 1.00
2 0.69284065 0.69284065 1.00 0.82489870 1.19
3 0.92378753 0.92378753 1.00 1.18909460 1.29
4 1.15473441 1.15473441 1.00 1.55337602 1.35
5 1.38568129 1.38568129 1.00 1.91766358 1.38
6 1.61662818 1.61662818 1.00 2.28195158 1.41
7 1.84757506 1.84757506 1.00 2.64623962 1.43
8 2.07852194 2.07852194 1.00 3.01052766 1.45
9 2.30946882 2.30946882 1.00 3.37481570 1.46
10 2.54041570 2.54041570 1.00 3.73910373 1.47
11 2.77136259 2.77136259 1.00 4.10339177 1.48
12 3.00230947 3.00230947 1.00 4.46767981 1.49
13 3.23325635 3.23325635 1.00 4.83196785 1.49
14 3.46420323 3.46420323 1.00 5.19625590 1.50
15 3.69515012 3.69515012 1.00 5.56054392 1.50
16 3.92609700 3.92609700 1.00 5.92483196 1.51
17 4.15704388 4.15704388 1.00 6.28912000 1.51
18 4.38799076 4.38799076 1.00 6.65340804 1.52
19 4.61893764 4.61893764 1.00 7.01769607 1.52
20 4.84988453 4.84988453 1.00 7.38198412 1.52

(a) Delay bounds depending on the tandem length.

Utilization LP PMOO �

LP

(PMOO) SFA �

LP

(SFA)

10% 4.49678801 4.49678801 1.00 6.67453059 1.48
20% 4.84988453 4.84988453 1.00 7.38198412 1.52
30% 5.25000000 5.25000000 1.00 8.21484375 1.56
40% 7.86516854 5.72207084 1.00 9.23976737 1.61
50% 6.30630631 6.30630631 1.00 10.57098749 1.68
60% 7.00000000 7.00000000 1.00 12.24074074 1.75
70% 7.86516854 7.86516854 1.00 14.45688339 1.84
80% 9.01287554 9.01287554 1.00 17.62145123 1.96
90% 10.50000000 10.50000000 1.00 22.09375003 2.10

(b) Delay bounds for a tandem of 20 servers, depending on the utilization.
Table 2: Delay bounds for the server tandem with non-nested interference of
cross-flows.

3.2 The Square

Next, we re-evaluate the square server graph with two flows per server (see Figure
3). This server graph is evaluated for varying utilizations.

For this evaluation, service curves remain �

si = �

R,L

= �10,

1
10

, i 2 {1, 2, 3, 4}
and arrival curves are again adapted to the utilization u 2 {0.1, . . . , 0.9}. As
there are only two flows per server, this scheme translates to ↵

fi
= �

r,b

= �

10u
2 ,1.

�

s1 �

s2

�

s3 �

s4
↵

f1

↵

f2

↵

f3

↵

f4

Figure 3: Square server graph.

Separate Flow Analysis (SFA) We start with the SFA left-over service curve
derivation steps shared by every utilization’s analysis:

�

l.o.f1

hs3,s4i = �

l.o.f1
s3

⌦ �

l.o.f1
s4

=

�
�

s3 ↵

f2
s3

�
⌦
�
�

s4 ↵

f4
s4

�
=

�
�

s3
�
↵

f2 ↵ �

l.o.f2
s1

��
⌦
�
�

s4
�
↵

f4 ↵ �

l.o.f4
s2

��
=

�
�

s3
�
↵

f2 ↵
�
�

s1 ↵

f3
���

⌦
�
�

s4
�
↵

f4 ↵
�
�

s2 ↵

f3
s2

���
=

�
�

s3
�
↵

f2 ↵
�
�

s1 ↵

f3
���

⌦
�
�

s4
�
↵

f4 ↵
�
�

s2
�
↵

f3 ↵ �

l.o.f3
s1

����
=

�
�

s3
�
↵

f2 ↵
�
�

s1 ↵

f3
���

⌦
�
�

s4
�
↵

f4 ↵
�
�

s2
�
↵

f3 ↵
�
�

s1 ↵

f2
�����

=

�
�

Rs3 ,Ts3

�
�

r

f2
,b

f2 ↵
�
�

Rs1 ,Ts1
 �

r

f3
,b

f3

���
⌦
�
�

Rs4 ,Ts4

�
�

r

f4
,b

f4 ↵
�
�

Rs2 ,Ts2

�
�

r

f3
,b

f3 ↵
�
�

Rs1 ,Ts1
 �

r

f2
,b

f2

�����
=

⇣
�10,

1
10

⇣
�

r,1 ↵
⇣
�10,

1
10
 �

r,1

⌘⌘⌘
⌦
⇣
�10,

1
10

⇣
�

r,1 ↵
⇣
�10,

1
10

⇣
�

r,1 ↵
⇣
�10,

1
10
 �

r,1

⌘⌘⌘⌘⌘

This derivation illustrates the different approaches applied by algebraic DNC
to model the flow of interest’s worst-case scenario in a feed-forward network. On
the foi’s path (i.e., the foi tandem analysis part of step 2), the left-over service
curve derivation assumes lowest priority for the flow of interest (cf. Theorem
3). In the arrival bounding, each flow’s worst-case interference is modeled in-
dividually. Therefore, at server s1, flows f2 and f3 are considered as mutual
interference: �

l.o.f2
s1

=

�
�

s1 ↵

f3
�

and �

l.o.f3
s1

=

�
�

s1 ↵

f2
�
. For rejoining inter-

ference with the flow of interest (see Diamond network in [9]) this means the flow
of interest is assumed to interfere with its own cross-flows during their arrival
bounding. The lowest priority modeling applied in the flow of interest analysis
is not carried over to cross-traffic arrival bounding, i.e., algebraic DNC analysis
does not assign lowest priority to the foi within the entire feed-forward network
but depending on the analysis context.

We restrict our manual computation to the case of 90% utilization, i.e., all
flow arrival rates are set to 9

2 :

�

l.o.f1

hs3,s4i =
⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵
⇣
�10,

1
10
 �4 1

2 ,1

⌘⌘⌘
⌦
⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵
⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵
⇣
�10,

1
10
 �4 1

2 ,1

⌘⌘⌘⌘⌘
=

⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵ �5 1
2 ,

4
11

⌘⌘
⌦
⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵
⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵ �5 1
2 ,

4
11

⌘⌘⌘⌘
=

⇣
�10,

1
10
 �4 1

2 ,2 7
11

⌘
⌦
⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵
⇣
�10,

1
10
 �4 1

2 ,2 7
11

⌘⌘⌘
= �5 1

2 ,

80
121
⌦
⇣
�10,

1
10

⇣
�4 1

2 ,1 ↵ �5 1
2 ,

80
121

⌘⌘
= �5 1

2 ,

80
121
⌦
⇣
�10,

1
10
 �4 1

2 ,3 118
121

⌘
= �5 1

2 ,

80
121
⌦ �5 1

2 ,

1204
1331

= �5 1
2 ,1 753

1331

D

SFA
= h

⇣
↵

f1
, �

l.o.f1

hs3,s4i

⌘
= h

⇣
�4 1

2 ,1, �5 1
2 ,1 753

1331

⌘
= 1

995

1331

= 1.7475582269

Pay Multiplexing Only Once (PMOO) analysis Utilization 90%:

�

l.o.f1

hs3,s4i = �

R

l.o.f1
hs3,s4i,T

l.o.f1
hs3,s4i

R

l.o.f1

hs3,s4i =
�
R

s3 � r

f2
�
^
�
R

s4 � r

f4
�

=

✓
10� 4

1

2

◆
^
✓
10� 4

1

2

◆
= 5

1

2

T

l.o.f1

hs3,s4i = T

s3 + T

s4 +

b

f2
s3

+ b

f4
s4

+ r

f2
s3

· T
s3 + r

f4
s4

· T
s4

R

l.o.f1

hs3,s4i

=

1

10

+

1

10

+

2

7
11 + 3

118
121 + 4

1
2 · 1

10 + 4

1
2 · 1

10

5

1
2

=

2

10

+

6

74
121 +

9
10

5

1
2

=

2

10

+

7

619
1210

5

1
2

=

2

10

+ 1

2434

6655

= 1

753

1331

�

l.o.f1

hs3,s4i = �5 1
2 ,

753
1331

D

PMOO
= h

⇣
↵

f1
, �

l.o.f1

hs3,s4i

⌘
= h

⇣
�4 1

2 ,1, �5 1
2 ,1 753

1331

⌘
= 1

995

1331

= 1.7475582269

The mutual interference modeling persists. It can be seen in the cross-flow burst
terms b

f2
s3

and b

f4
s4

that equal the one of the according arrival bounds ↵

f2
s3

and
↵

f4
s4

used in the SFA.

Linear Programming (LP, ULP) analysis and comparison Online [2],
there are LpSolve lp files for the square server graph’s LP analysis and the ULP
analysis; no tool for automatic generation of the LPs for general feed-forward
networks is available. Given the similarity of the diamond network used in [9] and

the square network, it can be assumed that these files have been set up manually
for rate-latency service and token bucket arrivals. From the user perspective, all
that needs to be done is to fill in the curves’ parameters.

Recall that the LP approach enumerates all potential entanglements of flows
by extending the partial order (defined by consecutive hops of flows) to the set
of all compatible total orders. The benefit is already pointed out above and part
of the diamond network to explain the procedure of deriving the set of LPs.
The ULP, in contrast, is solely based on the partial order, the extension step
is omitted due to its combinatorial explosion. This results in a smaller set of
ULP constraints, especially the potential entanglements of f2 and f3 at s1 are
not considered anymore. Instead they are assumed to constitute the respective
flow’s worst case. Based on this insight, is it no surprising that the ULP actually
does not beat the PMOO analysis in the square network (see Table 3 and the
solution to all LPs in Appendix I). In fact, even the SFA yields the same results.
The reason for SFA’s accuracy is the lack of multi-hop interference. The PMOO
effect cannot manifest in this server graph.

Our evaluation shows that the ULP models the worst-case interference be-
tween f2 and f3 in the exact same way as all the algebraic analyses (see �ULP (analysis) =
D(analysis)

D(ULP) = 1.00 for all analysis2 {PMOO,SFA} and all utilizations).

Utilization LP ULP PMOO SFA �

LP

�

ULP

10% 0.54351946 0.54905963 0.54905963 0.54905963 1.00 1.00
20% 0.59533608 0.60768176 0.60768176 0.60768176 1.02 1.00
30% 0.65784653 0.67860778 0.67860778 0.67860778 1.03 1.00
40% 0.73437500 0.76562500 0.76562500 0.76562500 1.04 1.00
50% 0.82962963 0.87407407 0.87407407 0.87407407 1.05 1.00
60% 0.95043732 1.01166181 1.01166181 1.01166181 1.06 1.00
70% 1.10696404 1.18980428 1.18980428 1.18980428 1.07 1.00
80% 1.31481481 1.42592593 1.42592593 1.42592593 1.08 1.00
90% 1.65777147 1.74755823 1.74755823 1.74755823 1.05 1.00

Table 3: Square server graph delay bounds.
PMOO and SFA results are rounded to match LpSolve’s single precision results.

Summing up, neither of the evaluations given in [9] illustrated the superiority
of the ULP over the PMOO analysis. Moreover, the ULP evaluation consists of
a single server graph, such that no conclusions about its accuracy in general
feed-forward networks cannot be drawn.

4 Computational Effort Considerations

Last, let us extend our reflection of the currently available evaluation of network
calculus analyses by computational effort considerations – they caused the step
from tight LP analysis back to accurate analysis with the ULP in the first place.

Algebraic network calculus can be considered proven to be applicable. There
is work for sensor networks of increasing size [24,21,3,5] and the continuous
effort to verify AFDX networks [12,18,13] which tend to grow in size as well.
Tool support for algebraic network calculus is also available, open-source [4] as
well as commercial [14].

Optimization based network calculus analysis does not offer comprehensive
tool support as of now. Therefore evaluation of effort is scarce in the literature.
The effort of the OBA was evaluated in [22,23]. It is shown that the computa-
tional hardness mainly arises from the large amount of combinations to consider
when decomposing arrival curves into token buckets and service curves into rate
latencies for individual analysis of every pair – a situation that does not consti-
tute a problem for the algebraic PMOO analysis.

We saw in Section 1 that the LP approach does not decompose curves for
working with the combinations similarly. Its NP-hardness results from the ex-
tension of the partial order modeling the dependencies of starts of backlogged
periods to the set of compatible total orders – a different source for combinato-
rial explosion. The ULP circumvents this step, yet, its computational effort is
not evaluated, i.e., it is currently not known how the optimization of the delay
bound problem scales with the network size. [9] only states that the (U)LP can
be solved quickly in the tandem case. There is, however, not information given
for more general feed-forward networks. This is probably due to the current lack
of comprehensive tools support for the LP approach.

5 Conclusion and Future Work

In this report, we briefly survey results concerning the accuracy, potential for
improvement, and computational effort of current network calculus analyses.
Correcting the evaluation found in [8,9,20,7,10] reveals there are knowledge gaps
concerning the superiority of the ULP over SFA and especially the PMOO anal-
ysis as well as the OBA it was inspired by. The ULP’s distinguishing strengths
that should manifest in bounds that are superior to the algebraic network calcu-
lus analyses are theoretically known (see Section 1), yet, they are not evaluated
as of now – neither individually nor in the combination found in the LP analysis
and the ULP analysis. Given this problem and the slim prospect to improve
accuracy of the ULP with reasonable effort, we conclude that investing in im-
proving the accuracy of algebraic network calculus analyses is currently the more
promising approach.

Evaluating the distinguishing factors of the (U)LP analysis thus remains
an item for future work. The material currently available [2] (tool support /
pre-computed linear programs) allows for an evaluation of unbalanced left-over
rates and curves requiring decomposition for PMOO and OBA in tandems as
well as the square server graph shown above. However, in order to draw broader
conclusions, more comprehensive tool support is required. Especially to gain the
most interesting insights on how the OBA and the LP approach compare.

References

1. The Disco Deterministic Network Calculator.
http://disco.cs.uni-kl.de/index.php/projects/disco-dnc.

2. Tight bounds in feed-forward Networks: Linear programming and Network Calcu-
lus. http://perso.bretagne.ens-cachan.fr/~bouillar/NCbounds/.

3. Steffen Bondorf and Jens B. Schmitt. Statistical Response Time Bounds in Ran-
domly Deployed Wireless Sensor Networks. In Proc. IEEE LCN, 2010.

4. Steffen Bondorf and Jens B. Schmitt. The DiscoDNC v2 – A Comprehensive Tool
for Deterministic Network Calculus. In Proc. ValueTools, 2014.

5. Steffen Bondorf and Jens B. Schmitt. Boosting Sensor Network Calculus by Thor-
oughly Bounding Cross-Traffic. In Proc. IEEE INFOCOM, 2015.

6. Steffen Bondorf and Jens B. Schmitt. Calculating Accurate End-to-End Delay
Bounds – You Better Know Your Cross-Traffic. In Proc. ValueTools, December
2015.

7. Anne Bouillard. Algorithms and Efficiency of Network Calculus. Habilitation
thesis, École Normale Supérieure, April 2014.

8. Anne Bouillard, Laurent Jouhet, and Eric Thierry. Tight Performance Bounds in
the Worst-Case Analysis of Feed-Forward Networks. Technical Report RR-7012,
Institut National de Recherche en Informatique et en Automatique, November
2009.

9. Anne Bouillard, Laurent Jouhet, and Eric Thierry. Tight Performance Bounds in
the Worst-Case Analysis of Feed-Forward Networks. In Proc. INFOCOM, March
2010.

10. Anne Bouillard and Giovanni Stea. Worst-Case Analysis of Tandem Queueing Sys-
tems Using Network Calculus in Quantitative Assessments of Distributed Systems,
chapter 6, pages 129–173. Wiley, April 2015.

11. Anne Bouillard and Eric Thierry. An algorithmic toolbox for network calculus.
Journal Discrete Event Dynamic Systems, 2008.

12. M. Boyer and C. Fraboul. Tightening end to end delay upper bound for afdx
network calculus with rate latency fifo servers using network calculus. In Factory
Communication Systems, 2008. WFCS 2008. IEEE International Workshop on,
pages 11–20, 2008.

13. Marc Boyer, Nicolas Navet, and Marc Fumey. Experimental assessment of timing
verification techniques for AFDX. In Proc. ERTS, 2012.

14. Marc Boyer, Nicolas Navet, Xavier Olive, and Eric Thierry. The pegase project:
precise and scalable temporal analysis for aerospace communication systems with
network calculus. In Proceedings of the 4th international conference on Leverag-
ing applications of formal methods, verification, and validation - Volume Part I,
ISoLA’10, pages 122–136, Berlin, Heidelberg, 2010. Springer-Verlag.

15. Cheng-Shang Chang. Performance Guarantees in Communication Networks.
Springer, 2000.

16. Rodrigo Ferreira Coelho, Gerhard Fohler, and Jean-Luc Scharbarg. Worst-Case
Backlog for AFDX Network with n-Priorities. In Proc. RTN Workshop, 2014.

17. Rene L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation.
IEEE Transactions on Information Theory, 1991.

18. Fabrice Frances, Christian Fraboul, and Jérôme Grieu. Using Network Calculus to
Optimize AFDX Network. In ERTS, 2006.

19. Nicos Gollan, Frank A. Zdarsky, Ivan Martinovic, and Jens B. Schmitt. The DISCO
Network Calculator. In 14th GI/ITG Conference on Measurement, Modeling, and

Evaluation of Computer and Communication Systems (MMB 2008), Dortmund,
Germany, March 2008. GI/ITG.

20. Laurent Jouhet. Algorithmique du Network Calculus. PhD thesis, École Normale
Supérieure de Lyon, November 2012.

21. Petr Jurcik, Anis Koubâa, Ricardo Severino, Mário Alves, and Eduardo Tovar.
Dimensioning and Worst-Case Analysis of Cluster-Tree Sensor Networks. ACM
Transactions on Sensor Networks, pages 14:1–14:47, September 2010.

22. Andreas Kiefer. Computation of Tight Bounds in Networks of Arbitrary Sched-
ulers. Diploma (Master’s) thesis, University of Kaiserslautern, available online:
http://disco.cs.uni-kl.de/discofiles/completed_theses/kiefer09.pdf, March 2009.

23. Andreas Kiefer, Nicos Gollan, and Jens Schmitt. Searching for Tight Performance
Bounds in Feed-Forward Networks. In GI/ITG MMB and DFT, 2010.

24. Anis Koubâa, Mario Alves, and Eduardo Tovar. Modeling and Worst-Case Di-
mensioning of Cluster-Tree Wireless Sensor Networks. In Proc. IEEE RTSS, pages
412–421, December 2006.

25. Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer, 2001.

26. Frank Ruskey. Combinatorial generation. 2003.
27. Jens Schmitt, Nicos Gollan, Steffen Bondorf, and Ivan Martinovic. Pay Bursts

Only Once Holds for (Some) non-FIFO Systems. In Proc. IEEE INFOCOM, April
2011.

28. Jens B. Schmitt and Frank A. Zdarsky. The DISCO Network Calculator – A
Toolbox for Worst Case Analysis. In Proc. ValueTools, October 2006.

29. Jens B. Schmitt, Frank A. Zdarsky, and Markus Fidler. Delay Bounds under
Arbitrary Multiplexing: When Network Calculus Leaves You in the Lurch ... In
Proc. IEEE INFOCOM, April 2008.

30. Jens B. Schmitt, Frank A. Zdarsky, and Ivan Martinovic. Improving Performance
Bounds in Feed-Forward Networks by Paying Multiplexing Only Once. In Proc.
GI/ITG MMB, 2008.

31. Yaakov L Varol and Doron Rotem. An algorithm to generate all topological sorting
arrangements. The Computer Journal, 24(1), 1981.

Appendix I: LP Results for the Square Server Graph

LP 10% 20% 30% 40% 50%
1-1 0.54351946 0.59533608 0.65784653 0.73437500 0.82962963
1-2 0.54351946 0.59533608 0.65784653 0.73437500 0.82962963
1-3 0.53796472 0.58285322 0.63653572 0.70156250 0.78148148
1-4 0.53796472 0.58285322 0.63653572 0.70156250 0.78148148
2-1 0.53796472 0.58285322 0.63653572 0.70156250 0.78148148
2-2 0.33825631 0.38422497 0.44019947 0.50937500 0.59629630
3-1 0.54293629 0.59259259 0.65051903 0.71875000 0.80000000
3-2 0.33850416 0.38518519 0.44221453 0.51250000 0.60000000
4-1 0.54293629 0.59259259 0.65051903 0.71875000 0.80000000
4-2 0.54293629 0.59259259 0.65051903 0.71875000 0.80000000
4-3 0.33857611 0.38535860 0.44253073 0.51301757 0.60080321

(a) LP delays for utilizations from 10% to 50%.

LP 60% 70% 80% 90%
1-1 0.95043732 1.10696404 1.31481481 1.62533600
1-2 0.95043732 1.10696404 1.31481481 1.65777147
1-3 0.88134111 1.00851161 1.22839506 1.64103848
1-4 0.88134111 1.00851161 1.22839506 1.64103848
2-1 0.88134111 1.00851161 1.23148148 1.64103848
2-2 0.70758017 0.85949021 1.08518519 1.52082812
3-1 0.89795918 1.01775148 1.20987654 1.58909911
3-2 0.71020408 0.85949021 1.08518519 1.48473465
4-1 0.89795918 1.01775148 1.16666667 1.35537190
4-2 0.89795918 1.01775148 1.20987654 1.58909911
4-3 0.71141627 0.86257579 1.09013014 1.49688479

(b) LP delays for utilizations from 60% to 90%.
Table 4: Square server graph: All LP delays.

