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Abstract—For smaller scale wireless sensor networks (WSN)
it has been clearly shown that a single mobile sink can be very
beneficial with respect to the network lifetime. Yet, how to plan
the trajectories of many mobile sinks in very large WSNs in order
to simultaneously achieve lifetime and delay goals has not been
treated so far. In this paper, we delve into this difficult problem
and propose a heuristic framework using multiple orbits for the
sinks’ trajectories. The framework is carefully designed based
on geometric arguments to achieve both, high lifetime and low
delay. In simulations, we compare two different instances of our
framework, one conceived based on a load balancing argument
and one based on a distance minimization argument, with a set
of different competitors spanning from statically placed sinks to
battery-state aware strategies. We find our heuristics to perform
very favorably: both instances outperform the competitors in
both, lifetime and delay. Furthermore, and probably even more
importantly, the heuristic, while keeping its good delay and
lifetime performance, scales well with an increasing number of
sinks.

I. INTRODUCTION

There is a growing trend for ever larger wireless sensor

networks (WSN) consisting of thousands or tens of thousands

of sensor nodes. For example, the WSN built by the GreenOrbs

project at Zhejiang Forestry University for forest surveillance

[6] employs 1000+ nodes. We believe this trend will continue

and thus scalability plays a crucial role in all protocols and

mechanisms for WSNs. Another trend in many modern WSN

applications is the sensitivity to the delay for the information

transfer from sensors to sinks. In particular, WSNs are a central

part of the vision of cyber-physical systems and as these are

basically closed-loop systems many WSN applications will

have to operate under stringent timing requirements. Hence,

information transfer delays need to be controlled. On the other

hand, since most WSNs are still based on battery-operated

nodes, energy-efficiency clearly remains another premier goal

in order to keep network lifetime high. How to achieve a

lifetime prolongation by using mobile sink(s) to collect the

data of a WSNs has already been investigated in many works

[2, 3, 7, 8, 9, 10, 16, 17, 19, 20]. All of these leverage on

the effect that the burden of being close to a sink is shared

over time among all the nodes in the field. This alleviates

the typical hot-spot problem, where nodes near the sink drain

their battery much faster than others since they have to relay

many data packets for other nodes. However, the effects on

information transfer delay are either completely neglected or

simply observed without taking actions to establish delay as

an objective of equal importance to lifetime maximization.

By using mobile sinks, in general, the information transfer

delay from sensors to sinks increases. This is simply due to

the fact that there is always a delay-optimal placement of

the sinks and leaving it the message transfer delay becomes

worse. This conflict between lifetime and delay shows that

these two goals have to be carefully traded off against each

other when planning the trajectories of multiple mobile sinks.

In our work, we target very large WSNs and strive for the

problem of finding good trajectories for multiple mobile sinks

such that we keep the maximum message delay low and still

achieve a long lifetime, which sets us apart from the current

state-of-the-art.

The contributions of our paper are:

• To the best of our knowledge, we are the first to tackle

the trajectory planning problem for multiple mobile sinks

in very large WSNs under lifetime and delay goals.

• We derive a heuristic framework that keeps up its delay

and lifetime performance in very large WSNs as long as

a constant node to sink ratio is retained. (→Section III)

• A thorough simulative investigation and comprehensive

comparison with alternative approaches inspired by liter-

ature is presented. (→Section IV)

Our work is based on using multiple orbital trajectories for the

mobile sinks and segment the sensor field into a so-called polar

grid. In each orbit the sinks are moved synchronously (e.g.,

once a day). As mentioned in [8, 10, 20] where the movement

of a sink is abstracted as a sequence of a static sink placements

assuming that the time scale of sink mobility is much larger

than that of data delivery, we follow the assumption of slow

mobility in our work. For the case of very large WSNs

with many mobile sinks (say hundreds) this n-orbit model

generalizes recent previous work of ours using only 2 orbits

[12]. While we base on this work with respect to giving the

problem a geometric interpretation, we remark that the n-orbit

case is significantly harder. Most severely, the distribution of

K sinks over n orbits leads to a combinatorial explosion

of the search space for the values of K that we require

in very large WSNs. Similarly, the optimal choice of the

number of orbits n as well as the sizing of their radii become

very difficult questions. We address these questions with a

heuristic framework. It is built on a geometric reduction of

the problem, where the two performance characteristics, delay

and lifetime, are amalgamated into minimizing the Euclidean

distance between nodes and sinks. The intuition behind this is



that both, delay and lifetime, benefit from nodes being closer

in terms of Euclidean distance to their assigned sinks.

II. NETWORK MODEL AND PROBLEM STATEMENT

Let V be the set of sensor nodes with |V | = N ; S is the

set of sinks with |S| = K . For both, N and K we assume

large scales with N being on the order of thousands and K up

to the order of hundreds. The reachability between nodes is

modelled as a directed graph, G = (V , E), where V = V ∪ S.

For all a, b ∈ V , the edge (a, b) ∈ E exists iff a and b are

within a disc-based transmission range rtx. The sensor field

is assumed to be a circular area with radius R.

A. The Nodes

The nodes are i.i.d. uniformly distributed over the sensor

field. We assume the node density (governed by the param-

eters R and N ) to be high enough to ensure connectivity

with high probability (see also Section IV-D). The nodes

are homogeneous with respect to their initial energy E and

their transmission range rtx. Also, the costs for sending

and receiving messages do not differ from node to node.

The amount of data produced by each of the nodes is the

same and follows the same traffic pattern, e.g., a periodic

data generation. The energy consumption for operations other

than receiving or transmitting can be neglected, since for

homogeneous nodes they consume the same amount of energy.

The nodes are stationary and use multi-hop-communication to

send their data to their assigned sink. This means the routing

topology is actually a forest of sink trees embedded in the

reachability graph G. The assignment of nodes to sinks is

further discussed in Section III.

B. The Sinks

The sinks are assumed to have no energy constraints. We

assume that the sinks’ movement is synchronous, i.e., all sinks

move at the same time. Further, sink movement takes places

on relatively long time-scales (e.g., once a day), much larger

than the time-scale of the message transfer delay from sensors

to sinks (e.g., on the order of seconds). Therefore, we neglect

the time periods when the sinks are actually moving (or being

moved) and the sink mobility is abstracted as a sequence of

sinks’ locations. At each location the sinks stay for an equal

amount of time, further on called epochs. In particular, we

also assume that all data is flushed from the WSN before a

sink movement takes place, i.e., there is no data dependency

between epochs.

C. The Problem Statement

In this setting, we want to simultaneously achieve a low

information transfer delay and a long lifetime. Here, we define

lifetime as the time until the first node of the network “dies”,

i.e., its battery is depleted. For the delay, we consider the

worst-case message transfer delay for the whole network. To

that end, we use sensor network calculus [13] to compute the

worst-case delays for each data stream from a node to its sinks

and take the largest of these worst-case delays as the worst-

case delay for the whole network.

To solve this dual-objective problem one basically has to

answer three questions in each epoch:

1) Sink Trajectories: where should the sinks be posi-

tioned?

2) Sink Selection: which sink does a node choose to send

its data to?

3) Sink-Tree Routing: which route the data follows the

sink?

In this paper, we focus on the planning of the sink trajectories

and “hard-code” the other two questions: for sink selection,

each node chooses its nearest sink with respect to Euclidean

distance (within the same orbit, more details are given in

Section III); for the routing we assume shortest path routing

in the reachability graph G, mainly because it is a frequent

case. Yet, even under these restrictions, the problem is still

a very hard one (even strong reductions of it are NP-hard,

see also [12] for a discussion of this). The main complexity

has its roots in the conflicting objectives delay and lifetime.

The end-to-end delay, as well as the energy consumption, is

dependent on the path between nodes and their sink, as well

as any other path interfering with this one. Hence there is a

dependency structure between the end-to-end delays which is

very hard to untangle.

III. HEURISTIC FRAMEWORK

In this section, we present our heuristic framework for

planning the sink trajectories in very large WSNs with delay

and lifetime goals. Due to the complexity of the problem, we

reduce it to a geometric problem. This abstraction is justifiable

by the large scale of the WSN as we target it in our work. The

rationale behind it is that the delay (mainly governed by the

number of hops) needed to reach a sink is proportional to the

Euclidean distance from the nodes to their sinks. On the other

hand, per epoch, we divide the network area in a number of

cells (using a polar grid segmentation of the circular sensor

field), corresponding to the number of sinks. In each epoch,

each node is assigned to the sink of its currently corresponding

cell. Thus, we can abstract the load assigned to a single sink as

the area of its cell. This geometric interpretation of load and

delay is instrumental in constructing good sink trajectories,

because instead of complex delay and energy functions we

can now formulate the problem in terms of the size of cells

and Euclidean distances between nodes and sinks, which are

considerably simpler measures.

A. Orbital Sink Trajectories

Our heuristic framework is based on an orbital model for the

sink trajectories in order to achieve a small distance between

nodes and their sinks, as well as a balanced division of the

network area into cells [12]. In a nutshell, it works like this:

we conceive several circles around the center of the sensor

field, with different radii, called orbits; the sinks are placed

on these orbits with regular interspaces and revolve around

the center, like satellites move around the earth (see Figure

1). For a more detailed presentation of this n-orbit model, we

introduce some definitions and notations (see also Table I):



Table I
NOTATIONS FOR THE ORBIT MODEL.

R Radius if the network area.

N Number of nodes used.

K Number of sinks used.

L Leftover sinks.

n Number of orbits used.

Ki ; i ∈ 1, . . . , n Number of sinks placed in the i-th orbit.

Ri ; i ∈ 1, . . . , n Radius of the i-th circle,

constructing the polar grid.

di ; i ∈ 1, . . . , n Maximal distance of one point in a cell

of the i-th orbit, to the corresponding sink.

ai ; i ∈ 1, . . . , n The area of one cell in the i-th orbit.

θ Movement angle of the sinks between epochs.

γ ∈ [1, 2] For γ = 1 we get the MD-approach,

for γ = 2 the EA-approach.

• We call the innermost orbit the first orbit and the outer-

most orbit the last or n-th orbit.

• By a sink distribution we refer to how many sinks are

placed in each of the orbits; we denote the number of

sinks placed in the i-th orbit by Ki.

• The orbits and their sinks divide the network area in a

polar grid as illustrated in Figure 1. The cells within

the same orbit have the same shape and size. The sinks

are located in the center of their cells, such that they

minimize the maximal Euclidean distance of any point of

this cell to themselves. This center can be calculated by

replacing the cell by a trapezoid (or triangle, in the case

of the first orbit) sharing the same corner points as the

cell and determining the center of the minimal enclosing

circle of this trapezoid. A formal proof for the correctness

of this intuitive statement can be found in [11].

• The polar grid consists of n concentric circles segmenting

the sensor field into circular segments as well as ring

segments. By Ri (i ∈ 1, . . . , n) we denote the radii of

the concentric circles, where R1 describes the radius of

the circular segments. The ring segments in the i-th orbit

have an outer radius of Ri and an inner radius of Ri−1.

The choice of Ri affects both, the number of nodes in a

cell and the maximal distance from any point in the cell

to the sink.

• By di, we denote the maximal distance of a point within

a cell of the i-th orbit to its corresponding sink. Further,

by ai, we denote the area of a cell in the ith orbit.

• To preserve the polar grid structure, after each epoch, the

trajectories are constructed by rotating all the sinks by the

same angle θ around the center (thus a θ of 0° or 360°
would result in no movement at all). More complicated

trajectories are conceivable: the angles by which a single

sink moves may be different from other sinks, even if

they are in the same orbit and could change from epoch

to epoch. Such trajectories would, however, not preserve

the polar grid structure and be difficult to analyze. Since

we are considering very large networks, there might be a

practical upper bound on the angle θ the sink can move

between epochs, simply by the limited distance a real

mobile sink may move between epochs.

The orbit model is flexible, since one can choose different

sink distributions and number of orbits and also form the

R

Figure 1. The n-orbit model.

Figure 2. Illustration of the distance calculation.

cells by varying the radii Ri. Through this flexibility we

are able to adress different goals like minimizing the overall

Euclidean distance from any node to its sink or keeping the

cells equally sized. Also the model scales naturally for an

increasing number of sinks by simply increasing the number

of orbits.

In the following we present two particular orbit models.

The first has the goal of minimizing the maximum Euclidean

distance from the nodes to their sink. The second has the

goal of keeping the cells equally sized, while reducing the

Euclidean distances as much as possible. Before we delve

into the construction of these two orbit models we provide

an overview about their construction. In a first step we found,

by systematically searching the possible sink distributions and

radii Ri, that these follow rather simple rules. In a second

step, we search for the number of orbits, which results in

the smallest maximal Euclidean distance. Up to this point,

however, we handle the sinks, as if we could split them up

and place them over several orbits, which is, of course, not

possible. Hence in the last step, we distribute the sinks in such

a way, that they get close to the formulations found in the first

and second steps.

B. Distributing the Sinks and Sizing the Orbits

At first, we assume the number of orbits to be given and

discuss the distribution of the sinks over the orbits (setting

the Ki) and sizing the radii of the polar grid (setting the Ri).

Based on this we compute the optimal number of orbits in the

following subsection.

As mentioned above, we derive two types of orbital sink

trajectories. The first has the goal of keeping the maximal

Euclidean distance small. This goal however is hard to achieve,

due to a very complex goal function and a large number

of variables. The optimization problem can be formulated as

follows (for a construction of it see [11]):

min
Ki:K1+...+Kn=K

min
0≤Ri≤R

max
1≤i≤n

di

with:

d1 = d1 =

{

R1 cosβ if K1 = 3
R1

2 sin(π
2
−

π
K1

)
if K1 > 3



Four Orbits’ Radii Distribution (MD vs. EA)

#sinks

E
u
c
lid

e
a
n
 d

is
ta

n
c
e
 (

m
)

12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

0

25

50

75

100 MD

EA

12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

Four Orbits’ Sink Distribution (EA)

#sinks

s
in

k
 d

is
tr

ib
u

ti
o

n

0

20

40

60

80

100

K
1

K

K
K

2

3

4

K
1

K
1
+3K

1

+5K
1

K
1
+3K

1

+7K
1

+5K
1

K
1
+3K

1

12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
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Figure 3. Radii and Sink distributions for MD and EA.

and for i > 1:

di =







Ri cosαi if Ri cosαi ≥ x
√

(Ri−Ri−1)
2+4RiRi−1 cos2(π

2
−

π
Ki

)

2 sin(π
2
−

π
Ki

)
if Ri cosαi < x

where αi, respectively β, is the angle at A in the triangle

∆ABO and x is the distance between D and the midpoint

on the line between A and B (see Figure 2). To solve this

problem, we have thoroughly explored the respective search

spaces systematically, to find the best sink distribution and

radii Ri. Due to the high-dimensional search space and a

fine-grained sub-sampling of it this exploration involved a

considerable amount of computational effort (several weeks of

run-time on high-end PCs). The search does not only consist

of the continuous parameters Ri which lie in [0, Ri+1] (with
Rn ∈ [0, R]), but also one has to consider a combinatorially

growing amount of possible sink distributions (assuming orbits

can be empty there are
(

K−n−1
n−1

)

distributions).

Table II
COMPARISON OF MD AND EA METHODS.

Minimum Euclidean Distance Equal Sized Area

Sink distribution
K1
Ki

= 1
i

K1
Ki

= 1
2i−1

Orbits’ radii Ri = i · R
n Ri = i · R

n

Relationship of

K, K1,and n
K = K1

n
∑

i=1

i K = K1

n
∑

i=1

2i− 1

The second type of orbital sink trajectory, which has the

goal to obtain a small maximal Euclidean distance while

keeping the cells equally sized, is a bit easier to tackle. The

reason is, that we know, for a given sink distribution, how to

choose the radii to achieve equal areas:

R2
1 =

R2K1

K
and R2

i =
R2

i

K1

i
∑

k=1

Kk

However, it is still unclear how to distribute the sinks opti-

mally, such that a low maximal Euclidean distance is achieved.

So we still have to deal with the combinatorial explosion of

possible sink distributions. Also for this approach we decided

to search systematically for the best solution.

The results of these computations for four orbits (for other

numbers of orbits the results look similar) can be found

in Figure 3. One can observe in the first figure that the

radii converge to Ri = i · R
n
. As seen in Figure 3 the

difference between the two approaches lies mainly in the sink

distribution. They follow the rules presented in Table II, the

dashed lines in the figures represent how the sink distribution,

for 100 sinks, would have to look like, if one applies the rule.

Taking a closer look we recognize that both approaches are

in fact member of the same familiy. Their sink distributions

can be formulated in a generalized setting as:

Ki = K1 + γ(i− 1)K1; K1 =
2K

n(nγ − γ + 2)
.

For γ = 1 this results in the approach of minimizing the

maximal distance (further called MD) and for γ = 2 we get

the equally sized area approach (further called EA). There are

other values for γ imaginable, resulting in hybrid approaches,

however, we will not consider other values for γ in this paper.

For the rest of the paper we set Ri = i · R
n

to make further

steps tractable.

C. Choosing the Right Number of Orbits

Clearly, choosing the right number of orbits is an important

factor. In the smaller scale setting of our previous work [12]

we found significant gains when going from a single orbit to a

two-orbit trajectory. Hence, in the very large-scale WSNs that

we target in this work, we have to find out which number of

orbits is optimal. For this purpose, we compute for different

number of sinks the optimal number of orbits by checking

through all numbers of orbits from 1 up to 100 for both, MD

and EA. How this computation was performed for a given

number of sinks is shown in Algorithm 1. The algorithm takes

as inputs, the number of sinks and the value of γ and outputs

the number of orbits, which results in the smallest maximal

Euclidean distance between any point and its allocated sink.

The alert reader may notice that the algorithm takes only the

first and last orbit into account for calculating the maximal

Euclidean distance. This is due to the following lemma:

Lemma 1. Let K and n be such that 3n(nγ− γ +2) ≤ 2K ,

then di is increasing in i for all i ≥ 2.

Proof: (Sketch, a complete proof can be found in [11])
di can be given by:

di =
R

n

( 1

4 sin2(π
2
− π

(γi−γ+1)K1
)
+

(i− 1)i cot2(
π

2
-

π

(γi− γ + 1)K1
)
)

1/2

.



Algorithm 1 Computing the optimal number of orbits.

Inputs: The number of sinks K, the network radius R, and

the parameter γ =

{

1 for MD

2 for EA
.

for n = 1 to 100 do

1. Compute K1 = 2K
n(γn−γ+2)

2. if (K1 ≥ 3)

2.1. Compute d1 =







R
2n sin( π

2
− π

K1
)

for K1 > 3

R
n cos(π

2 − π
K1

) for K1 = 3

2.2. Compute

dn = R
n

1
2 sin(π

2
− π

γn−γ+2
)

√

1 + 4(n − 1)n cos2(π
2 − π

γn−γ+2 )

2.3. Compute Dn
max = max{d1, dn}

endfor

return orbit j such that Dj
max = min1≤i≤n Di

max

Table III
THE OPTIMAL NUMBER OF ORBITS FOR MD AND EA.

MD(#sinks) EA(#sinks) #orbits

3-8 3-11 1

9-18 12-29 2

19-35 30-59 3

36-59 60-98 4

60-90 99-146 5

91-127 147-200 6

128-170 - 7

171-200 - 8

Since di is positive, it is sufficient to show that
d2i has a positive derivative, after factoring out
cos(π2 −

π
(γi−γ+1)K1

) sin(π2 −
π

(γi−γ+1)K1
) ≥ 0, its numerator

(the denominator is positive) can be given by

(2i− 1) sin
(

π − 2π
(γi−γ+1)K1

)

−
πγ

(γi−γ+1)2K1

(

4(i2 − i) sin(π
2
−

π

(γi−γ+1)K1
) + 1

)

.

using a Taylor-Expansion around π for the first sum and using

that sin(x) ≤ 1 for all x, we know that the above expression

is larger than zero, if

2π3

3i2K3
1

≤ 1

which is true for all i ≥ 2 and K1 ≥ 3, which is the case by

our assumptions on K and n.

The condition of the lemma is not restrictive, as, for sink

distributions according to Table II, it translates to having at

least three sinks per orbit. Having two or less sinks in one orbit

would mean to place them in the center of the whole sensor

field as this minimizes the Euclidean distance, effectively

wasting a complete orbit. Hence, excluding such cases does

not influence the best selection of orbits. The optimal number

of orbits for different number of sinks (up to 200) and the

different approaches are displayed in Table III.

D. Distribution of Leftover Sinks

In our rules for the sink distribution we handle the sinks as

real numbers. Of course, they are integral and thus we simply

use the following sink distribution:

K1 =

⌊

2K

n(γn− γ + 2)

⌋

; Ki = ⌊K1 + γ(i− 1)K1⌋

This however may lead to the problem that we cannot dis-

tribute all of the K sinks, i.e., L = K −
∑n

i=1 Ki 6= 0

is the number of leftover sinks. We deal with this leftover

sinks simply by distributing them over the orbits, in a greedy

fashion, according to the goal of the respective approach. In

the MD case, we place one sink at a time in the orbit which

currently exhibits the maximal Euclidean distance, whereas in

the EA case we place the sink in the orbit which contains the

cells with the largest area.

IV. PERFORMANCE EVALUATION

In discrete-event simulations, we evaluate the delay and the

lifetime performance of our heuristic framework by comparing

it to three different mobile sink trajectories and two static sink

placement strategies.

A. Delay Performance

With the help of sensor network calculus (SNC) [13],

we evaluate the worst-case delay performance. To apply the

SNC, the network traffic has to be described in terms of

arrival curves αi for each node. An arrival curve defines an

upper bound for the input traffic of a node. To calculate the

outputs of the nodes service curves βi are used. The service

curve specifies the worst-case forwarding capabilities of a

node. Based on arrival and service curves, we use the Pay

Multiplexing Only Once (PMOO) analysis described in [15]

for the end-to-end delay bound computation (for this we use

the DISCO Network Calculator [14]).

B. Lifetime Performance

We define the lifetime as the number of epochs until the

first sensor node depletes its battery. The energy consumption

for transmitting and receiving are taken into account using

an energy model based on MICAz motes [1]. The model

computes the energy level En
v of each sensor node v in epoch

n using the following equations:

En
v =

∑

w∈T n
v

Etx(w, fn(w)) +
∑

w∈Rn
v

Ercv(w, fn(w)), (1)

with

Ercv(w, fn(w)) =Ercv(fn(w)) = Prcv · trcv(fn(w)), (2)

Etx(w, fn(w)) =Ptx(w) · ttx(fn(w)). (3)

Here, T n
v and Rn

v denote the set of nodes to send to and

receive from for v in epoch n. In (2), we see that the energy

consumption for receiving fn(w), the amount of data from

node w in epoch n, is just the time needed to receive the

data trcv(fn(w)) multiplied by the power consumption Prcv

of the receiving unit; this is independent of the distance

between the sending and receiving node. In (3), the energy

consumption for sending data is again the time needed to

send the data ttx(fn(w)) times the power consumption of the

sending unit Ptx(w), which, however, now is dependent on

the distance to w. Taking the values from the MICAz data

sheet [1], we can calculate the power consumed by the receiver

electronics Prcv and the transmitting electronics Ptx(w). The
exact dependencies of Ptx(w) on the distance to w is described

by a model for the MICAz mote, which can be found in [18].
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Figure 4. Competitors: (a) a random walk, (b) an outer periphery trajectory,
and (c) a static MD.

C. Competitors

We have realized different competitors to compare our

heuristic with. Unfortunately, the field of multiple mobile sink

for very large WSNs is barely tapped so it was hard to find

direct competitors. To create competitors we generalized ideas

from other (smaller scale) proposals [4, 7, 9]. The competitors

are briefly described in the following; some of them are

illustrated in Figure 4.

Random Walk: Initially, sinks are placed uniformly ran-

domly in the sensor field. At the start of each epoch, the

sinks randomly choose a direction and step size (ensuring,

however, that they do not leave the sensor field). We use this

competitor as a baseline and also because it has been discussed

in literature [3].

Outer Periphery: [7] remarks that, in the single sink case,

a trajectory along the periphery of the network optimizes the

lifetime by balancing the load distribution. We generalize this

concept by moving each of our sinks along the cell peripheries,

where the cells are formed according to the MD approach.

Following the Energy (FE): In this strategy, the sinks are

placed randomly over the network area for the first epoch. For

the following epochs, the K sensor nodes with the highest

residual energy left are identified and the sinks move near to

them. We use this one only as a competitor for lifetime, as its

delay peformance is very bad. It is a simple representative of

the group of state-aware trajectories (e.g. [9]).

K-Center Heuristic: [4] presents a polynomial 2-

approximation for the NP-hard K-center optimization prob-

lem. The competitiveness of the algorithm is illustrated by

the result of [5] which shows that if there exists an δ-

approximation with δ < 2 this results inNP = P . The authors

use their algorithm on a fully connected weighted graph,

nevertheless the idea can be carried over to our graph. This

is a competitor only for the worst-case delay, as it performs

badly with respect to lifetime due to being static. It serves

as a representative for algorithms based on graph-theoretic

abstractions and was expected to perform very well for delay

due to its nice theoretical properties.

Static MD: This takes the same sink distribution as

generated by our MD heuristic, but the sinks are not moving.

Instead we run the MD strategy for a whole set of possible

positions and choose the one, which has minimal delay. This

obviously bad lifetime competitor is included to show both,

how the lifetime of the network is increased by mobility as

well as its negative effect on delay.

D. Experimental Set Up

Using discrete-event simulations, we evaluate the worst-case

delay and the lifetime performance of our heuristic framework.

In the experiments, nodes are uniformly distributed over a

circular field with radius R. The respective network radii

are chosen such that always a node density of 1
100m2 is

achieved. A 20m disc-based transmission range is used under

a shortest path routing for the sink trees. Token-bucket arrival

curves and rate-latency service curves are considered for SNC

operations. In particular, for the service curve we use a rate-

latency function that corresponds to a duty cycle of 1% and

it takes 5ms time on duty with a 500ms cycle length which

results in a latency of 0.495 s1. The corresponding forwarding

rate becomes 2500 bps. Initially, the nodes are set to an initial

battery level of 0.1 joule. Packets of 100 bytes length are sent

to the corresponding sinks. Apart from static sinks, all others

move synchronously to their next position between epochs.

The MD and EA methods use a movement angle of θ = 10°.
To compute the energy consumption (Equation 1), we use the

following data based on [1, 18]. The current consumption is

8.5mA with−25 dBm for distances up to 12.5m, and 9.9mA

for distances between 12.5m and 23m with −20 dBm. For

receiving a data packet, a 1% duty cycle is considered with

a current of 19.7mA. A constant voltage of 3V is used.

A transmission data rate of 250Kbps is used, which takes

ttx = 3.2ms for a 100 byte packet.

E. Results

We analyze the following three scenarios: 1500 nodes with

15 sinks, 5000 nodes with 50 sinks, and 10000 nodes with

100 sinks. So, we keep a constant node to sink ratio of

100 nodes/sink. For each scenario, we analyze the energy

consumption per epoch, the lifetime and the worst-case delay.

For all experiments, we performed 10 replications and present

the average results from these. For the large majority of results,

we obtained non-overlapping 95% confidence intervals, so

we do not show these in most of the graphs for reasons of

legibility. The static MD and the K-center heuristic are static

sink placements so that we compute the lifetime based on the

overall number of packets transmitted and translate it into an

equivalent number of epochs (using the results from the other

methods).

1) Worst-Case Delay Evaluation: Figure 5 compares the

delay performance of the four mobile sinks and two static

sinks strategies. In all scenarios, the best delay performance

is achieved by the static MD, closely followed by our mobile

sinks strategies EA and MD. As already discussed in Section

I, there is a price to pay for the prolonged lifetime by

mobile sinks in terms of delay, yet as we see here that

price is rather low. EA and MD perform almost equally well

with a slight advantage for EA. More importantly, both of

them achieve roughly the same delay performance across the

different scenarios and are thus scalable with respect to delay.

1The values are calculated based on the TinyOS files CC2420AckLpl.h and
CC2420AckLplP.nc.
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Figure 5. Delay and lifetime performance comparison: (a) 1500 nodes and 15 sinks, (b) 5000 nodes and 50 sinks, and (c) 10000 nodes and 100 sinks.

For the outer periphery and the random walk, the assessment is

very different: their delay performance is much worse and also

the delay increases with growing network size, so they do not

scale well with respect to delay. Somewhat surprisingly, the

K-center heuristic, which requires a high computational effort

and centralized information, is not doing particularly well and

is actually slightly outperformed by the mobile trajectories EA

and MD, which indicates again that their delay performance

is very good.

2) Lifetime Evaluation: The simulation results for the life-

time performance of the competitors are shown in Figure 5.

The graphs show the total energy consumption in the sensor

field over the number of epochs, so the lengths of the lines

indicates the lifetime performance of the respective method.

Looking over all scenarios, MD turns out to be the clear

winner with respect to lifetime. EA basically achieves the

same lifetime in the 1500-nodes scenario, but cannot keep

up with MD in the larger scenarios. All other competitors

perform rather poorly: the random walk is a complete failure

with a lifetime of 1.5 epochs in the largest scenario; the

FE strategy also performs very bad and does not fulfil the

hopes one could have in a state-aware trajectory (admittedly

it is a simple strategy and more sophisticated state-aware

trajectories could be doing better); the outer periphery strategy

is a little bit better, but at the expense of a high overall energy

consumption. Interestingly, the static MD does not perform too

badly, it outperforms FE and the random walk, which shows

that trajectory planning must be done with care otherwise one

could do even worse than a good static strategy. On the other

hand, we can see very clearly the lifetime prolongation effect

of using mobile sinks when comparing static MD with the

MD sink trajectory: for example, in the 1500-nodes scenario
MD achieves 10.8 epochs whereas static MD achieves only

4.6 epochs.

3) Lifetime vs. Delay and Scalability: In this subsection,

we somewhat wrap up the previous results by particularly

looking at the combined lifetime vs. delay performance as

presented in Figure 6. The x-axis represents the delay and

the y-axis shows the corresponding lifetime performance in

terms of the number of epochs. The shape and color of the

symbols represents the different strategies and the size of the

symbols encodes the scale of the experiment, i.e., the large

symbols represent the experiments with 100 sinks, while the

medium-sized and small symbols represent the experiments

with 50 and 15 sinks, respectively. By following the path from

small to large symbols one can see, how the strategies scale

for larger WSNs. Clearly, the goal must be to stay within the

upper left quadrant of this graph. Only MD achieves this goal,

EA has a problem with respect to lifteime scalability. All other

competitors do not really offer good lifetime-delay tradeoffs

and are at best good in one of them.
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One may even become suspicious about MD for its scalabil-

ity, because as can be observed in Figure 6, there is a certain

degradation with respect to lifetime for it, too. However, the

lifetime definition that we use here (when the first node dies)

somewhat looses its usefulness with an increasing number of

nodes, as it becomes more and more likely that some single

node is in an unfortunate position where its battery is drained

much quicker than for others. Therefore, we provide some

more information on the “death” process of the nodes in the

field when we continue network operation after the first node

died in Figure 7 (again the size of the symbols represents the

scale of the scenario). In particular, when we redefine lifetime

as the time until which 10% of the nodes have died then we

see that MD scales very well, i.e., it achieves almost the same

lifetime in all three scenarios. In comparison, EA still does

not scale that well, though arguably it also benefits from this

redefinition of the lifetime.

V. CONCLUSION AND OUTLOOK

In this paper, we have proposed a flexible heuristic frame-

work to design the trajectories for multiple mobile sinks such

that a good tradeoff between a high network lifetime and

a low information transfer delay can be achieved in very

large sensor networks. The framework uses an n-orbit model

which is based on a geometric rationale that, in large sensor

networks, cell areas and Euclidean distances between nodes

and sinks are good proxy measures for lifetime and delay. Two

instances of the framework are derived: one which focuses on

the minimization of the maximal Euclidean distances (MD),

and one which targets to equalize the area assignment and

takes distance minimization as a secondary goal (EA). Both

are compared with several competitors in detailed discrete-

event simulations and show very good lifetime-delay tradeoffs.

Especially, the MD strategy shows a very scalable behavior for

its lifetime and delay performance when the number of nodes

becomes large. In particular, in contrast to all other methods

it keeps up the delay and lifetime values of smaller scenarios

when scaled to larger scenarios under a constant node-to sink

ratio. More abstractly, we believe to have provided strong

evidence that the orbital sink trajectories provide for a natural

scalability to very large sensor networks, if designed carefully.

To conclude the paper, we want to discuss some relaxations

of the assumptions in our framework and how the geometric

interpretation can still be helpful, thereby pointing out direc-

tions for future work: One assumption is the circular shape of

the sensor field. Smaller distortions (linear transformations) of

this would result in ellipsoid shapes, which can still be dealt

with a similarly distorted orbit model (mapping the position

of the sinks by the same transformation to the new sensor

field). A change of the underlying distance norm would result

in completely different shapes, we could think of a squared

network area as a circle under the maximum norm || · ||∞
(similarly one could change to the || · ||1-norm to handle

a rhombus-shaped sensor field). Another assumption is the

uniform distribution of nodes over the field. In some networks,

there might be clusters of high density and regions with low

density. Here more sinks are needed in the clusters, while

the sparse areas can be handled by less sinks, this could be

achieved by altering the distances the sinks move between

the epochs in our orbit model. Slowing the sinks down, when

reaching the clusters would result in accumulating sinks in that

region and speeding them up again, when leaving the clusters,

moves them fast through the sparse areas.
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