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Foreword

This First Course in Stochastic Network Calculus is a �First� course in two di�erent
perspectives. One can see it as a introductory course to Stochastic Network Calculus.
On the other side it was my �rst course I have given about SNC to a few students in
June 2012. It builds on the lecture Performance Modelling in Distributed Systems [10] at
the University of Kaiserslautern. The concepts of stochastic network calclulus parallels
those of deterministic network calculus. This is why I reference on the lecture of 2011
at several points to stress these connections. This document however is thought of a
stand-alone course and hence a deep study of [10] is not necessary (but recommended).
This course contains a rather large probability primer to ensure the students can really

grasp the expressions, which appear in stochastic network calculus. A student familiar
with probability theory might skip this �rst chapter and delve directly into the stochastic
network calculus. For each topic exercises are given, which can (and should) be used to
strengthen the understanding of the presented de�nitions and theory.
This document is still in process and hopefully will evolve at some day into a fully

grown course about Stochastic Network Calculus, providing a good overview over this
exciting theory. Hence, please provide feedback to beck@cs.uni-kl.de.
- Michael Beck
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1 Basics of Probability

In this chapter we give a refresher about the basics of probability theory. We focus on
material needed for constructing a stochastic network calculus. This refresher exceeds the
probability primer of the lecture Performance Modelling in Distributed Systems [10] by
far. The following de�nitions and results serve us as a foundation, to build our calculus
upon. The material presented here (and much more) is standard in probability theory
and can be found - much more detailed - in many introductions [7, 1, 9, 5].

1.1 Probability Spaces and Random Variables

We start our refresher with the very basic de�nitions needed to construct a probability
space.

De�nition 1.1. We call a non-empty set Ω 6= ∅ sample space. A σ-algebra A on Ω is
called event space. If ω ∈ A for some event A ∈ A, we say that the outcome ω lies in the
event A.
A σ-algebra (also called σ-�eld) of Ω is a collection of subsets of Ω, with the properties:

� Ω ∈ A

� A ∈ A ⇒ Ac ∈ A

� A1, A2, A3, . . . ∈ A ⇒ {
⋃∞
i=1Ai} ∈ A

Example 1.2. As �rst example we consider a fair die. The possible outcomes of a die
are the following:

Ω = {The die shows one pip, The die shows two pips,

The die shows three pips , The die shows four pips,

The die shows �ve pips, The die shows six pips}

A simple σ-algebra would be just the power set of Ω, de�ned by:

A = Pot(Ω) = 2Ω = P(Ω) := {A : A ⊂ Ω}

Applied to our example this would be:

A = {∅, {The die shows one pip}, {The die shows two pips}, . . . ,

{The die shows one pip, The die shows two pips},
{The die shows one pip, The die shows three pips}, . . .}
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Example 1.3. Given a subset A ∈ Ω we can always construct a σ-algebra, by: A :=
{∅, A,Ac,Ω}. This is called the σ-algebra over Ω induced by A.

De�nition 1.4. The pair (Ω,A) is called measurable space. A function µ : A → R∪{∞}
with

� µ(∅) = 0

� µ(A) ≥ 0 ∀A ∈ A

� µ (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) ∀Ai ∈ A with Ai ∩Aj = ∅ for all i 6= j

is a measure on Ω. We name a triple (Ω,A, µ) measure space.

De�nition 1.5. A measure P on (Ω,A) is a probability measure if P(Ω) = 1. The triple
(Ω,A,P) is a probability space.

Example 1.6. We continue our previous example. If the die is fair we assume all
outcomes (i.e. how many pips the die shows) to be equally likely. Hence we give each
outcome the some �chunk� of probability:

P({The die shows ipips}) =
1

6
∀ i = 1, 2, . . . , 6 (1.1)

We easily check that P(Ω) = 1. A sceptic person may ask, how to construct a probability
measure from the above equation, since we don't know what the measure of an event like
�the die shows one or �ve pips� is. The answer lies in the physical fact that the die can
only show one side at a time. It can not show one pip and �ve pips at the same time.
Or in other words the outcomes in 1.1 are all disjoint. Hence we can construct by the
properties of a measure all events by just adding the probabilities of all outcomes, which
lie in that event. In this way the probability for the event �the die shows one or �ve pips�
is - as expected - 2

6 .

This intuitive construction is important enough to be generalised in the next example.

Example 1.7. In the discrete case, i.e. if Ω = {ω1, ω2, . . . , } is a countable set, we can
de�ne probability weights pi = P({ωi}) ≥ 0 with

∑
i∈Ω pi = 1. By de�ning these weights

we construct a uniquely de�ned probability measure on (Ω,P(Ω)) by:

P(A) =

∞∑
i=1

piδA(ωi)

with

δA(ωi) =

{
1 if ωi ∈ A
0 if ωi /∈ A
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Example 1.8. If Ω = R one usually uses the Borel σ-algebra denoted by B(R). This
special σ-algebra is the smallest σ-algebra on R, which contains all open intervals (i.e.
we intersect all σ-algebras, which contain all open intervals. Since the power set of
R contains all open intervals and is a σ-algebra, we know that this intersection is not
empty.). On this measurable space (R,B) we can de�ne probability measures by the
usage of probability density functions (pds). A density f : R→ R+

0 ful�lls

ˆ ∞
−∞

f(x)dx = 1

and its corresponding probability measure is given by:

P(A) =

ˆ
A
f(x)dx

There is a good reason why we use the non-intuitive Borel σ-algebra, instead of P(R).
One can show, that the power set is �too large� to de�ne a measure on it. This means, if
one tries to de�ne a non-trivial measure (a measure is trivial if µ(A) = 0 for all A ∈ A)
on (R,P(R)) this leads inevitably to a contradiction (so called Vitali sets).
We have seen in our die example, that the space of outcomes can be something physi-

cal. However, we would like to translate this physical descriptions into something more
tractable, like real numbers. The next very important de�nition allows us to do so.

De�nition 1.9. A function X : Ω → Ω′ between two measurable spaces (Ω,A) and
(Ω′,A′) is measurable if

{X ∈ A′} ∈ A ∀A′ ∈ A′

holds ({X ∈ A′} := {ω ∈ Ω : X(ω) ∈ A′}).
A random variable is a measurable function from a probability space into a measurable

space, i.e. X : (Ω,A,P)→ (Ω′,A′). A random variable X induces a probability measure
on (Ω′,A′) by:

PX(A′) := P({X ∈ A′}) =: P(X ∈ A′)

The probability measure PX is called distribution of X.

Often one speaks just of the distribution of X and assumes a corresponding probability
space (Ω,A,P) to exist. In the very most cases this is unproblematic.

Example 1.10. If we return again to the die example an intuitive real random variable
X : Ω→ R would look like the following:

X(The die shows one pip) = 1

X(The die shows two pips) = 2

X(The die shows three pips) = 3

X(The die shows four pips) = 4

X(The die shows �ve pips) = 5

X(The die shows six pips) = 6
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De�nition 1.11. For a real random variable X we de�ne the (cumulative) distribution
function (cdf) by:

FX :R→ [0, 1]

x 7→ F (x) := P(X ≤ x)

By its distribution function FX the random variable X is uniquely determined.
We can see now, why in most cases we are not interested in the original probability

space. If we have a real valued random variable with some distribution function F we
can construct the original probability space like follows: Use Ω = R and A = B(R) and
de�ne P by:

P((−∞, x]) = F (x)

Example 1.12. We say a random variable is exponentially distributed with parameter
λ, if it has the following distribution function:

F (x, λ) = 1− e−λx

The corresponding density f(x, λ) is given by di�erentiating F :

F ′(x) = λe−λx

Example 1.13. A random variable is normally distributed with parameters µ and σ2,
if it has the following distribution function:

F (x, µ, σ2) =
1

σ
√

2π

ˆ x

−∞
e−

(y−µ)2

2σ2 dy

Example 1.14. A random variable is Pareto distributed with parameters xm and α, if
it has the following distribution function:

F (x, α, xm) =

{
1−

(
xm
x

)α
x ≥ xm

0 x < xm

Its density is given by:

f(x, α, xm) =
αxαm
xα+1

x ≥ xm

Exercises

Exercise 1.15. Show that the function P de�ned in example 1.7 is a probability measure,
i.e. check all the conditions for P to be a measure, as given in de�nitions 1.4 and 1.5. Show
further that the probability measure is uniquely de�ned, i.e. assume another function P′
with P({ωi}) = P′({ωi}) for all i ∈ N and show:

P′(A) = P(A) ∀A ∈ A
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Exercise 1.16. Let A and B be two di�erent σ-algebras on the same space Ω. Show
that the intersection of the two σ-algebras A ∩ B is again a σ-algebra on Ω.

Exercise 1.17. Let X be a real random variable with di�erentiable densitiy f . Show
that the distribution of X is an antiderivative (german: �Stammfunktion�) of f , i.e.:

d

dx
F (x) = f(x)

(Hint: Use the Fundamental Theorem of Calculus)

Exercise 1.18. Let (Ω,A) be a measurable space and A1, A2, A3, . . . ∈ A. Show

{ω : ω ∈ Ai for �nite many i ∈ N} ∈ A

and
{ω : ω ∈ Ai for in�nite many i ∈ N} ∈ A.

Exercise 1.19. Let (Ω,A) be a measurable space and A,B ⊂ A. Prove in this sequence:

� P(A) ≥ P(B) if A ⊇ B

� P(A \B) = P(A)− P(A ∩B)

� P(Ac) = 1− P(A)

� P(A ∪B) + P(A ∩B) = P(A) + P(B)

Exercise 1.20. Many programming languages o�er methods to create random numbers
in [0, 1]. How can you use this to create realisations of an exponential distributed ran-
dom variable with parameter λ? Use this method to simulate n di�erent exponential
distributed random variables Xi with the same parameter λ and compute the arithmetic
mean of these realisations E = 1

n

∑n
i=1Xi. How does E − 1

λ evolve for large n?

Exercise 1.21. Use the procedure of the previous exercise to generate exponential dis-
tributed random numbers x1, x2, x3, . . . with parameter λ. Now count the occurences of
this random numbers in certain intervals. De�ne these intervals of length N ∈ R by:

In = [n ·N, (n+ 1) ·N) ⊂ R n ∈ N0

The number of realisations in one interval is then given by:

f∗(n) =
∑
i=1

δIn(xi)

Plot the sequence (f∗(n))n∈N. Compare this sequence with the density of an exponen-
tially distributed random variable X with the same parameter λ.
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Exercise 1.22. A geometric distributed random variable X is a discrete random variable
with probability weights:

P(X = n) = (1− p)np n ∈ N0

for some parameter p ∈ (0, 1). Think about a method to generate geometric distributed
random numbers.
(Hint: P(X = n) = (1− p)np = (1− p) · (1− p)n−1p = (1− p) · P(X = n− 1))
Generate some geometrically distributed random variables and plot the result.
Take the sequence (f∗(n))n∈N of the previous exercise, with parameter λ = − log(1−p)

and intervals In = [n, n + 1) and compare it with the plot of geometrically distributed
random variables.

Exercise 1.23. Prove that for X being an exponentially distributed random variable
with parameter λ = − log(1− p) holds

P(X ∈ [n, n+ 1)) = P(Y = n)

where Y is a geometrically distributed random variable with parameter p.

1.2 Moments and Stochastic Independence

De�nition 1.24. Let X, Y be real random variables with densities. The expectaction
of X is given by:

E(X) =

ˆ ∞
−∞

xf(x)dx

where f is the density of X. Further is

E(h(X)) =

ˆ ∞
−∞

h(x)f(x)dx

For the special case of h(x) = |x|n we talk about the n-th moment of X:

E(|X|n) =

ˆ ∞
−∞
|x|nf(x)dx

The variance of X is given by:

Var(X) = E((X − E(X))2)

The covariance of X and Y is given by:

Cov(X,Y ) = E((X − E(X))(Y − E(Y )))
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Example 1.25. The expectation of an exponential random variable with parameter λ
can be calculated by:

E(X) =

ˆ ∞
0

x · λe−λxdx = lim
a→∞

(−ae−λa − (−0 · e−λ·0))−
ˆ ∞

0
−e−λxdx

= 0− 1

λ
lim
a→∞

(e−λa − e−λ·0) =
1

λ

Similarly one has for the variance Var(X) = 1
λ2

Example 1.26. The expectation and variance of a normal distributed random variable
with parameters µ and σ2 are E(X) = µ and Var(X) = σ2.

Example 1.27. The expectation of the Pareto distribution with parameters xm and α
is given by:

E(X) =

ˆ ∞
xm

x · αx
α
m

xα+1
dx = αxαm

ˆ ∞
xm

x−αdx

= αxαm lim
a→∞

1

1− α
a−α+1 − 1

1− α
x−α+1
m

= −αxαm ·
1

1− α
· 1

xα−1
m

=
αxm
α− 1

if α > 1. For the cases that α ≤ 1 the integral
´∞
xm
x−αdx = ∞ does not converge. In

this case we say that the expectation of X is not existent. Analogous one gets for α ≤ 2
that the variance of X (or otherwise stated the second moment) does not exist.

From the de�nition of the expectation as an integral, we know immediately that the
expectation is linear and monotone:

E(aX + Y ) = aE(X) + E(Y ) ∀ a ∈ R

E(X) ≥ E(Y ) if X ≥ Y a.s.

(The expression �a.s.� is the abbreviation for almost surely and means that some event
occurs with probability one, i.e. P(X ≥ Y ) = 1). With a bit more e�ort (which we not
invest here) one can proof for a sequence of non-negative random variables Xn that even

E

( ∞∑
n=1

Xn

)
=
∞∑
n=1

E(Xn) (1.1)

holds.
The variance is also called the centered second moment, it can be seen as the expected

deviation from the expectation. Also it can be reformulated by:

Var(X) = E(X2 − 2XE(X) + E(X)2)

= E(X2)− 2E(X)E(X) + E(E(X)2)

= E(X2)− E(X)2
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Further we know that the variance ful�lls:

Var(aX + b) = a2Var(X)

To calculate the covariance we need the two-dimensional density of the random vector
(X,Y ):

f(x, y) ≥ 0 ∀ (x, y) ∈ R2

ˆ ∞
−∞

ˆ ∞
−∞

f(x, y)dx dy = 1

We can de�ne the marginal densities fX and fY of the single random variables X and
Y . They can be computed by:

fX(x) =

ˆ ∞
−∞

f(x, y)dy

fY (y) =

ˆ ∞
−∞

f(x, y)dx

The covariance can then be expressed by:

Cov(X,Y ) =

ˆ ∞
−∞

ˆ ∞
−∞

f(x, y)(x− E(X))(y − E(Y ))dx dy

Further we have:

Cov(X,Y ) = Cov(Y,X) (1.2)

Cov(X,X) = Var(X) (1.3)

Cov(aX + b, cY + d) = acCov(X,Y ) (1.4)

Cov(X,Y ) = E(XY )− E(X)E(Y ) (1.5)

Var(X + Y ) = Var(X) + Var(Y ) + Cov(X,Y ) (1.6)

If Cov(X,Y ) = 0 we say the two random variables X and Y are uncorrelated.

De�nition 1.28. Two events A,B ∈ A are stochastically independent if

P(A ∩B) = P(A) · P(B)

Let A1,A2, . . . ,An ⊂ A. The sets Ai are stochastically independent if for each selection
Ai1 ,Ai2 , . . . ,Aik of the Ai and all subsets Aij ∈ Aij holds:

P(Ai1 ∩Ai2 ∩ . . . ∩Aik) = P(Ai1) · . . . · P(Aik)

The second de�nition is stronger than the pairwise stochastic independence, which is
given by P(Ai ∩ Aj) = P(Ai)P(Aj) for all i 6= j and a family of sets Ai ∈ A and also
stronger than the demand P(

⋂n
i=1Ai) =

∏n
i=1 P(Ai). The following simple example

makes this clear.
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Assume one throws two dice. We de�ne three events:

A = {The �rst die shows an even number of pips}
B = {The second die shows an even number of pips}
C = {The sum of pips shown by both dice is even}

We can easily check that P(A) = P(B) = P(C) = 1
2 and that P(A ∩ B) = P(A ∩ C) =

P(B ∩ C) = 1
4 . But this pairwise stochastic independence does not infer stochastic

independence of the familiy D = {A,B,C} since:

P(A ∩B ∩ C) =
1

4
6= 1

8
= P(A)P(B)P(C)

De�nition 1.29. Let Xi : (Ω,A)→ (Ω′,A′) be a set of random variables (i = 1, . . . , n).
They are stochastically independent, if their pre-image-σ-algebras are stochastically in-
dependent sets. In expression, if for every selection {i1, . . . , ik} ⊂ {1, . . . , n} and all
A′ij ∈ A

′ (j = 1, . . . , k) holds:

P

 k⋂
j=1

{Xij ∈ A′ij}

 =

k∏
j=1

P(Xij ∈ A′ij )

Let Xi be a set of stochastically independent random variables (i = 1, . . . , n). Denote
by X = (X1, . . . , Xn) the corresponding random vector, by FX its cdf and by fX its
density (if existent). Then holds:

� FX(x1, . . . , xn) =
∏n
i=1 FXi(xi) ∀xi ∈ R

� fX(x1, . . . , xn) =
∏n
i=1 fXi(xi) ∀xi ∈ R

� E(
∏n
i=1Xi) =

∏n
i=1 E(Xi) and Cov(Xi, Xj) = 0 for all i 6= j1

In the modelling of stochastic behaviour it is more common to assume the independence
of events, instead of proving that something is stochastically independent. Usually, when
one assumes that two outcomes have no in�uence on each other, this is modelled via
stochastic independence. One example would be the (simultaneous) throwing of two
fair dice. You can model each die as one random variable, which are stochastically
independent of each other. Alternatively you could model both dice by just one random
variable with values in {1, . . . , 6} × {1, . . . , 6} and show that all events concerning only
one die (e.g. the �rst die shows one pip) are stochastically independent from the events,
which concern only the other die (see for this the upcoming example).

De�nition 1.30. Let A,B be two events in the probability space (Ω,A,P) with
P(B) > 0. The conditional probability of A given B is de�ned by:

P(A|B) =
P(A ∩B)

P(B)

1Watch out, that from Cov(X,Y ) = 0 does not necessarily follow stochastic independence between X
and Y ! See exercise 1.41
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The conditional probability of some event A given B is the probability that A occurs,
if we already know, that B will occur (or has occured).

Example 1.31. We consider the before mentioned two dice experiment. We model the
throwing of two dice as a random variable X, mapping from a suitable probability space
(Ω,A,P) into the measurable space (Ω′ := {1, . . . , 6}2,P(Ω′)). Since the dice are fair, we
assume each outcome in Ω′ to be equally likely, i.e. each pair (i, j) ∈ Ω′ has probability
PX((i, j)) = 1

36 .
We investigate two events. The �rst event denoted by C, is that the �rst die shows at

least 5 pips. We calculate:

PX(C) = PX({5, 6} × {1, . . . , 6}) =
12

36
=

1

3

Next we investigate the event A, which is that the sum of both dice is at least 5 pips, if
we already know, that the �rst die shows an even number of pips. For this, we denote
by B the event, that the �rst die shows an even number of pips. The probability of A is
given now, by the conditional probability:

PX(A|B) =
PX(A ∩B)

PX(B)
=

PX({(2, j)|j ∈ {3, . . . , 6}} ∪ {4, 6} × {1, . . . , 6})
PX({2, 4, 6} × {1, . . . , 6})

=
16
36
1
2

=
8

9

Example 1.32. Another typical example of dependence is sampling without replace-
ment. Imagine an urn with colored balls in it. Someone draws randomly the balls from
the urn, one by one and we might ask, what is the probability that the n-th ball has a
certain color. For our example imagine the urn is �lled with two blue and one green ball.
We ask for the probability that the second ball drawn, will be the green one, this event
will be denoted by G2. To model this we need to �nd a suitable event space Ω �rst. If
we number the blue balls by b1 and b2 as well as the green ball by g, we see that the
following event space describes all possibilites to draw the balls from the urn:

Ω = {(b1, b2, g), (b2, b1, g), (b1, g, b2), (b2, g, b1), (g, b1, b2), (g, b2, b1)}

Since the balls are drawn completely random, we can assume each of the outcomes has
the same probability 1

6 , hence we have P(G2) = 1
3 . If we now condition on the event,

that the �rst ball is a blue one and want to know again the probability that the second
ball is the green one, we have (denoting by B1 the event of �rst drawing a blue ball):

P(G2|B1) =
P(G2 ∩B1)

P(B1)
=

1
3
2
3

=
1

2

De�nition 1.33. The moment generating function (MGF) of a real random variable X
is given by:

φX :R→ R
φX :θ 7→ φX(θ) := E(eθX)

If E(eθX) =∞ we say that the MGF of X is not existent at θ.
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Corollary 1.34. Let Xi be a family of stochastically independent, identically distributed
(i.i.d.) variables (i = 1, . . . , n) and de�ne Sn =

∑n
i=1Xi. Assume φXi(θ) exists, then

holds:
φSn(θ) = (φXi(θ))

n

Proof. We have:

E(eθSn) = E(eθ
∑n
i=1Xi) = E

(
n∏
i=1

eθXi

)

=
n∏
i=1

E(eθXi) = (φXi(θ))
n

Example 1.35. Let Xi be i.i.d. exponentially distributed random variables with param-
eter λ. De�ne the random variable Sn =

∑n
i=1Xi. We say that such a random variable

is Erlang distributed with parameters n and λ. Its MGF is given by:

E(eθSn) = (E(eθXi))n =

(
λ

ˆ ∞
0

e(θ−λ)xdx

)n
Let now θ < λ:

E(eθSn) =

(
λ lim
a→∞

1

θ − λ
(e(θ−λ)a − e(θ−λ)·0)

)n
=

(
λ

λ− θ

)n
We see, that for θ ≥ λ the MGF is not existent.

Example 1.36. Let X be a Pareto distributed random variable with parameters xm
and α. You are asked in the exercises to show that the MGF of X does not exist for any
θ > 0, no matter how the parameters xm and α are chosen.

We state here some usefull properties of the moment generating function, without
explicitly proving them:

� If two random variables have the same existent MGF they also have the same
distribution.

� For non-negative random variables and varying θ the MGF exists in an interval
(−∞, a) with a ∈ R+

0 .

� The MGF always exists for θ = 0 and if it exists in the interval (−a, a) it is in�nitely
often di�erentiable on that interval.

� The MGF is convex.
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Exercises

Exercise 1.37. Prove equations (1.1)-(1.4).

Exercise 1.38. What is the n-th moment of a Pareto distributed random variable and
when does it exist?

Exercise 1.39. Prove that the variance of an exponentially distributed random variable
is equal to 1

λ2
.

Exercise 1.40. Construct an example, in which for three events A,B,C ⊂ A holds
P(A∩B∩C) = P(A)P(B)P(C) but at least one of the following equalities does not hold:

P(A ∩B) = P(A)P(B)

P(A ∩ C) = P(A)P(C)

P(B ∩ C) = P(B)P(C)

(Hint: Draw three intersecting circles and give each area a certain probability weight,
such that the weights sum up to 1.)

Exercise 1.41. Let X and Y be independent and Bernoulli distributed with the same
parameter p (this means P(X = 1) = p and P(X = 0) = 1− p). Show that the two new
random variables X + Y and X − Y are uncorrelated, yet not independent.

Exercise 1.42. Let X be some real random variable, such that the MGF of X exists
in an interval around 0. Calculate the �rst derivative of the MGF at zero d

dθφX(θ)
∣∣
θ=0

.

Calculate the n-th derivative of the MGF at zero
(
d
dθ

)n
φX(θ)

∣∣
θ=0

. (Hint: Use that

ex =
∑∞

i=0
xi

i! and use (1.1).)

Exercise 1.43. In this exercise prove �rst the law of total probability: If A ∈ Ω and
B ∈ Ω are some events in a probability space (Ω,A,P) it holds:

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

Convince yourself that for some partition (Bn)n∈N of Ω we similarly have:

P(A) =
∞∑
n=1

P(A|Bn)P(Bn)

(A partition ful�lls:
⋃∞
n=1Bn = Ω and Bn ∩Bm = ∅ for all n 6= m)

Now if we have two real random variables X and Y with densities fX and fY , we can
reformulate the law of total probability:

P(X ∈ A) =

ˆ ∞
−∞

P(X ∈ A|Y = y)fY (y)dy

Assume now that X is an exponentially distributed random variable with parameter λ
and Y is stochastically independent of X. Show that the probability that Y is smaller
than X is equal to the MGF of Y at the point λ, in expression:

P(X > Y ) = E(e−λY )

(Hint: Use that E(h(Y )) =
´∞
−∞ h(y)fX(y)dy)
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Exercise 1.44. Show that for the Pareto distribution and every θ > 0 the corresponding
MGF does not exist.

Exercise 1.45. The log-normal distribution is de�ned by the following density:

f(x, µ, σ2) =
1

xσ
√

2π
e
−
(

(ln x−µ)2

2σ2

)
∀x > 0

Its moments are given by E(Xn) = enµ+ 1
2
σ2n2

. Show that for all θ > 0 the corresponding
MGF does not exist.

Exercise 1.46. This exercise continues exercises 1.20 and 1.21 in which we have seen,
that the arithmetic mean converges to the expectation. Simulate again n exponentially
distributed numbers and compute V = 1

n

∑n
i=1(x − 1

λ)2. How does V − 1
λ2

evolve for
large n? Plot V − 1

λ2
against n for di�erent values of λ. When converges V − 1

λ2
fast

and when slow?
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2 Stochastic Arrivals and Service

In this chapter we very carefully motivate the need for stochastic arrivals and service and
see two approaches how such stochastic processes can be described and bounded. Each
of those ways leads to its own stochastic extension of the deterministic network calculus
(see [4, 6, 2, 8]). So we can not talk about the stochastic network calculus, but rather
have to distinguish between several approaches, each with its own characteristics and
qualities.
Overall we use a discretized time-scale, since it keeps formulas a bit easier.

2.1 Stochastic Arrivals

As in deterministic network calculus we abstract data arriving at some service element as
�ows. The service element is abstracted as a node, which takes the arriving �ow as input
and relays it to a departing �ow under a certain rate and scheduling policy. One node
can have a many di�erent arriving �ows and produces the same number of departing
�ows, each of them corresponding to one arrival �ow. To describe such a �ow we used
in [10] cumulative functions ful�lling:

A(n) ≥ 0 ∀n ∈ N0

A(n)−A(m) ≥ 0 ∀n ≥ m ∈ N0 (2.1)

Here the number of pakets/data/bits/�whatever is �owing� up to time t is given by A(t).
In deterministic network calculus such a �ow is given and no random descisions are
involved. Now we want to generalise this idea, in the sense that chance plays a role. To
do so we need the de�nition of stochastic processes:

De�nition 2.1. Let (Ω,A,P) be a probability space, (Ω′,A′) a measurable space and
I an index set. A familiy of random variables X = (Xi)i∈I with Xi : Ω → Ω′ is called
stochastic process, with state space Ω′ and time space I.

Remark 2.2. If I is totally ordered (e.g. when I ⊂ R) we can �x one ω ∈ Ω and interpret
Xi as a function in the �time�-variable i:

X(ω) :I → Ω′

X(ω) :i 7→ Xi(ω)

This mapping is called trajectory or path of X under ω.1

1This means, that the ω contains �enough� information, to deduce complete trajectories from it. In fact
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We give a few examples, to illustrate what kind of structures the above de�nition can
cover. However we are not going into much detail here.

Example 2.3. Markov Chains are stochastic processes with a countable state space and
discrete or continuous time space, i.e. I ∈ {N0,R+

0 }. In the special case of Ω′ = N0 and
the condition that Xn ∈ [Xn−1−1, Xn−1 +1] our Markov Chain becomes a Birth-Death-
Process, as introduced in [10].

Example 2.4. The most famous continuous time stochastic process is the Brownian
Motion or the Wiener Process (see for example �40 in [1]). The one-dimensional Wiener
Process Wt has state space R, time space R+

0 and ful�lls:

� W0 = 0

� The trajectories of Wt are continuous, a.s.

� Wt−Ws has normal distribution with parameters µ = 0 and σ2 = t−s. (t ≥ s ≥ 0)

� If t ≥ s > u ≥ v, then the increments Wt −Ws and Wu −Wv are stochastically
independent. (A similar condition holds for n di�erent increments. See De�nition
1.28)

Showing the existence of such a process lies far beyond the scope of this course and is
hence omitted.

Example 2.5. The time space is very often something �natural� like N0 or R+
0 , but one

should be aware, that the above de�nition, covers much more. Other appearing index
sets are [0, 1] ⊂ R for the Brownian Bridge or I = T for tree-indexed random processes,
T being the set of nodes in a �nitie or in�nite tree.

In our context of arrivals we want a stochastic process with time space N0, while the
state space is kept continuous (Ω′ = R+

0 ). Further we want to preserve the cumulative
nature of (2.1).

De�nition 2.6. Let (a(i))i∈N be a sequence of non-negative real random variables. We
call the stochastic process A with time space N0 and state space R+

0 de�ned by

A(n) :=

n∑
i=1

a(i)

a �ow2. The a(i) are called increments of the �ow.

we often use more than one stochastic process simultaneously, i.e. have several families of random
variables Xi, Yj , Zk, . . . each de�ning its own stochastic process. How this is possible, is best under-
stood if one assumes I = N. In this case we might represent each event by ω = (ωx1 , ωy1 , ωz1 , ωx2 , . . .)
such that each Xi only depends on ωxi . Of course the corresponding event space Ω is then quite
large. In fact if one sets I equal to an uncountable set, the construction of the original probability
space (Ω,A,P) is a non-trivial task. In this course however, we do not delve into this topic and are
just satis�ed, that someone has done the work of constructing (Ω,A,P) for us.

2As usual we de�ne the empty sum as zero:
∑0
i=1 a(i) = 0
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We see in the following two examples that it is quite hard to bound �ows with de-
terministic arrival curves. (Remember that some �ow has an deterministic arrival curve
α : N0 → R+

0 if A(n)−A(m) ≤ α(n−m) for all n ≥ m ≥ 0.)

Example 2.7. First consider the a(i) to be i.i.d. Bernoulli distributed. This means for
each a(i) holds:

P(a(i) = 0) = p

P(a(i) = 1) = 1− p

for some parameter p ∈ (0, 1). Is it possibile that A(n)−A(m) = n−m? The answer is
yes and we show this, by proving that the corresponding probability is larger zero:

P(A(n)−A(m) = n−m) = P

(
n∑

k=m+1

a(k) = n−m

)

= P

(
n⋂

k=m+1

{a(k) = 1}

)
=

n∏
k=m+1

P(a(k) = 1)

= (1− p)n−m > 0

Hence it is possible to encounter in an interval of length n −m exactly n −m arrivals
(although the corresponding probability might be tiny). Hence the best deterministic
arrival curve, we can give for such an arrival is α(n) = n. With our deterministic �worst-
case-glasses� we see A sending 1 in each time step. The possibility that the �ow could
send nothing in one time step is completely ignored! This buries any hopes to e�ectively
bound a stochastic process by deterministic arrival curves. The next example shows,
that the situation can become even worse.

Example 2.8. Next assume that the increments a(i) are i.i.d. and exponentially dis-
tributed with parameter λ. In this case the best possible deterministic �arrival curve� is
given by α(n) =∞ for all n ∈ N. Since we have for any K ≥ 0:

P(a(i) > K) = e−λK > 0

Hence no matter how large we choose K, there is always a small probability, that the
arrivals in one time step beats this K.

The previous two examples are bad news for someone trying to bound stochastic ar-
rivals by deterministic arrival curves. The following corollary summarizes the possibilities
one has to deterministically bound i.i.d. arrivals. The proof is generalised easily from
example 2.7 and hence omitted.

Corollary 2.9. Let the increments a(i) of some �ow be i.i.d. and de�ne
x+ := inf{x : F (x) = 1} ∈ [0,∞], where F is the cdf of a(i). Then the best possible
arrival curve for A is given by: α(n) = n · x+.
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We see it is hard, if not impossible, to describe stochastic arrivals by deterministic
arrival curves. The solution to this problem is to exclude events, which are unlikely to
happen. So instead of asking for some curve α such that A(n) − A(m) ≤ α(n −m) we
are rather interested in bounds, which hold with a high probability. Stated in an easy
form, this looks like

P(A(n)−A(m) ≤ α(n−m, ε)) ≥ 1− ε ∀n > m ∈ N

which is equivalent to:

P(A(n)−A(m) > α(n−m, ε)) < ε ∀n > m ∈ N (2.2)

Here αε is an arbitrary function, with some parameter ε > 0. 3 Starting from (2.2) two
di�erent kinds of bounds can be formulated. The �rst one is the tail-bound, for which
we need two more de�nitions in place:

De�nition 2.10. An envelope function, or just envelope, is a function α with:

α : N0 × R+ → R+
0

De�nition 2.11. An error function, or just error, is a function with:

η : N0 × R+ → [0, 1]

and
η(k, ε) ≤ η(l, ε) ∀k ≥ l, ε > 0.

De�nition 2.12. A �ow A is tail-bounded by envelope α with error η, if for all ε > 0
and n ≥ m ∈ N0 holds:

P(A(n)−A(m) > α(n−m, ε)) ≤ η(n−m, ε)

Example 2.13. If (2.2) holds for all ε > 0, we have indeed a tail-bound. In practice one
often formulates the tail-bound in such a way, that α is of a simple form (e.g. linear).
For example the tail-bound

P
(
A(n)−A(m) > r · (n−m)− 1

θ
log
( ε

M

))
≤ ε = η(k, ε)

can be reformulated: Choose ε > 0 arbitrary and de�ne ε := Me−θε, then holds:

P (A(n)−A(m) > r · (n−m) + ε) ≤Me−θε

and since ε was choosen arbitrary, the above holds for all ε > 0. We can de�ne now
α′(n − m, ε) = r · (n − m) + ε. This expression describes the probability, that �ow A
exceeds a maximal rate of r (in the interval [m,n]), by at least ε.

3A common, in literature often found, choice for α is α(n − m) = r · (n − m) − 1
θ

log( ε
M

) for some
positive θ.
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Another kind of bound involving (2.2) is obtained by using Cherno�'s inequality.

Theorem 2.14. Let X be a non-negative random variable and x > 0, then holds
Markov's inequality:

P(X > x) ≤ E(X)

x

Let X be a real random variable and x ∈ R, then holds for all θ > 0 Cherno�'s inequaility:

P(X > x) ≤ e−θxφX(θ)

Proof. Let f be the density4 of X, then holds for all x ≥ 0

P(X > x) =

ˆ ∞
x

f(y)dy ≤
ˆ ∞
x

f(y)
y

x
dy =

1

x

ˆ ∞
x

yf(y)dy ≤ E(X)

x

which proves Markov's inequality. Now let X be a real random variable, then eθX is a
non-negative real random variable. Hence, by the monotonicity of the function h(x) = eθx

P(X > x) = P(eθX > eθx) ≤ E(eθX)

eθx
= e−θxφX(θ)

where we have used Markov's inequality.

If we apply Cherno�'s inequality in (2.2) we get:

P(A(n)−A(m) > α(n−m, ε)) ≤ e−θα(n−m,ε)φA(n)−A(m)(θ)

Returning to example (2.13) this reads:

P(A(n)−A(m) > r · (n−m) + ε) ≤ e−θr·(n−m)+εφA(n)−A(m)(θ)

For further computations the expression φA(n)−A(m)(θ) needs to be taken care of, which
rises the following de�nitions:

De�nition 2.15. A �ow A is (σ(θ), ρ(θ))-bounded for some θ > 0, if for all n ≥ m ≥ 0
the MGF φA(n)−A(m)(θ) exists and

φA(n)−A(m)(θ) ≤ eθρ(θ)(n−m)+θσ(θ)

holds.
A �ow A is f(θ, ·)-bounded for some θ > 0 if for all n ≥ m ≥ 0 the MGF φA(n)−A(m)(θ)

exists and
φA(n)−A(m)(θ) ≤ f(θ, n−m)

holds.

4We give here the proof for distributions with densities. The general proof is almost the same, but
needs knowledge about Lebesgue integration.
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Obviously f(θ, ·)-boundedness is a generalisation of (σ(θ), ρ(θ))-boundedness5.
Before we study a few examples on tail- and MGF-bounds, we proof a theorem, which

shows, that each of them can be converted to the other one, if mild requirements are
met. This theorem connects the two branches of stochastic network calculus and we will
always keep it in mind, when we dervie results in one of the two branches.

Theorem 2.16. Assume a �ow A. If A is tail-bounded by envelope α with error η(k, ε) =
ε, it is also f(θ, ·)-bounded with:

f(θ, ·) :=

ˆ 1

0
eθα(n−m,ε)dε

Conversely if A is f(θ, ·)-bounded it is also tail-bounded with α(n − m, ε) = ε and
η(n−m, ε) = f(θ, n−m)e−θε.

Proof. We proof the �rst part under the assumption that for A(n) − A(m) a density-
function fm,n exists (remember example 1.8). The more general version needs the notion
of Lebesgue's integral and - since it works out in the very same fashion - is left out.
Denote by Fm,n =

´ x
0 fm,n(t)dt the cumulative distribution function of A(n)−A(m) and

by G the inverse function of 1− Fm,n. We have then for every ε ∈ (0, 1]:

P(A(n)−A(m) > G(ε)) = 1− P(A(n)−A(m) ≤ G(ε)) = 1− F (G(ε)) = ε

On the other side from the de�ntion of the tailbound we have:

P(A(n)−A(m) > α(n−m, ε)) < ε = P(A(n)−A(m) > G(ε))

We can read this as follows: For some value ε the probability of A(n)−A(m) being larger
G(ε) is larger than the probability of A(n)−A(m) being larger α(n−m, ε). This must
mean:

G(ε) < α(n−m, ε)
Writing the MGF of A(n)−A(m) with the help of fm,n reads:

φA(n)−A(m)(θ) =

ˆ ∞
0

eθxfm,n(x)dx

We substitute the variable x by G(ε) and multiply by the formal expression dε
dε (note that

lima→0 1− Fm,n(a) = 0 and lima→∞ 1− Fm,n(a) = 0):

φA(n)−A(m)(θ) =

ˆ 0

1
eθG(ε)fm,n(G(ε))

dG(ε)

dε
dε

= −
ˆ 1

0
eθG(ε)fm,n(G(ε))

1

−fm,n(G(ε))
dε

=

ˆ 1

0
eθG(ε)dε ≤

ˆ 1

0
eθα(n−m,ε)dε

5The parameter ρ(θ) corresponds to the e�ective bandwidth of the �ow A. This means if A is (σ(θ), ρ(θ))-
bounded we have that ρ(θ) ≥ E(a(i)) and if a(i) is bounded by c, we further have ρ(θ) ≤ c (or can
improve to a (σ(θ), c)-bound). In words: ρ(θ) lies between the average rate and the peak rate of the
arrivals. (see also lemma 7.2.3 and 7.2.6 in [4].)
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We have used the rule of di�erentation for inverse functions in the transition from �rst
to second line ((F−1)′ = 1

F ′(F−1)
).

For the second part of the theorem we use Cherno�'s inequality:

P(A(n)−A(m) < ε) ≤ φA(n)−A(m)(θ)e
−θε ≤ f(θ, n−m)e−θε

Next we show how MGF-bounds and tail-bounds can be derived for a given �ow.

Example 2.17. Let the increments a(n) of some �ow A be i.i.d. exponentially dis-
tributed to the parameter λ. This means that our random variables A(n) − A(m) are
Erlang distributed with parameters n−m and λ and we know from example 1.35

φA(n)−A(m)(θ) =

(
λ

λ− θ

)n−m
for all θ < λ. Hence A is (σ(θ), ρ(θ))-bounded for all θ < λ with σ(θ) = 0 and ρ(θ) =
1
θ log

(
λ
λ−θ

)
.

Example 2.18. Let the increments of a �ow A be i.i.d. Bernoulli with parameter p. We
have then for all θ > 0:

φA(n)−A(m)(θ) = (φa(i)(θ))
n−m = (E(eθa(i)))n−m

=
(
p · eθ·0 + (1− p) · eθ·1

)n−m
= (p+ (1− p)eθ)n−m

Hence A is f(θ, n) bounded with f(θ, n) = (p+ (1− p)eθ)n for all θ > 0.

Example 2.19. Let the increments of a �ow A be i.i.d. Pareto distributed with param-
eters xm and α. We know already that the MGF of the Pareto distribution does not
exist for any θ > 0, hence no MGF-bound can be found for this �ow.

Example 2.20. Assume the increments of a �ow to be i.i.d. with bounded variance
Var(a(n)) ≤ σ2 <∞. Note that E(A(n)−A(m)) = (n−m)E(a(1)) and hence E(a(1)) =
E(A(n)−A(m))

n−m . Using the Chebyshev inequality6 a tail-bound is constructed by:

P(A(n)−A(m) > (n−m)(E(a(n))+ε)) ≤ P
(∣∣∣∣A(n)−A(m)

n−m
− E(a(n))

∣∣∣∣ > ε

)
≤ 1

ε2(n−m)
σ2

In the next example we see how a multiplexed �ow can be bounded, if we already have
bounds for the single �ows.

6Chebyshev's inequality states that for a random variable X with �nite variance holds:
P(X − E(X) > ε) ≤ ε−2Var(X).
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Example 2.21. Let A and B be two �ows, which are (σA(θ), ρA(θ))- and (σB(θ), ρB(θ))-
bounded, respectively (for the same θ > 0). Further let A and B be stochastically
independent. We call A⊕B(n) := A(n) +B(n) the multiplexed �ow7. We have then:

φA⊕B(n)−A⊕B(m)(θ) = E(eθ(A(n)−A(m)+B(n)−B(m))) = E(eθ(A(n)−A(m)))E(eθ(B(n)−B(m)))

≤ eθρA(θ)(n−m)+θσA(θ)eθρB(θ)(n−m)+θσB(θ)

= eθ(ρA(θ)+ρB(θ))(n−m)+θ(σA(θ)+σB(θ))

Hence A⊕B is bounded by (σA(θ) + σB(θ), ρA(θ) + ρB(θ)).

In the last example rises the question what to do, when the �ows A and B are not
independent. The key for this problem is to take care of expressions of the form E(XY ).
The next lemma gives us a way to deal with that.

Lemma 2.22. Let X and Y be two non-negative real random variables with �nite second
moment (i.e. E(X2),E(Y 2) <∞). Then holds the Cauchy-Schwartz inequality:

E(XY ) = (E(X2))
1/2(E(Y 2))

1/2

Let p, q ∈ R+ such that 1
p+ 1

q = 1 and assume the p-th moment of X and the q-th moment
of Y to be �nite. Then holds Hölder's inequality:

E(XY ) = (E(Xp))
1/p(E(Y q))

1/q

For the proof we need Lebesuq-integration, which would lead us too far away from our
course. Hence a proof is omitted (see for example [4]). Let us resume now to the situation
of example 2.21 with the di�erence, that the two �ows are not stochastically independent.
Using the above lemma we can achieve that A⊕B is (σA(pθ)+σB(qθ), ρA(pθ)+ρB(qθ))-
bounded. But note that we need the conditional assumptions ofA being (σA(pθ), ρA(pθ))-
bounded and B being (σB(qθ), ρB(qθ))-bounded.

Exercises

Exercise 2.23. Prove corollary 2.9.

Exercise 2.24. Let A be some �ow, which has a determinstic arrival curve α. What
tailbound and MGF-bound can be given? Let now A be some �ow, which has a token
bucket arrival curve α(n) = r ·n+B, show that A is (σ(θ), ρ(θ))-bounded and determine
σ(θ) and ρ(θ).

Exercise 2.25. Assume a �ow A has the following properties: All increments a(n) with
n ≥ 2 are i.i.d. uniformly distributed on the interval [0, b] (this means, it has the density
f(x) = 1

b for all x ∈ [0, b] and f(x) = 0 elsewhere). The �rst increment a(1) however is
exponentially distributed with parameter λ. Give a (σ(θ), ρ(θ))-bound for A.
(Hint: Calculate �rst the MGF of A(n)− A(m) for m 6= 0 and then for m = 0. Find

then a bound which covers both cases)

7You can convince yourself easily that A⊗B is a �ow.
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Exercise 2.26. Assume a �ow A is (σ(θ), ρ(θ))-bounded for all θ ∈ [0, b) with σ(θ) = σ
and ρ(θ) = ρ for all θ and some b > 0. Show that the expected arrivals in some time
interval [m+ 1, n] is upper bounded by ρ · (n−m) + σ, i.e.:

E(A(n)−A(m)) ≤ ρ · (n−m) + σ ∀n ≥ m ≥ 0

(Hint: Show �rst that φA(n)−A(m)(0) = limθ↘0 e
θρ(θ)(n−m)+θσ(θ) = 1, then conclude

from the (σ(θ), ρ(θ))-boundedness that the �rst derivative of φA(n)−A(m) at point 0 must

be smaller or equal to d
dθe

θρ(θ)(n−m)+θσ(θ)
∣∣
θ=0

(why?). Then use exercise 1.42)

Exercise 2.27. Assume a �ow A is (σ(θ), ρ(θ))-bounded for all θ ∈ [0, b) and some b > 0.
Further assume the following conditions on the bound:

θρ(θ)
θ→∞−−−→ 0

θσ(θ)
θ→∞−−−→ 0

θ
d

dθ
ρ(θ)

θ→∞−−−→ 0

θ
d

dθ
σ(θ)

θ→∞−−−→ 0

Show that E(A(n) − A(m)) ≤ ρ(0)(n − m) + σ(0) (Hint: Proceed as in the previous
exercise).
Prove that the conditions are met if the increments are i.i.d. exponentially distributed

with parameter λ. Apply this knowledge to recover E(A(n)−A(m)) ≤
(

1
λ

)n−m
.

Exercise 2.28. Let there be J ∈ N stochastically independent �ows Aj (j = 1, . . . , J),
all of them having i.i.d. Bernoulli distributed increments aj(i) with the same parameter
p. One can easily see, that the number of �ows sending a paket (i.e. aj(n) = 1) at a
certain time n follows a binomial distribution, with parameters p and J :

P

 J∑
j=1

aj(n) = k)

 =

(
J

k

)
pk(1− p)J−k ∀n ∈ N

Hence we can think of the multiplexed �ow A(n) :=
∑J

j=1 aj(n) to be binomially dis-
tributed. Give a (σ(θ), ρ(θ))-bound for the multiplexed �ow using that it is binomially
distributed.
Now use instead the multiplexing property of (σ(θ), ρ(θ))-bounds, as seen in example

2.21.

Exercise 2.29. Next assume two �ows A and B. We have that the increments of the
�rst �ow a(i) are Bernoulli distributed with parameter p, further we assume that for
the increments of B holds b(i) = 1 − a(i). Convince yourself, that the increments of
B are again Bernoulli distributed, but with the parameter 1 − p. Of what form is the
�ow A ⊕ B? Give a (σ(θ), ρ(θ))-bound for A ⊕ B (Hint: Use exercise 2.24)! Next use
the multiplexing property of (σ(θ), ρ(θ))-bounds (with Hölder) to bound the �ow A⊕B.
Which bound is better? (Do not try to solve this analytically!)

25



Exercise 2.30. Remember the Cauchy-Schwarz inequality, as you know it from inner
product spaces. An inner product space consists of a vector space V (usually Rd or Cd)
a �eld of scalars F (usually R or C) and an inner product (dt.: Skalarprodukt)

〈·, ·〉 : V × V → F

ful�lling:

� (Conjugate) symmetry: 〈x, y〉 = 〈x, y〉

� Linearity in the �rst argument: 〈a · x, y〉 = a · 〈x, y〉 and 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

� Positive-de�niteness: 〈x, x〉 ≥ 0 with equality only for x = 0.

Check that 〈X,Y 〉 = E(X ·Y ) de�nes an inner product �on the space of one dimensional
real random variables� (we capture this imprecise statement more rigorous, when we learn
about Lebesgue integration).
For inner product spaces one can de�ne a norm by:

‖x‖ :=
√
〈x, x〉

Convince yourself that the Cauchy-Schwarz inequality as given in lemma 2.22 is in fact
the Cauchy-Schwarz inequality for inner product spaces:

| 〈x, y〉 |2 ≤ ‖x‖ · ‖y‖

(with equality if x and y are linearly(!) independent)

Exercise 2.31. Prove the bound for multiplexed �ows, being stochastically dependent
(as given after lemma 2.22)!

Exercise 2.32. We now investigate the parameter θ in the (σ(θ), ρ(θ))-bounds, which
we call later acuity. Generate some (in the order of thousands) exponentially distributed
random variables with parameter λ = 10 (you might reuse your code of exercise 1.20).
Sort your realisations by magnitude and plot them. Now apply the function f(x) = eθx

to your realisations with varying parameter θ ∈ [0, 10). How does the plot change for
di�erent values of θ? You should be able to see, that for large θ one has a few very large
results, compared to the majority of smaller results. For smaller θ, however, one gets a
more balanced picture.
We ask now how many of the realisations are larger than the expected value of one of

the realisations E(eθX). For this we already know from example 1.25 that E(eθX) = λ
λ−θ .

Write a procedure, which counts for a �xed θ the number of realisations being larger
λ
λ−θ . How many percent of your realisations are larger for a small θ? How many for a
large θ? Explain the di�erence with the help of your previously produced plots!
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2.2 Stochastic Service

In this chapter we make a short excursion into deterministic service curves and strict
service curves. We talk about the di�erences between those two and generalise the
concept of a service curve to �t our needs. For a more detailed survey on the zoo of
di�erent service guarantees [3] is a great point to start from.
We motivate stochastic service similarly to the stochastic arrivals and see service el-

ements, which o�er certainly some amount of service, but only achieve a deterministic
lower bound equal to zero.
Throughout the rest of this chapter we consider a node working on an arrival �ow A

and denote the departure �ow by D. Remember that in a backlogged period [m,n] holds
A(k) > D(k) for all k ∈ [m,n].

De�nition 2.33. A service element o�ers a strict service curve β : N0 → R+
0 , if for all

backlogged periods [m,n] and all input �ows A holds:

D(n)−D(m) ≥ β(n−m)

Another de�nition for strict service curves, which brings the arrival �ow A into the
game, is given by the following lemma:

Lemma 2.34. Let m ∈ N0 be arbitrary and denote by n∗(m) the beginning of the next(!)
backlogged period. The service element o�ers a strict service curve β if and only if:

D(n) ≥ β(n−m) +D(m) ∧A(n) (2.1)

for all n < n∗(m) and all input �ows A.

Proof. Let us �rst assume S o�ers a strict service curve β and D(m) = A(m), then for
all n < n∗(m) also holds D(n) = A(n), following:

D(n) ≥ A(n) ≥ β(n−m) +D(m) ∧A(n)

Now assume D(m) < A(m), i.e. we start in a backlogged period. If also D(n) < A(n)
holds, then [m,n] is a backlogged period and we get by our assumption D(n)−D(m) ≥
β(n−m). The case D(n) = A(n) was already treated, again we have:

D(n) ≥ A(n) ≥ β(n−m) +D(m) ∧A(n)

Assume now the service element ful�lls equation (2.1), we need to show β is a strict
service curve. Let [m,n] be an arbitrary backlogged period, then surely holds n < n∗(m).
Assume β(n −m) + D(m) > A(n) would hold, when by using equation (2.1) we would
get:

D(n) ≥ β(n−m) +D(m) ∧A(n) = A(n)

27



and follow D(n) = A(n), which is a contradiction to our assumption that [m,n] is a
backlogged period. Hence β(n−m) +D(m) ≤ A(n) and again by equation (2.1):

D(n) ≥ β(n−m) +D(m) ∧A(n) = β(n−m) +D(m)

from which follows:
D(n)−D(m) ≥ β(n−m)

There exists also the more general (non-strict) service curve8.

De�nition 2.35. A service element o�ers a service curve
β : N0 → R+

0 if for all n ≥ m ∈ N0 and all input �ows A holds:

D(n) ≥ min
0≤k≤n

{A(k) + β(n− k)}

One might ask: What is the di�erence between a service curve and a strict service
curve? It is easy to �nd examples, in which the departures of some node di�er, depending
if one uses a service curve or a strict service curve (you are asked to construct one in the
exercises). However, we want to shed a bit more light on the di�erences between service
curve de�nitions. Therefore we introduce Lindley's equation.

De�nition 2.36. A service element ful�lls Lindley's equation if for all q(n) := A(n) −
D(n) and all input �ows A holds:

q(n+ 1) = [q(n) + a(n+ 1)− s(n+ 1)]+

where s(n) is the amount of data the service element can process at time n.

Lindley's equation states that the amount of data, which is queued at the service
element, is the amount of data, which has been queued the time step before plus the
amount of data which arrives in the meantime minus the amount of data the service
element can process in that timestep. Of course it is possible, that the service element
can theoretically serve more data, as have been queued and arrived, hence we have to
take the maximum with zero in Lindley's equation. This behaviour basically means that
our service element is not �lazy� and always works as much as it can. The next lemma
shows, that under this behaviour, a service curve becomes a strict service curve (and
more).

Lemma 2.37. Let a service element ful�ll Lindley's equation. The following three items
are equivalent:

� It o�ers a service curve β.

8The advantage of service curves over strict service curves is, that we can convolute service elements
o�ering service curves into a single service element o�ering again a service curve. Such a property
does in general not hold for strict service curves (see exercises).
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� It holds S(n)− S(k) ≥ β(n− k) for all n ≥ k ∈ N0.

� It o�ers a strict service curve β.

Here S(n) is de�ned by S(n) :=
∑n

k=0 s(k) with s(k) from Lindley's equation.

Proof. We �rst show that from the �rst item follows the second, from which in turn
follows the third. In the last step we show, that the third item implies again the �rst.
(1)⇒(2):
First we claim that

q(n) = max
0≤k≤n

{A(n)−A(k)− S(n) + S(k)} (2.2)

and prove this by induction over n: For n = 1 we have by Lindley's equation:

q(1) = [a(1)− s(1)]+ = max
0≤k≤1

{A(1)−A(k)− S(1) + S(k)}

Now assume (2.2) holds for n, then we have again using Lindley's equation:

q(n+ 1) = [q(n) + a(n+ 1)− s(n+ 1)]+

= [ max
0≤k≤n

{A(n)−A(k)− S(n) + S(k)}+ a(n+ 1)− s(n+ 1)]+

= [ max
0≤k≤n

{A(n+ 1)−A(k) + S(n+ 1) + S(k)}]+

= max
0≤k≤n+1

{A(n+ 1)−A(k) + S(n+ 1) + S(k)}

Assume now S o�ers a service curve β and let n, k ∈ N0 be arbitrary such that n ≥ k.
From (2.2) we know already for all �ows A holds:

q(n) = A(n)−D(n) ≥ A(n)−A(k)− S(n) + S(k)

And by the de�nition of service curves:

D(n) ≥ min
0≤k′≤n

{A(k′) + β(n− k′)}

Combining these, we get:

S(n)− S(k) ≥ D(n)−A(k)

≥ min
0≤k′≤n

{A(k′)−A(k) + β(n− k′)} (2.3)

= min
0≤k′≤k

{A(k′)−A(k) + β(n− k′)}∧ (2.4)

min
k<k′≤n

{A(k′)−A(k) + β(n− k′)}
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Now use the �ow A∗, de�ned by:

a∗(1) ∈ R+
0

a∗(2) = a∗(3) = . . . = a∗(k) = 0

a∗(k + 1) = β(n− k)− β(n− k − 1)

a∗(k + 2) = β(n− k − 1)− β(n− k − 2)

a∗(k + 3) = β(n− k − 2)− β(n− k − 3)

...

a∗(n) = β(1)− β(0) = β(1)

Note that by this construction we have A∗(k′) = A∗(k) for all k′ ≤ k. Inserting that �ow
into (2.4) we eventually have:

S(n)− S(k) ≥ min
0≤k′≤k

{0 + β(n− k′)} ∧ min
k<k′≤n

{
β(n− k′) +

k′∑
l=k+1

a∗(l)

}

= β(n− k) ∧ min
k<k′≤n

{
β(n− k′) +

k′∑
l=k+1

β(n− l + 1)− β(n− l)

}
= β(n− k) ∧ min

k<k′≤n
{β(n− k′) + β(n− k)− β(n− k′} = β(n− k)

for all n ≥ k ∈ N0.
Hence the �rst item implies second item.
(2)⇒(3)
If we assume the second item, we have by Lindley's equation for each k in an arbitrary

backlogged period [m,n]

A(k)−D(k) = q(k) = [q(k − 1) + a(k)− s(k)]+

= q(k − 1) + a(k)− s(k) =

= A(k − 1)−D(k − 1) + a(k)− s(k)

= A(k)−D(k) + d(k)− s(k)

and hence d(k) = s(k) for all k ∈ [m,n]. Using the second item, it follows:

D(n)−D(m) =
n∑

k=m+1

d(k) =
n∑

k=m+1

s(k) = S(n)− S(m) ≥ β(n−m)

Since we have chosen [m,n] to be an arbitrary backlogged period, we have shown that
β is a strict service curve. It is left to show, that from the third item follows again the
�rst item.
(3)⇒(1)
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Let n be arbitrary and consider �rst the case of D(n) < A(n), i.e. n lies in a backlog
period and de�ne m∗ by the last time before n with A(m∗) = D(m∗). It holds then:

β(n−m∗) ≤ D(n)−D(m∗) = D(n)−A(m∗)

Hence:
D(n) ≥ β(n−m∗) +A(m∗) ≥ min

0≤k≤n
{A(k) + β(n− k)}

Consider now the case of D(n) = A(n), then follows immediately:

D(n) = A(n) ≥ min
0≤k≤n

{A(k) + β(n− k)}

Notice that a strict service curve still gives the service element some space to be �lazy�,
since it only has to work as much as needed to ful�ll the constraint given by β. If
there is more service available even the strict service curve does not necessarily claim it.
Following this train of thoughts one can sort servers by their �lazyness� in the following
increasing order:

� A server ful�lls Lindley's equation.

� A server o�ers a strict service curve.

� A server o�ers a service curve.

However keep in mind, that Lindley's equation does not hold any information about
how much data the service element processes. In a certain sense one can see the sum
of Lindley's equation and a (strict) service curve, as the �strictest� service guarantee
possible. Since it gives us information about how much service is available at least
(S(n) − S(m) ≥ β(n − m)) and also states that the service element is never lazy, i.e.
we always tap the whole available service (as seen in the above proof it holds under
Lindley's equation: d(k) = s(k) in each backlogged period). This is exactly the second
item in the previous lemma. What you should keep in mind is, that if some service ele-
ment ful�lls Lindley's equation, the three kind of service curves immediately fall together.

As announced we encounter the same problems with stochastic service, as for stochastic
arrivals. As an example consider a service element which o�ers a constant rate of service
(denoted by c) and Lindley's equation. There are two �ows entering, which we call A1

and A2 and we set A1 as prioritized �ow. This means, that for the second �ow only
the amount of service, which is leftover by A1 is o�ered. We further assume, that A1

does not queue. This means if A1 sends in one time step an amount of data larger c, we
drop all exceeding data. If we consider one time step and denote by sl(n) the amount
of service A2 receives in this time step we have sl(n) = [c − a1(n)]+(Note: If A1 would
queue we would have: sl(n) = [c − a1(n) − q1(n − 1)]+, where q1(n − 1) would be the
queue length of A1 at time n−1). Now we ask for some service curve β, which the server
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might o�er for A2. Depending on the arrivals, this might not be possible. If we take for
example i.i.d. exponentially distributed increments a1(n) we get:

P(sl(n) = 0) = P([c− a1(n)]+) = P(ai(n) ≥ c) = e−λc > 0

Hence the best serivce curve we can expect is β(n) = 0 for all n ∈ N0.
Before we give a method to bound stochastic service elements, we need a generalisation

of the above concepts.

De�nition 2.38. De�ne the index set Λ(N0) := {(i, j) ∈ N0 × N0 : i ≤ j} triangular
subset of the lattice N0 × N0. We call a set indexed by Λ(N0) a triangular array (over
R) and denote it to be an element of D.

We can list the indices of Λ(N0) by:

(0, 0);
(0, 1); (1, 1);
(0, 2); (1, 2); (2, 2);
(0, 3); · · · · · · (3, 3);

...
. . .

The set of such doubly indexed stochastic processes is denoted by S2.

De�nition 2.39. If A is a �ow we de�ne the doubly indexed stochastic process
A(·, ·) : Λ(N0)→ R+

0 by:

A(m,n) := A(n)−A(m) ∀n ≥ m ≥ 0

The set of such doubly indexed stochastic processes resulting from �ows is denoted by
F2.

Clearly F2 ( S2 ⊂ D. It is important to note the di�erence between A(m,n) and
A(n −m). In the former case we talk about the arrivals in the interval [m + 1, n] (an
interval of length n−m), in contrast to the latter case, in which we consider the arrivals
up to time n −m. We also need a min-plus-convolution and a min-plus-deconvolution
for the bivariate case. Remember and compare the univariate operations:

A⊗B(n) = min
0≤k≤n

{A(k) +B(n− k)}

A�B(n) = max
0≤k
{A(n+ k)−B(k)}

De�nition 2.40. Let A,B ∈ D. Then the bivariate convolution ⊗ : D × D → D is
de�ned by:

A⊗B(m,n) := min
m≤k≤n

{A(m, k) +B(k, n)}

Further the bivariate deconvolution � : D ×D → D is de�ned by:

A�B(m,n) := max
0≤k≤m

{A(k, n)−B(k,m)}
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One should mention that this bivariate operations are not longer commutative. You are
further asked in the exercises, to show the here presented concepts being a generalization
of the univariate case. We give now the bivariate �service curve�.

De�nition 2.41. Assume a service element has a �ow A as input and the output is
denoted by D. Let S ∈ S2 be a doubly indexed stochastic process with:

S(m,n) ≤ S(m,n′) ∀n ≤ n′ ∈ N0 a.s.

The service element is a dynamic S-server9 if for all n ≥ 0 holds:

D(0, n) ≥ A⊗ S(0, n) (a.s.)

Keep attention that the process S(m,n) does generally not lie in F2 and hence we
can not assume S(m,n) = S(n)−S(m), although we encounter situations, in which this
equation is ful�lled.

Example 2.42. We �rst consider a deterministic rate-latency server, with service curve
βR,N (n) = R · (n−N) if n > N and equal to zero otherwise. For S(k, n) := βR,N (n− k)
we have that a dynamic S-server o�ers βR,N as service curve in the univariate sense:

D(n) ≥ A⊗S(0, n) = min
0≤k≤n

{A(k)+S(k, n)} = min
0≤k≤n

{A8k)+βR,N (n−k)} = A⊗βR,N (n)

Example 2.43. We return to our example of a service element ful�lling Lindley's equa-
tion and serving two �ows A1 and A2, of which the �rst is prioritized. But we change it
in the way that �ow A1 can queue. As before the service element o�ers a constant rate
of c. In this case the service element is with respect to A2 a dynamic S-server with:

S(m,n) := [c · (n−m)−A1(m,n)]+

To see this assume n ≥ 0 arbitrary and choosem ≤ nmaximal such that A1(m) = D1(m)
and A2(m) = D2(m) (such an m exists since all �ows are zero for m = 0). Our server
ful�lls:

D1(n) +D2(n) = D1(m) +D2(m) + c · (n−m) = A1(m) +D2(m) + c · (n−m)

Since D1(n) ≤ A1(n) we can continue with:

D2(n) ≥ D2(m) + c · (n−m)− (A1(0, n)−A1(0,m))

We have for sure that D2(n) ≥ D2(m) = D2(m) + 0 and get therefore:

D2(n) ≥ D2(m) + [c · (n−m)−A1(n−m)]+ = A2(m) + [c · (n−m)−A1(n−m)]+

≥ min
0≤k≤n

{A2(k) + S(k, n)} = A2 ⊗ S(0, n)

9In literature there is often the additional assumption of S(m,n) ≥ 0 for all m and n. This assumption
is not necessary and at some places (see e.g. [REF]) burdens us with unwanted restrictions. Note that
in fact the case S(m,n) < 0 causes no trouble, since D(0, n) ≥ A⊗S(0, n) represents a lower bound.
The worst thing, which can happen here, is, that the lower bound is useless (nevertheless correct):
D(0, n) ≥ A⊗ S(0, n) with A⊗ S(0, n) < 0.
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Similar to the previous section, we present two di�erent ways of stochastic bounding
of dynamic S-servers. Again, we have a tail-bound and a MGF-bound. There is a slight
di�erence to the way we bounded arrivals, though, and we are going to investigate it in
some detail. This time we start with the MGF-bound, which looks straightforward:

De�nition 2.44. A dynamic S-server is (σ(θ), ρ(θ))-bounded for some θ > 0, if φS(m,n)(−θ)
exists and:

φS(m,n)(−θ) ≤ eθρ(θ)(n−m)+θσ(θ) ∀ (m,n) ∈ Λ(N0)

A dynamic S-server is f(θ, n)-bounded for some θ > 0, if φS(m,n)(−θ) exists and:

φS(m,n)(−θ) ≤ f(θ, n−m) ∀ (m,n) ∈ Λ(N0)

Note that usually ρ(θ) is a negative quantity. This basically parallels the de�nition of
the MGF-bound for arrivals.
Next we present the tail-bound for dynamic S-servers:

De�nition 2.45. A dynamic S-server is tail-bounded by envelope α with error η, if for
all arrival �ows A and all n ∈ N0, ε ∈ R+ holds:

P(D(0, n) < A⊗ (S − α(ε))(0, n)) < η(n, ε) (2.5)

In the above de�nition the expression A ⊗ (S − α(ε))(0, n) has to be interpreted as:
min0≤k≤n{A(k) + S(k, n) − α(n − k, ε)}. As announced the above de�ntion looks a bit
di�erent compared to the MGF-bound. Instead of bounding the function S directly,
rather the output D of the dynamic S-server is bounded - and that for all possible inputs
A. We leave the reason for that open and turn back to it, after presenting an example,
which concentrates on the leftover-service:

Example 2.46. Consider the same situation as in example 2.43. We have already seen
that this service element is a Sl-server with Sl(m,n) = [c · (n −m) − A1(m,n)]+ with
respect to A2. If we assume the increments of the prioritized �ow to be i.i.d. exponentially
distributed with parameter λ, then holds for all θ ∈ (0, λ):

φSl(m,n)(−θ) =
(
E(e−θ[c·(n−m)−A1(m,n)]+

)
=
(
E(emin{0,θA1(m,n)−θc·(n−m)})

)
≤
(
E(eθA1(m,n)−θc·(n−m))

)
= e−θc(n−m)

(
λ

λ− θ

)n−m
Hence we have a dynamic Sl-Server, which is bounded by f(θ, n) = e−θcn

(
λ
λ−θ

)n
. We

can converse this to a (σ(θ), ρ(θ))-bound with σ(θ) = 0 and ρ(θ) = −c+ 1/θ log
(

λ
λ−θ

)
.

Can we also �nd a tail-bound, given, that A1 is tailbounded by the envelope αA? We
need to �nd a �tting envelope α and some error function to establish (2.5) for all �ows
A2. Inspired by the MGF-bound the envelope could look like αS(n, ε) = αA(n, ε), which
is in fact true. To see this choose n ∈ N and ε > 0 arbitrary. We know from example
2.43:

D2(0, n) ≥ min
0≤k≤n

{A2(k) + c(n− k)−A1(k, n)}
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Now, let m be the index in k = 0, . . . , n, which minimizes the right-hand sided expression
and assume for a while that A1(m,n) ≤ αA(n − m, ε) holds. Then the above can be
continued with:

D2(0, n) ≥ A2(m) + c(n−m)−A1(m,n)

≥ A2(m) + c(n−m)− αA(n−m, ε)
≥ min

0≤k≤n
{A2(k) + c(n−m)− α(n− k, ε)}

= A⊗ (S − αS(ε))(0, n)

So we have proven the following statement:

A1(m,n) ≤ αA(n−m, ε) ⇒ D2(0, n) ≥ A⊗ (S − αS(ε))(0, n)

Or more precisely, based on de�nition 2.1, we have:

{ω′ ∈ Ω |A1(m,n) ≤ αA(n−m, ε)} ⊂ {ω′ ∈ Ω |D2(0, n) ≥ A⊗ (S − αS(ε))(0, n)}

and hence:

P(A1(m,n) ≤ αA(n−m, ε)) ≤ P(D2(0, n) ≥ A⊗ (S − αS(ε))(0, n)

From which we eventually get

P(D2(0, n) < A⊗(S−αS(ε))(0, n)) ≤ P(A1(m,n) ≤ αA(n−m, ε)) ≤ η(n−m, ε) ≤ η(0, ε)

by the monotonicity of the error function.

We see in the above example that constructing the tail-bound for leftover service is a
bit harder, than the corresponding MGF-bounds. Fortunately the generalisation of the
above example follows pretty much along the same lines, such that most of the work is
done here already.

Theorem 2.47. Assume a dynamic S-server with two inputs A1 and A2, of which the
former one is prioritized. Further assume A1 to be tail-bounded with envelope αA and
error η. Then the dynamic S-server for A2 is tail-bounded by envelope αA and error
ηS(nε) := ηA(0, ε).

Proof. Exercise 2.57.

Next we give the concatenation theorem. Imagine two servers in a tandem, i.e. the
output of the �rst service element is fed into the second service element. The concate-
nation theorem states, that we can abstract the two service elements as a new service
element, which describes the system as a whole.

Theorem 2.48. Let there be two service elements, such that the output of the �rst
serivce element is the input for the second service element. Assume the �rst element to
be a dynamic S-server and the second element to be a dynamic T -server. Then holds:
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� The whole system is a dynamic S ⊗ T -server.

� If the dynamic servers are stochastically independent and bounded by (σS(θ), ρS(θ))
and (σT (θ), ρT (θ)), respectively, with ρT (θ), ρS(θ) < 0 and ρS(θ) 6= ρT (θ) for some
θ > 0, the whole system is bounded by

(σS(θ) + σT (θ) +B,max{ρT (θ), ρS(θ)})

with:

B := −1

θ
log(1− e−θ|ρS(θ)−ρT (θ)|)

� If the dynamic servers are tailbounded by envelopes α1 and α2 with errors η1 and
η2, respectively. Further assume α1(n, ε) and α2(n, ε) are monotone increasing in
n. Then the whole system is tailbounded with envelope α1 + α2 and error η1 + η2.

Proof. We prove �rst that the whole system is a dynamic S⊗T -server. Denote the input
�ow at the �rst service element by A, the output of the �rst service element by I and
the output of the second service element by D. We have then:

D(0, n) ≥ I ⊗ T (0, n) ≥ (A⊗ S)⊗ T (0, n) = min
0≤k≤n

{(A⊗ S)(0, k) + T (k, n)}

= min
0≤k≤n

{ min
0≤k′≤k

{A(0, k′) + S(k′, k)}+ T (k, n)}

= min
0≤k′≤k≤n

{A(0, k′) + S(k′, k) + T (k, n)}

= min
0≤k′≤n

{A(0, k′) + min
k′≤k≤n

{S(k′, k) + T (k, n)}}

= min
0≤k′≤n

{A(0, k′) + S ⊗ T (k′, n)} = A⊗ (S ⊗ T )(0, n)

Hence the whole system is a dynamic S ⊗ T -server.
Next we validate the MGF-bound: Assume �rst |ρT (θ)| < |ρS(θ)|. With the use of 3.2

holds for all (m,n) ∈ Λ(N0):

φS⊗T (m,n)(−θ) ≤
n∑

k=m

eθρS(θ)(k−m)+θσS(θ)eθρT (θ)(n−k)+θσT (θ)

= eθρT (θ)(n−m)+θ(σS(θ)+σT (θ))
n∑

k=m

eθρS(θ)(k−m)eθρT (θ)(m−k)

= eθρT (θ)(n−m)+θ(σS(θ)+σT (θ))
n∑

k=m

eθ(k−m)(ρS(θ)−ρT (θ))

= eθρT (θ)(n−m)+θ(σS(θ)+σT (θ))
n−m∑
k′=0

(eθ(ρS(θ)−ρT (θ)))k
′

and since we have eθ(ρS(θ)−ρT (θ)) < 1 and can approximate the sum by its corresponding
geometric series:

φS⊗T (m,n)(−θ) ≤ eθρT (θ)(n−m)+θ(σS(θ)+σT (θ)) 1

1− eθ(ρS(θ)−ρT (θ))
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The case of |ρT (θ)| > |ρS(θ)| is very similar:

φS⊗T (m,n)(−θ) ≤
n∑

k=m

eθρS(θ)(k−m)+θσS(θ)eθρT (θ)(n−k)+θσT (θ)

= eθρS(θ)(n−m)+θ(σS(θ)+σT (θ))
n∑

k=m

eθρS(θ)(k−n)eθρT (θ)(n−k)

= eθρS(θ)(n−m)+θ(σS(θ)+σT (θ))
n∑

k=m

eθ(n−k)(ρT (θ)−ρS(θ))

= eθρS(θ)(n−m)+θ(σS(θ)+σT (θ))
n−m∑
k′=0

(eθ(ρT (θ)−ρS(θ)))k
′

All left to do is to prove the tail-bound. Let ε > 0, n ∈ N0 be arbitrary and A some
�ow. Assume for a while that I(n) ≥ A⊗S−α1(ε)(0, n) and D(n) ≥ I⊗T −α2(ε)(0, n).
Then follows as above:

D(0, n)

≥ min
0≤k′≤k≤n

{A(k′) + S(k′, k) + T (k, n)− α1(k − k′, ε)− α2(n− k, ε)}

≥ min
0≤k′≤n

{A(k′) + min
k′≤k≤n

{S(k′, k) + T (k, n)} − max
k′≤k≤n

{α1(k − k′, ε) + α2(n− k, ε)}}

≥ min
0≤k′≤n

{A(k′) + S ⊗ T (k′, n)− α1(n− k′, ε)− α2(n− k′, ε)}

De�ne α = α1 + α2, we have then:

P(D(0, n) < A⊗ (S ⊗ T )− α(ε)(0, n)

≤P({I(0, n) < A⊗ S − α1(ε)(0, n)} ∪ {D(0, n) < I ⊗ T − α2(ε)(0, n)}
≤P(I(0, n) < A⊗ S − α1(ε)(0, n)) + P(D(0, n) < I ⊗ T − α2(ε)(0, n))

≤ η1(n, ε) + η2(n, ε)

We want to give some notes about the above theorem, since some obstacles may rise
at this stage. First: note that for the MGF-bound we need both performance bounds
to exist for the same θ. Since the service bounds are usually valid for all θ in some
interval (0, b), we can ensure, by intersecting the corresponding intervals, to �nd an
interval on which both performance bounds hold. Second: The assumption of stochastic
independence may not be given (see the exercises). The trick is to use again Hölder's
inequality, however this may - as in exercise 2.29 - lead to poorer bounds. Third: We
used ρS(θ) 6= ρT (θ). If we have ρS(θ) = ρT (θ) there is no way to use adavantage of the
geometric series to achieve a (σ(θ), ρ(θ))-bound. Instead the sum degenerates to n−m+1
and we need the more general f(θ, n)-bounds.
The tailbound seems to cause less trouble, but note that we have chosen the same ε for

the two original tailbounds. One can easily generalise the above proof to the case, where
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one chooses a di�erent ε for each tailbound. How to choose the ε is not clear, like the
question if there lies a worthwhile optimization potential in doing so. Further using the
inequality maxk′≤k≤n{α1(k−k′, ε)+α2(n−k, ε)} ≤ α(n−k′, ε) is not necessary and one
might continue here instead with the �max-plus-convolution� maxk′≤k≤n{α1(k − k′, ε) +
α2(n− k, ε)} =: α1(ε)⊗̄α2(ε)(k, n), however in this case α(k, n, ε) := α1(ε)⊗̄α2(ε)(k, n)
is not longer an envelope in the sense of 2.10, since not univariate.
We shed now a bit of light on the question why the tail-bound is formulated for the

output D, while the MGF-bound is concerned directly with S. In fact the tail-bound
looks a bit �odd� and a more intuitive tail-bound would look like:

P(S(m,n) < α(n−m, ε)) < η(n−m, ε) ∀m ≤ n, ε > 0 (2.6)

What is the di�erence between this tail-bound and the one used in literature and de�ni-
tion 2.45?

Theorem 2.49. Assume a dynamic S-server, with some envelope α and error fucntion η
ful�lling (2.6). Then the server can be rewritten as a dynamic α-server (naturally extend
α to its bivariate α(m,n, ε) := α(n−m, ε)), with envelope 0 and error η0(n, ε) = η(0, ε).

Proof. Assume an arbitrary �ow A and let α and η be given. Fix an arbitrary ε > 0 and
n ∈ N0. We know from the de�nition of the dynamic S-server:

D(0, n) ≥ A⊗ S(0, n) = min
0≤k≤n

{A(k) + S(k, n)}

= A(k∗) + S(k∗, n)

Here k∗ is the index minimizing the right handed side of the �rst line. Assume now, that
S(k∗, n) ≥ α(n− k∗, ε) holds. We can continue with:

D(0, n) ≥ A(k∗) + α(n− k∗, ε)
≥ min

0≤k≤n
{A(k) + α(n− k, ε)}

= A⊗ α(ε)(0, n)

Hence we have (with the same argument as in example 2.46) that:

P(D(0, n) < A⊗ α(ε)(0, n)) ≤ P(S(k∗, n) < α(n− k∗, ε)) < η(n− k∗, ε) ≤ η(0, ε)

This theorem practically means, that the condition in equation (2.6) is at least as
strict, as the one given in de�ntion 2.45, since we can always construct a tail-bound from
(2.6). The question rises, if the converse is also true: Given a dynamic S-server for which
we have

P(D(0, n) < A⊗ α(ε)(0, n)) < η(n, ε) (2.7)

for all A, ε > 0 and n ∈ N0, can we infer equation (2.6)? In general this is not the case,
as the following example shows:
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Example 2.50. Let S(m,n) =
∑n

k=m+1 s(k) with s(k) = 1
k and de�ne α(n, ε) = 1

n for
all n ≥ 1 and α(0, ε) :=∞. Then holds for all A, ε > 0 and n ∈ N0:

D(0, n) ≥ A⊗ S(0, n) = min
0≤k≤n

{A(k) + S(k, n)} ≥ min
0≤k≤n

{
A(k) + 1

n

}
=

1

n

= min
0≤k≤n

{A(k) + α(n− k, ε)} = A⊗ α(ε)(0, n)

again with the natural expansion of α to its bivariate version. From this and the de�nitoin
of dynamic S-servers one easily sees, that (2.7) is ful�lled, i.e.:

0 = P(D(0, n) < A⊗ α(ε)(0, n)) < ε =: η(n, ε)

for all ε > 0, n ∈ N0.
However we also have

S(n−m,n) =
1

n
+ . . .

1

n−m+ 1
<

1

m
= α(m, ε)

for n > m2 +m− 1. Hence we can �nd m,n, ε such that:

P(S(m,n) < α(n−m, ε)) = 1 > ε = η(n−m, ε)

contradicting equation (2.6).

This gives us a strong argument why the tail-bound looks like it does in the literature:
Using a less strict assumption on the service and still being able to calculate performance
bounds (which we will show in the following chapter 3) is of course desirable. This gives
us one part of the answer, why MGF-bound and tail-bound di�er in their appearance.
The other part is the question: Why not bound the MGF of D(0, n) = A⊗ S(0, n) and
what is its relation to de�nition 2.44?

Theorem 2.51. Assume a dynamic S-server with

φA⊗S(0,n)(−θ) ≤ eθσ(θ)+θρ(θ)n

for some θ > 0, ρ(θ) < 0 and all �ows A and n ∈ N0. Then S is (σ(θ), ρ(θ))-bounded.

Proof. Let m,n ∈ N0 be arbitrary, such that m ≤ n and de�ne a �ow A with a(k) = 0
for all k ≤ m. Then holds:

S(m,n) ≥ min
0≤k≤m

{S(k, n)} = min
0≤k≤m

{A(k) + S(k, n)}

≥ min
0≤k≤n

{A(k) + S(k, n)} = A⊗ S(0, n)

and hence
−θS(m,n) ≤ −θA⊗ S(0, n).

We end with:

E(e−θS(m,n)) ≤ E(e−θA⊗S(0,n)) ≤ eθσ(θ)+θρ(θ)n ≤ eθσ(θ)+θρ(θ)(n−m)
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Again the converse is not true as the following example shows:

Example 2.52. Assume a dynamic S-server being (σ(θ), ρ(θ))-bounded for some θ > 0.
We need to �nd an A and n, such that the MGF of A⊗ S(0, n) can not be bounded for
any ρ′(θ) < 0. Just consider the zero-�ow a(m) = 0 for all m ∈ N0. For arbitrary n we
have then by the de�nition of dynamic S-servers:

A⊗ S(0, n) ≤ D(0, n) = 0

and hence:
E(e−θA⊗S(0,n)) ≥ E(e−θ·0) = 1

Consider now any ρ′(θ) < 0, arbitrary σ(θ) and some n > σ(θ)
−ρ′(θ) :

E(e−θA⊗S(0,n)) ≥ eθσ(θ)+θρ(θ)n > 1

This example shows, that the MGF-bound as presented, is again the formulation,
shich assumes less and is hence preferable. In a larger context one can see it like this:
the tail-bound asks for the probability, that an unwanted event happens (a �ow exceeds
an envelope, an output is too small). If we ignore the expectation and exponentation in
the MGF-bounds we see the opposite: Here the inequalities A(m,n) ≤ σ(θ) + ρ(θ) and
S(m,n) > σ(θ)− ρ(θ) appear, describing a situation we would like to have (a �ow does
not exceed an envelope and the service is large enough). Although this is a very rough
argument, it gives some intuition, why di�erent expressions appear, when moving from
MGF-bounds to tail-bounds.

Exercises

Exercise 2.53. Show that for S(m,n) = S(n−m) we have:

A⊗ S(0, n) = A⊗ S(n)

where the right handed side is the usual univariate convolution.

Exercise 2.54. Assume Si(m,n) = Si(n) − Si(m) for i ∈ {1, 2}. Give an example for
Si and m ≤ n, such that

S(m,n) := S1 ⊗ S2(m,n) 6= S(0, n)− S(0,m)

Exercise 2.55. In this exercise we investigate how strict a server can be, after sub-
tracting a cross-�ow from it. The answer is simple10: After subtracting no strict service
can be o�ered, regardless of how strict our original service had been. To show this two
statements must be proven. Throughout this we assume a node serving two arrivals, of
which A1 is prioritized over A2 (see also example 2.43).

10and might surprise someone who is familiar with deterministic network calculus. In the univariate
determinstic calculus it is proven, that you always need a strict service curve, when subtracting
some cross�ow, otherwise there exists none non-trivial service curve for the leftover service. This is
an important di�erence between stochastic network calculus - as presented here - and deterministic
network calculus!

40



� Assume �rst the service element is a dynamic S-Server with respect to
A := A1 + A2. Show that it is also a dynamic Sl-Server with respect to A2 with
Sl(m,n) = S(m,n)−A1(m,n).

� Assume now the service element ful�lls Lindley's equation with respect to A (i.e.
it is a �strictest� server). Construct input �ows A1, A2 and a service S such that
for some interval [m,n] with D2(m − 1) = A2(m − 1) holds Sl(m,n) > D2(m,n),
i.e. Sl is not a strict service curve in sense of de�nition (2.33).11 (Hint: You can
choose a very simple S)

Exercise 2.56. Consider two rate-latency server with rate and latency equal to 1

S1(m,n) = S2(m,n) = β(n−m) = [n−m− 1]+

Show that the concatenated server S = S1 ⊗ S2 does not o�er a strict service curve. In
expression construct an input �ow A, such that a backlogged period [m,n] emerges from
it and A⊗ S(m,n) < S(m,n).

Exercise 2.57. Proof theorem 2.47.

Exercise 2.58. Assume a dynamic S1-server and a dynamic S2-server, which is stochas-
tically dependent of the �rst one. Assume further that the S1-server is (σ1(pθ), ρ1(pθ))-
bounded and the S2-server is (σ2(qθ), ρ2(qθ))-bounded for some θ > 0, p and q with
1
p + 1

q = 1 and ρ1(pθ) 6= ρ2(qθ). Show that the concatenation of S1 and S2 is (σ1(pθ) +

σ2(qθ) +B,min{|ρ1(pθ)|, |ρ2(qθ)|})-bounded, with B = −1
θ log(1− e−θ|ρ1(pθ)−ρ2(qθ)|)

Exercise 2.59. Assume the situation as in theorem 2.48. Show that for ρS(θ) = ρT (θ)
we the dynamic S ⊗ T -server is (σ(θ), ρ(θ))-bounded with:

ρ(θ) := ρS(θ) +
1

θ

and
σ(θ) := σS(θ) + σT (θ)

(Hint: Use the simple inequality n+ 1 ≤ en for all n ∈ N0)

Exercise 2.60. Let a dynamic S-server be (σ(θ), ρ(θ))-bounded. Consider the following
expression:

s∗S(θ) = lim sup
m→∞

− 1

θm
logE(e−θS(n,n+m))

Show that s∗(θ) ≤ −ρ(θ). Assume now the situation as in theorem 2.48. Show that for
the concatenated server holds:

s∗S⊗T (θ) ≤ −ρT (θ)

11In fact any backlogged interval would work here. But in taking the additional assumption D2(m−1) =
A2(m−1) into account, we can also exclude that the leftover service could be weak strict. A dynamic
S-Server is de�ned to be weak strict if for any backlogged period [m,n] with D(m− 1) = A(m− 1)
holds: D(m,n) ≥ S(m,n).
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for all ρT (θ) with |ρT (θ)| < |ρS(θ)|. (Hint: Use the geomtric sum, instead of the geometric

series:
∑m

k′=0 p = 1−pm+1

1−p for 0 < p < 1). Next show that also for the case ρT (θ) = ρS(θ)
holds:

s∗S⊗T (θ) ≤ −ρT (θ)

Exercise 2.61. In this exercise we generalise example 2.46. Consider a dynamic S-
server, which is bounded by (σS(θ), ρS(θ)). Further assume there is a �ow A which is
(σA(θ), ρA(θ))-bounded. Give (σ(θ), ρ(θ))-bounds for the leftover Service and the case
that

� A is stochastically independent of S.

� A is stochastically dependent of S. What assumptions are further needed for this
case?

Exercise 2.62. In this programming exercise we want to visualize how di�erently service
guarantees (weak strict and normal service elements) can behave, compared to the real
output of a node. For this we assume again the scenario of a node serving two �ows
with a �xed rate c = 1. The two �ows behave very similar, assume them both to be
exp(2.5)-distributed up to time n = 49. At time n = 50, however, the prioritized �ow
breaks this pattern and produces a large burst of value b. Compute the following values,
to compare the di�erent service guarantees for the output D2 of the second �ow and this
�bad� behaving prioritized �ow:

� (real output) Simulate the output for the second �ow and calculate the cumulative

output D
(1)
2 (n) of it.

� (weak strict service element) D
(2)
2 (n) = Sl(m,n) + A2(m) and Sl(m,n) := [c(n −

m) − A1(n) + A1(m)]+, with m being the last time A2 was not backlogged (i.e.

m = maxk≥0{k : A2(k) = D
(2)
2 (k)}, to compute m use D

(2)
2 (k) = D

(1)
2 (k) for all

k).

� (normal service element) D
(3)
2 (n) = A2 ⊗ Sl(0, n)

Compare the three guarantees for di�erent values of b ∈ {1, 5, 10, 50}. Analyse the
above formulas to discover, why the service guarantees di�er from each other and the
real output.

42



3 Stochastic Performance Bounds

Now, as we know how to model stochastic arrivals and service guarantees, we ask in this
chapter for performance guarantees. We are interested in bounds on the backlog and the
delay of a node, as well as in bounds on the departures of a node. Again the theory here
parallels the deterministic approach, with the di�erence, that the bounds only hold with
a high probability. Or stated more positively: The achieved bounds are only violated
with very small probabilities.
If not stated otherwise we assume in this chapter a �ow A, which is bounded by

(σA(θ), ρA(θ)) and a stochastically independent node S, which is (σS(θ), ρS(θ))-bounded
for the same θ > 0. Further for the tail-bounded case we assume A and S to be tail-
bounded by envelopes αA and αS with errors ηA and ηS , respectively. The �ow A is the
input for node S and the corresponding output �ow is denoted by D.

3.1 Backlog Bound

Before we can formulate our backlog bound we need another theorem concerning we
convolution of MGFs. As a reminder we give the following

De�nition 3.1. Let f, g : Λ(N0)→ R be two triangular arrays. The bivariate convolu-
tion ∗ : D ×D → D of f and g at (m,n) ∈ Λ(N0) is de�ned by:

f ∗ g(m,n) =
n∑

k=m

f(m, k)g(k, n)

The bivariate deconvolution ◦ : D ×D → D of f and g at (m,n) ∈ Λ(N0) is de�ned by:

f ◦ g(m,n) =

m∑
k=0

f(k, n)g(k,m)

Theorem 3.2. Let X,Y ∈ S be two stochastically independent random processes. Then
holds:

φX⊗Y (m,n)(−θ) ≤ (φX(−θ) ∗ φY (−θ)) (m,n)

for all θ > 0 and (m,n) ∈ Λ(N0) such that the above MGFs exist.
Further holds:

φX�Y (m,n)(θ) ≤ (φX(θ) ◦ φY (−θ)) (m,n)

for all θ > 0 and (m,n) ∈ Λ(N0) such that the above MGFs exist.
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Proof. We show the �rst inequality, since the second can be proven in the same fashion:

φX⊗Y (−θ) = E(e−θminm≤k≤n{X(m,k)+Y (k,n)}) = E(emaxm≤k≤n{−θX(m,k)−θY (k,n)})

= E( max
m≤k≤n

{e−θX(m,k) · e−θY (k,n)}) ≤
n∑

k=m

E(e−θX(m,k) · e−θY (k,n)})

=
n∑

k=m

φX(m,k)(−θ)φY (k,n)(−θ) = (φX(−θ) ∗ φY (−θ)) (m,n)

For all θ > 0 such that the above MGFs exist.

We present the performance bound for the MGF-case �rst and give a short discussion
on it. Thereafter we present the corresponding bound for the tail-bound-case.

Theorem 3.3. For the backlog q(n) := A(n)−D(n) at time n and all x ∈ R+
0 holds:

P(q(n) > x) ≤ e−θx+θ(σA(θ)+σS(θ))
n∑
k=0

eθk(ρA(θ)+ρS(θ))

Proof. We know by the previous chapter:

q(n) ≤ A(n)−A⊗ S(0, n) = max
0≤k≤n

{A(k, n)− S(k, n)} = A� S(n, n)

Hence from q(n) > x follows A� S(n, n) > x and using Cherno�'s inequality yields:

P(q(n) > x) ≤ P(A� S(n, n) > x) ≤ e−θxE(eθA�S(n,n))

≤ e−θxE(eθA) ◦ E(e−θS)(n, n)

= e−θx
n∑
k=0

E(eθA(k,n))E(e−θS(k,n))

≤ e−θx
n∑
k=0

eθ(σA(θ)+(n−k)ρA(θ))eθ(σS(θ)+(n−k)ρS(θ))

≤ e−θx+θ(σA(θ)+σS(θ))
n∑

k′=0

eθk
′(ρA(θ)+ρS(θ))

There is another way to derive the above bound. Instead of using �rst Cherno�'s
inequality and the inqeuality a+ b ≥ a ∨ b thereafter, we can interchange that order:

P( max
0≤k≤n

{A(k, n)− S(k, n) > x} = P

(
n⋃
k=0

A(k, n)− S(k, n) > x

)

≤
n∑
k=0

P(A(k, n)− S(k, n) > x)

≤
n∑
k=0

e−θxE(eθ(A(k,n)−S(k,n))
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and then proceed as above. The result is the same, even if A and S are not stochastically
independent (see the exercises). However one should keep these two di�erent ways in
mind, since both of them may contain possible improvements on the bound.
Before we continue, we analyse the structure of the above proof. It consists of the

following steps:

1. We expressed the quantity q(n) in terms of A and S.

2. We translate the achieved inequality into an inequality of probabilities.

3. We use Cherno� to bound the new probability and moment generating functions
arise.

4. We use the MGF-bounds of A and S.

We will see this structure again in the next two sections.
AS a last note we discuss θ. A little assumption was made, by assuming A and S can

be bounded with the same parameter θ. This assumption is not very restrictive, since
we normally can bound A by (σA(θ′), ρA(θ′)) for all 0 < θ′ < θ if it is already bounded
by (σA(θ), ρA(θ)). The same holds for S. Hence if the θ in the two bounds di�er, we can
decrease one of them to the minimal θ.
Nevertheless the parameter θ can and should be optimized in the above bound:

Corollary 3.4. Assume A is (σA(θ), ρA(θ))-bounded for all θ ∈ [0, b] and S is (σS(θ), ρS(θ))-
bounded for all θ ∈ [0, b] and some b ∈ R+ ∪ {∞}. Then1:

P(q(n) > x) ≤ inf
θ∈[0,b]

e−θx+θ(σA(θ)+σS(θ))
n∑

k′=0

eθk
′(ρA(θ)+ρS(θ))

We proceed with the tail-bounded version of a backlog bound.

Theorem 3.5. For all n ∈ N0 and ε > 0 holds:

P(q(n) > (αA(ε) + αS(ε))� S(n, n)) ≤ ηS(n, ε) +
n∑

m=0

ηA(m, ε)

Proof. Let n ∈ N0 and ε > 0 be arbitrary. Assume for a while that

A(m,n) ≤ αA(n−m, ε) ∀m ≤ n (3.1)

and
D(0, n) ≥ A⊗ (S − αS(ε))(0, n) (3.2)

would hold. We would have then:

q(n) = A(0, n)−D(0, n) ≤ max
0≤k≤n

{A(n)−A(k)− S(k, n) + αS(n− k, ε)}

≤ max
0≤k≤n

{αS(n− k, ε) + αA(n− k, ε)− S(k, n)}

= (αA(ε) + αS(ε))� S(n, n)

1We investigate this parameter θ, which we have already called acuity, in the exercises.
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Since we have followed from (3.1) and (3.2) the above inequality, we have:

P(q(n) > (αA(ε) + αS(ε))� S(n, n))

≤P

(
D(0, n) ≥ A⊗ (S − αS(ε))(0, n) ∪

n⋃
m=0

A(m,n) > αA(n−m, ε)

)

≤P(D(0, n) ≥ A⊗ (S − αS(ε))(0, n)) +

n∑
m=0

P(A(m,n) > αA(n−m, ε))

≤ηS(n, ε) +
n∑

m=0

ηA(m, ε)

Let us have a closer look at the above bound: the crucial point here is, that - compared
to the MGF-backlog-bound - we do not have a bound for the event {q(n) > x}with some
x choosen by ourselves. Instead q(n) is compared with the rather involved expression
max0≤k≤n{αS(n−k, ε)+αA(n−k, ε)−S(k, n)}. This, in fact, presents us some challenges.
Since we need to solve:

max
0≤k≤n

{αS(n− k, ε) + αA(n− k, ε)− S(k, n)} = x

In general this equation might or might not have an unique solution for ε. However, this
alters drastically, if we state the more general

Corollary 3.6. For all n ∈ N0 and ε, ε′ > 0 holds:

P(q(n) > (αA(ε) + αS(ε′))� S(n, n)) ≤ ηS(n, ε′) +
n∑

m=0

ηA(m, ε)

Now the solution to

max
0≤k≤n

{αS(n− k, ε′) + αA(n− k, ε)− S(k, n)} = x

does not neet to be unique and we are confronted with an optimization problem: How
to choose ε, ε′ such that above equality holds and ηS(n, ε′) +

∑n
k=0 ηA(k, ε) becomes

minimal?
Another important note on the tail-bound is, that it works without the assumption of

stochastic independence between A and S. This is a big advantage of the tail-bounds.

Exercises

Exercise 3.7. Prove the second part of 3.2!

Exercise 3.8. Use Hölder's inequality to derive a backlog bound for the case that the
�ow A and the service S are not stochastically independent.
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Exercise 3.9. In this exercise we derive a backlog bound for an arrival �ow, which is
heavy-tailed, i.e. φA(m,n)(θ) does not exist for any choice of m < n ∈ N0 and θ ∈ R+.
To achieve this we need a determinstic lower bound for the dynamic server S:

S(m,n) ≥ f(m,n)

Use the alternative proof of 3.3 and Markov's inequality instead of Cherno�'s inequal-
ity, to show:

P(q(n) > x) ≤
n∑
k=0

(
1

x+ f(k, n)

)a
E(A(k, n)a) ∀ a ∈ N

Use this bound to compute the probability that a node with service S(m,n) = (n−m)c
serving an arrival with Pareto distributed increments (xmin = 0.5, α = 3) has a backlog
higher 1 at time n. To achieve the best possible bound optimize the parameter a ∈
{1, 2, 3}.

Exercise 3.10. We want to investigate how a system with increasing number of �ows
scales. Assume the following scenario: We have one node with a constant service rate
c = 1 (i.e. S(m,n) = c(n −m) for all m ≤ n ∈ N0) and N stochastically independent
�ows arrive at this node. All of the �ows share the same distribution for their increments
ai (i = 1, . . . , N). All increments are i.i.d., we consider three di�erent cases of what this
distribution looks like:

� ai(m) = 1 with probability 1
N and ai(m) = 0 with probability 1− 1

N

� ai(m) = 2
N with probability 1

2 and ai(m) = 0 with probability ai(m) = 1
2

� ai(m) = N with probability 1
N2 and ai(m) = 0 with probability 1− 1

N2

Show that the expected number of arrivals in one time step is in each case equal to 1
(Hence the node has an utilization of 100%).
Give for each case the corresponding f(θ, n)-bound (compare example 2.18) and cal-

culate the backlog bound at time n = 1 for a �xed N . How do these bounds evolve for
large N? What is

lim
N→∞

P(q(1) > 2)

for each case? Why do they behave di�erently? Analyse the variance of the increments!

(Hints: For the �rst case you need that (1 + t
N )N

N→∞−−−−→ et, for the second case that

(1
2(e

2θ
N + 1))N

N→∞−−−−→ eθ. The variance of a binomial distribution with parameters N and
p is given by Var(B) = Np−Np2)

Exercise 3.11. Remember exercise 2.32 in which we have investigated the parameter θ
and called it acuity. We now check what happens for the backlog bound, when the acuity
is altered. For this consider a node, which o�ers a constant rate service c and an arrival
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with i.i.d. exponentially distributed increments with parameter λ = 10. Compute the
backlog bound for x at time n = 1 and give it in the form

P(q(1) > x) ≤ h(x, θ)(1 + f(λ, θ)g(c, θ))

Here the three functions f, g and h are only dependent on θ and one further parameter.
We can identify f and g as the parts of the bound, which result from our arrival bound
and the service bound, respectively. Plot for varying θ ∈ [0, 10) the functions f, g and
the above backlog bound for x = 1.

3.2 Delay Bound

The delay bound is achieved similarly to the backlog bound and we follow the same
scheme as presented in the previous section to achieve it. First a de�nition of delay is
needed.

De�nition 3.12. The virtual delay d at time n is de�ned as:

d(n) := min{m : A(n) < D(n+m)}

The virtual delay can be interpreted as the time D needs to catch up the amount of
arrivals.

Theorem 3.13. For all N ∈ N0 holds:

P(d(n) > N) ≤ eθρS(θ)N+θ(σA(θ)+σS(θ))
n+N∑
k=0

eθ(n−k)(ρA(θ)+ρS(θ))

Proof. Assume it holds d(n) > N , i.e. A(n)−D(n+N) > 0. We have then:

0 < A(n)−D(n+N) ≤ A(n)−A⊗ S(0, n+N)

= max
0≤k≤n+N

{A(n)−A(k)− S(k, n+N)}

Hence the implication

d(n) > N ⇒ max
0≤k≤n

{A(k, n)− S(k, n+N} > 0
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holds and therefore:

P(d(n) > N) ≤ P( max
0≤k≤n+N

{A(k, n)− S(k, n+N)} > 0}

≤ E(eθmax0≤k≤n+N{A(k,n)−S(k,n+N)})

≤ E( max
0≤k≤n+N

eθ(A(k,n)−S(k,n+N))) ≤
n+N∑
k=0

E(eθ(A(k,n)−S(k,n+N)))

=
n+N∑
k=0

E(eθA(k,n))E(e−θS(k,n+N))

≤
n+N∑
k=0

eθρA(θ)(n−k)+θσA(θ)eθρS(θ)(N+n−k)+θσS(θ)

= eθρS(θ)N+θ(σA(θ)+σS(θ))
n+N∑
k=0

eθ(n−k)(ρA(θ)+ρS(θ))

Parallel to the backlog bound, the above bound can be achieved on a slightly di�erent
way. From P(max0≤k≤n{A(k, n)− S(k, n+N) > 0}) one might continue with:

P(d(n) > N) ≤ P

(
n⋃
k=0

A(k, n)− S(k, n+N) > 0

)

≤
n∑
k=0

P(A(k, n)− S(k, n+N) > 0)

≤
n∑
k=0

E(eθ(A(k,n)−S(k,n+N)))

and then proceed as before. Also, we can state the same corollary concerning the param-
eter θ.

Corollary 3.14. Assume A is (σA(θ), ρA(θ))-bounded for all θ ∈ [0, b] and S is (σS(θ), ρS(θ))-
bounded for all θ ∈ [0, b] and some b ∈ R+ ∪ {∞}. Then:

P(d(n) > N) ≤ inf
θ∈[0,b]

eθρS(θ)N+θ(σA(θ)+σS(θ))
n+N∑
k=0

eθ(n−k)(ρA(θ)+ρS(θ))

Making a further (but often reasonable) assumption on S the above bound can be
improved.

Corollary 3.15. Assume the situation as in the previous corollary Further let S(k, n+
N) > 0 for all k ≥ n+ 1. Then:

P(d(n) > N) ≤ inf
θ∈[0,b]

eθρS(θ)N+θ(σA(θ)+σS(θ))
n∑
k=0

eθk(ρA(θ)+ρS(θ))
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Proof. Using A(k, n)− S(k, n+N) ≤ 0 for all k ≥ n+ 1 we have:

0 < A(n)−D(n+N) ≤ A(n)−A⊗ S(0, n+N)

= max
0≤k≤n+N

{A(n)−A(k)− S(k, n+N)}

The remainder of the proof looks like above.

For the tail-bounded version we need a stability condition on the service.

De�nition 3.16. We say S is delay-stable (for ε), if

S(m,n)− αS(n−m, ε) > 0 ∀m,n ≥ 0

and
S(m,n)− αS(n−m, ε) n→∞−−−→∞ ∀m ≥ 0

holds.

Theorem 3.17. Assume S is delay stable for some ε. Then we have for all n ∈ N0:

P(d(n) > min{N ≥ 0 : (αS(ε)− S)� αA(ε)(n, n+N ′) < 0∀N ′ ≥ N)

≤
n∑
k=0

ηA(k, ε) +

∞∑
k=n+1

ηS(k, ε)

Proof. Fix an arbitrary n and assume for a while

D(n+ l) ≥ A⊗ (S − αS(ε))(0, n+ l) (3.1)

for all l ≥ 0 and
A(k, n) ≤ αA(n− k, ε) (3.2)

for all k ≤ n. Choose now some arbitrary l < d(n), then we have by the de�nition of
virtual delay and (3.1):

A(n) > D(n+ l) ≥ min
0≤k≤n+l

{A(k) + S(k, n+ l)− αS(n+ l − k, ε)}

From this and (3.2) we can follow

0 < max
0≤k≤n+l

{A(n)−A(k)− S(k, n+ l) + αS(n+ l − k, ε)}

≤ max
0≤k≤n

{A(n)−A(k)− S(k, n+ l) + αS(n+ l − k, ε)} ∨ 0

≤ max
0≤k≤n

{αA(n− k, ε)− S(k, n+ l) + αS(n+ l − k, ε)} ∨ 0 (3.3)

where we have used that S is delay-stable in the transition to the second line. Writing
it shorter, we eventually have derived 0 < (αS(ε)− S)� αA(ε)(n, n+ l) for all l < d(n).
By the assumption of delay-stability, we know there exists for each k an Nk, such that

αA(n− k, ε)− S(k, n+N ′) + αS(n+N ′ − k, ε) ≤ 0
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for all N ′ ≥ Nk. De�ne N := max0≤k≤nNk, then we have

(αS(ε)− S)� αA(ε)(n, n+N ′) ≤ 0

for all N ′ ≥ N . Because of (3.3) we must have that l < N for each l < d(n) and hence
arrived at:

d(n) ≤ N = min{N ≥ 0 : (αS(ε)− S)� αA(ε)(n, n+N ′) ≤ 0∀N ′ ≥ N}

Moving to probabilities yields:

P(d(n) ≤ N)

≤P

 n⋃
k=0

A(k, n) > αA(n− k, ε) ∪
⋃
l≥0

D(n+ l) < A� (S − αS(ε))(0, n+ l)


≤

n∑
k=0

ηA(k, ε) +

∞∑
k=n+1

ηS(k, ε)

Again, we can make similar comments, to the ones made for the backlog bound: Solving
the equation

x = min{N ≥ 0 : (αS(ε)− S)� αA(ε)(n, n+N ′) ≤ 0∀N ′ ≥ N}

is quite involved and the existence of a solution is not guaranteed. Further for the
generalized case uniqueness of a solution (if existence) is in general not given. We close
with the tail-bound version of a delay bound, which allows optimization over ε and ε′:

Corollary 3.18. Assume S is delay-stable for all ε ∈ I (I being some interval). Then
we have for all n ∈ N0 and ε′ > 0 and ε ∈ I:

P(d(n) > min{N ≥ 0 : (αS(ε′)− S)� αA(ε)(n, n+N ′) < 0 ∀N ′ ≥ N)

≤
n∑
k=0

ηA(k, ε) +

∞∑
k=n+1

ηS(k, ε′)

Exercises

Exercise 3.19. One can also de�ne a backwards oriented delay by:

d̃(n) := min{m : D(n)−A(n−m) > 0}

Show that

P(d̃(n) > N) ≤ eθρS(θ)N+θ(σA(θ)+σS(θ))
n−N∑
k=0

eθk(ρA(θ)+ρS(θ))

for all n > N ∈ N0.
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Exercise 3.20. If we compare the backlog bound with the delay bound we notice that
they only di�er in the leading terms e−θx and eθρS(θ)N . In fact one can interpret the
delay bound as a backlog bound, if there is some guarantee on the service.
Assume that D(n)−D(m) ≥ f(m,n) if [m,n] is a backlog period. (i.e. the node o�ers

a deterministic strict service curve). Show that the delay bound, can be expressed as a
backlog bound:

P(d(n) > N) ≤ P(q(n) > f(n, n+N))

(Hint: Construct �rst the dynamic S-Server. Then show that from d(n) > N follows
q(n) > f(n, n+N))

Exercise 3.21. Assume now that the arrivals have a strict bound, i.e. A(m,n) ≤
f(m,n), where f is monotone decreasing in the �rst variable. Show that the backlog
bound can be expressed by the backward delay bound from exercise 3.19:

P(q(n) > x) ≤ P(d̃(n) > m)

with m maximal such that
f(m,n) < x

is still ful�lled.

Exercise 3.22. Let us investigate the bound from 3.13 in more detail, in expression the
term

∑n
k′=0 e

θk′(ρA(θ)+ρS(θ)). You might remember the geometric series:

∞∑
k=0

qk

which converges to the value 1
1−q if |q| < 1 holds. How behaves the delay bound for

n→∞, in the case ρA(θ) ≥ −ρS(θ)?
The above shows, that one can think of ρA(θ) < −ρS(θ) as a stability condition. The

following counterexample will however show, that it is not a stability condition in the
intuitive sense, that the utilization of a node is below 100%. Assume for this a constant
rate server with rate c and an arrival with exponentially distributed increments (as in
example 2.17). The average rate of arrivals per time step is equal to: E(a(n)) = 1

λ , where
λ is the parameter of the exponential distribution. This gives for the node an utilization
of

1
λ

c
=

1

λc

Show that there exists a choice of c, λ and θ, sucht that 1
λc < 1 holds, but also:

ρA(θ) ≥ −ρS(θ)

This means our system is stable by construction (the node's utilization is below 100%),
but our delay bound diverges for n→∞, no matter how large we choose N in 3.13. This
makes it blatantly obvious, that the derived delay-bound is really only a bound. A bound,
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which in some situations is far from the real systems behaviour. Hence the right choice
of θ is crucial2.

Exercise 3.23. In this exercise we investigate how di�erent timescales in�uence the
quality of the delay bound. In expression, if one has two descriptions of a system di�ering
only in di�erent de�nitions of what one timestep is, which of the two descriptions leads
to a better delay bound?
To do this assume a �ow A which is (0, ρA(θ))-bounded and a node, which o�ers a

constant rate c. Introduce a parameter m ∈ N called granularity and a corresponding
�ow Am such that:

am(k) :=

m∑
l=1

a(m · (k − 1) + l)

Give a bound for E(eθAm(k,n)).
Next we de�ne the virtual delay with granularity m. Let T be a multiple of m:

dm(T ) := m ·min{k : A(T ) < D(T +m · k)}

Show that d(T ) = dm(T ).
Show that for all N being a multiple of m holds:

P(dm(T ) > N) ≤ e−θcN
T
m∑
l=0

(eθ(ρA(θ)−c)·m)l

Show now that for an even N and T the bound for d2(T ) is strictly smaller than the
bound for d(T ). Using this result, what is the best bound one can achieve for the event,
that the delay at (an arbitrary) time T ∈ N is smaller than (an arbitrary) N ∈ N?

3.3 Output Bound

Again we follow the same strategy as for the backlog bound.

Theorem 3.24. For ρS(θ) < −ρA(θ) the output is bounded by (σA(θ)+σS(θ)+B(ρA(θ), ρS(θ)), ρA(θ)).
With B(ρA(θ), ρS(θ)) = −1

θ log(1− e(θρA(θ)+ρS(θ)))

Proof. We have:

D(n)−D(m) ≤ D(n)− min
0≤k≤m

{A(k) + S(k,m)}

≤ A(n)− min
0≤k≤m

{A(k) + S(k,m)}

= max
0≤k≤m

{A(n)−A(k)− S(k,m)} = A� S(m,n)

2To see this even more obvious you can prove the following: For every choice of c and λ with 1/λ < c
exists a θ such that ρA(θ) ≥ −ρS(θ). You may proceed like follows: Reformulate ρA(θ) ≥ −ρS(θ) as
(1 − θ/λ)eθc < 1. Now interpret the last expression as a function in θ, denoted by f . Calculate the
values f(0) and f(λ) and apply the intermediate value theorem.
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Hence:

E(eθ(D(n)−D(m))) ≤ E(eθ(A�S(m,n))) ≤ E(eθA) ◦ E(eθS)(m,n)

=

m∑
k=0

E(eθA(k,n))E(e−θS(k,m))

≤
m∑
k=0

eθρA(θ)(n−k)+θσA(θ)eθρS(θ)(m−k)+θσS(θ)

= eθρA(θ)(n−m)+θσA(θ)+θσS(θ)
m∑
k=0

eθ(m−k)(ρA(θ)+ρS(θ))

≤ eθρA(θ)(n−m)+θ(σA(θ)+σS(θ)− 1
θ

log(1−exp(θρA(θ)+ρS(θ)))

Where the sum was bounded by its corresponding geometric series in the last line
(
∑∞

k=0 q
k = 1

1−q if 0 < |q| < 1).

Note that the last step in the above proof is not necessary to get a bound on the
output. The only reason for performing the last inequality is to class of (σ(θ), ρ(θ))-
bounded arrivals. Coming back to this framework allows analyzing whole networks,
since the output bound can be used again as input bound in theorems 3.3, 3.13 and
3.24. In this course we sticked to the (σ(θ), ρ(θ))-bounds, since they make formulas more
tractable and give us a clearer view on the overall picture.
However all of the presented theorems can be generalized to the usage of f(θ, n)-

bounds, avoiding the last step in the previous proof. Leaving it out gets us bounds,
which can be signi�cally better (compare exercise 3.22 to see how much one can gain
here).
The last thing to do is the tail-bounded version of output bounds. For these we need

again a stability condition, similar to the one for delay-bounds:

De�nition 3.25. We say S is output-stable (for ε) if for each m ≥ 0 exists an Nm such
that

S(k, k + n) > αS(n, ε) + αA(n+m, ε)

holds for all k ≥ 0 and all n ≥ Nm.

The above de�nition states, that the service can catch up on αS(n, ε) + αA(n+m, ε)
after at most Nm time steps and keeps being larger after that point, no matter at which
time k we start observing the system. Further it states that such an Nm exists for every
choice of m.

Theorem 3.26. Assume S is output-stable for A. De�ne the following envelope

αD(m, ε) := αA(ε)� (S − αS(ε))(n0, n0 +m)

= max
0≤k≤n0

{αA(n0 +m− k, ε)− S(k, n0) + αS(n0 − k, ε)}

:= max
n≥0

max
0≤k≤n

{αA(n+m− k, ε)− S(k, n) + αS(n− k, ε)}
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where n0 is the index, which maximizes the expression on the last line.
We have that D is tailbounded by envelope αD with error

ηD(m, ε) := ηS(0, ε) +
∞∑
k=0

ηA(m+ k, ε)

Proof. Let m,n ∈ N0 and ε > 0 arbitrary. We consider the expression D(n+m)−D(n).
Assume for a while that

D(0, n) ≥ A⊗ (S − αS(ε))(0, n) (3.1)

holds, as well as:
A(k, n+m) ≤ αA(n+m− k, ε) ∀ k ≤ n (3.2)

We have then:

D(n+m)−D(n) ≤ D(n+m)− min
0≤k≤n

{A(k) + S(k, n)− αS(n− k, ε)}

≤ A(n+m)− min
0≤k≤n

{A(k) + S(k, n)− αS(n− k, ε)}

= max
0≤k≤n

{A(n+m)−A(k)− S(k, n) + αS(n− k, ε)}

≤ max
0≤k≤n

{αA(n+m− k)− S(k, n) + αS(n− k, ε)}

≤ max
n≥0

max
0≤k≤n

{αA(n+m− k)− S(k, n) + αS(n− k, ε)}

= max
0≤k≤n0

{αA(n0 +m− k)− S(k, n0) + αS(n0 − k, ε)} (3.3)

Here we must give a reason, why the second to last line is well de�ned. For this we
show the set {maxn≥0 max0≤k≤n{αA(n + m − k) − S(k, n) + αS(n − k, ε)}} is bounded
from above, in such a way that a maximizing index n0 exists. Of course, our stability
condition is the striking argument:

max
n≥0

max
0≤k≤n

{αA(n+m− k)− S(k, n) + αS(n− k, ε)}

= max
k≥0

max
n≥k
{αA(n+m− k)− S(k, n) + αS(n− k, ε)}

n′=n−k
= max

k≥0
max
n′≥0
{αA(n′ +m)− S(k, k + n′) + αS(n′, ε)}

= max
k≥0

max
0≤n′≤Nm

{αA(n′ +m)− S(k, k + n′) + αS(n′, ε)}

= max
0≤k≤n̄

max
0≤n′≤Nm

{αA(n′ +m)− S(k, k + n′) + αS(n′, ε)}

Here we have used the stability condition in the fourth line. The last line follows from the
simple observation that the set in maxk≤n′≤Nm{αA(n+m−k)−S(k, n)+αS(n−k, ε)} is
empty for k > Nm and hence can not contribute to the maximum. The index set on the
last line is �nite and hence the maximum is �nite and more importantly a maximizing
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index n0 can be found as needed. From our initializing assumption we derived henceforth
inequality (3.3). Again, moving to probabilities �nishes the proof:

P(D(n, n+m) > αD(m, ε))

≤P

(
D(0, n) < A⊗ (S − αS(ε))(0, n) ∪

n⋃
k=0

A(k, n+m) > αA(n+m− k, ε)

)

≤ ηS(n, ε) +
n∑
k=0

ηA(n+m− k, ε)

≤ ηS(0, ε) +
n∑

k′=0

ηA(m+ k′, ε)

≤ ηS(0, ε) +
∞∑
k′=0

ηA(m+ k′, ε)

We have seen to stability conditions needed to derive performance bounds, when we
are in the tail-bounded case. To state the theorems as general as possible, we introduced
delay-stability, as well as, output-stability. The following de�nition, brings these two
together and allows computation of both bounds at the same time (while being a �too�
strict of an assumption, if one is interested in either delay or output):

De�nition 3.27. S is stable (for some ε) if

S(m,m+ n′)− αS(n′, ε)− αA(N + n′, ε)
n′→∞−−−−→∞

holds for all N ≥ 0 and m ≥ 0 and

S(m,m+ n′)− αS(n′, ε) > 0

holds for all m ≥ 0 and n′ ≥ 0.

It is easy to see, that S being stable implies that S is delay-stable and output-stable.
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