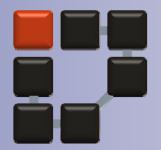
Strictness of Rate-Latency Service Curves

Ulrich Klehmet, Kai-Steffen Hielscher WoNeCA 2014



Informatik 7 Rechnernetze und Kommunikationssysteme

TECHNISCHE FAKULTÄT

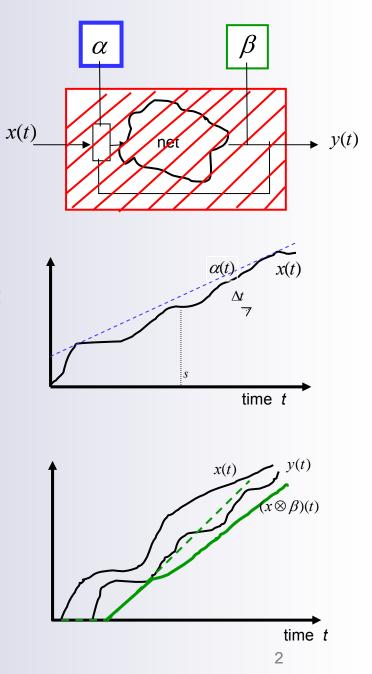
- Modelling by Network Calculus
- Aggregate scheduling
- Strictness of service curves
- Examples of strictness & non-strictness

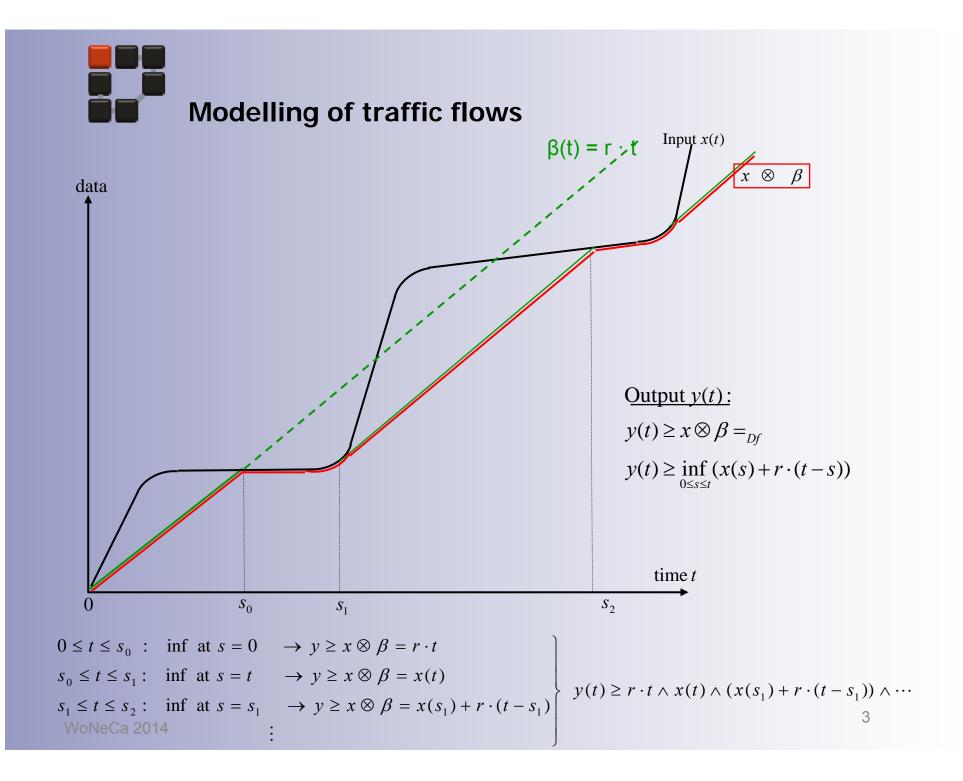
Network Calculus

- Deterministic modelling of traffic flows
 - Arrival curve α
 - x is constrained by $\alpha \Leftrightarrow$ for all Δt :

 $x(s + \Delta t) - x(s) \le \alpha(\Delta t)$

Service curve β y is low-bounded by $(x \otimes \beta)(t)$: $y(t) \ge \inf_{s \le t} (x(s) + \beta(t-s))$





Modelling of traffic flows

- Example
 - Arrival curve: Token Bucket

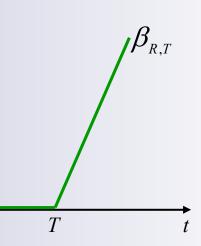
$$\alpha_{r,b}(t) = \begin{cases} r \cdot t + b & t > 0\\ 0 & t = 0 \end{cases}$$

b t

Service curve: Rate-Latency

$$\beta_{R,T}(t) = \begin{cases} \mathbf{R} \cdot (\mathbf{t} - \mathbf{T}) & t > T \\ 0 & t \le T \end{cases}$$

 $\frac{\beta_{R,T}}{R}: An incoming input is served with minimum rate R after a possibly maximal delay T (worst case scenario)$



Bounds of Backlog, Delay and Output

Theorem: Three Bounds

Backlog bound *v*

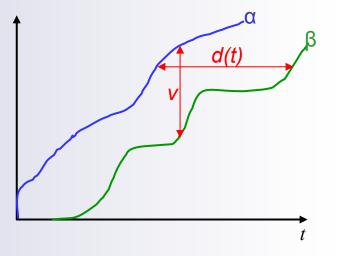
 $v(t) \coloneqq x(t) - y(t) \le \sup_{s \ge 0} \{\alpha(s) - \beta(s)\}$

Delay bound d(t)

 $d(t) \le h(\alpha, \beta) := \sup_{t \ge 0} \{ \inf(\tau \ge 0 : \alpha(t) \le \beta(t+\tau) \}$

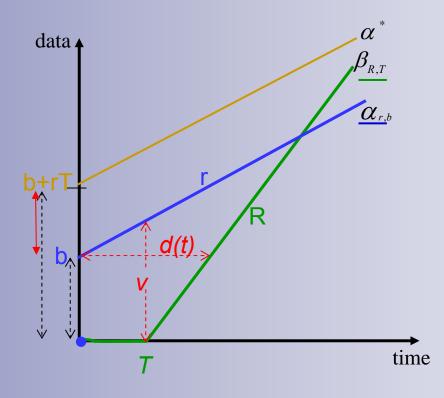
• Output bound α^*

 $y(t) - y(s) \le \alpha^* = \sup_{s \ge 0} \{\alpha(t+s) - \beta(s)\}$



Bounds of Backlog, Delay and Output

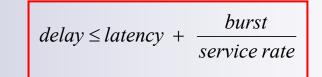
Example: Token bucket input $\alpha_{r,b}$ Rate-latency output $\beta_{R,T}$



Output Bound α^* : $(\alpha^* = rt + b + rT) = r(t + T) + b$ Backlog Bound :

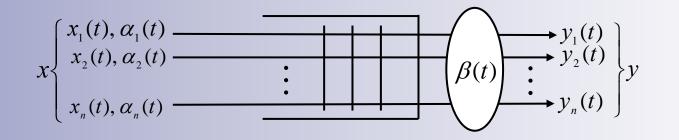
$$v(t) = b + rT$$

Delay Bound : $d(t) \le T + b/R$



Aggregate scheduling

- Aggregated input $x = \sum_{i} x_{i}$
- Aggregated output $y = \sum_{i} y_{i}$
- Aggregated arrival curve $\alpha = \sum_{i} \alpha_{i}$
- **Total Service curve** $\beta(t) = \beta_{aggr}(t)$



Single flow worst-case analysis based on $\beta(t) = \beta_{aggr}(t)$

Demultiplexing:

- Flow 1 and flow 2 interfere with each other how much service e.g. is left for flow 1?
- What is maximum delay d₁(t) e.g. of flow X₁ after servicing X_{aggr} and demultiplexing ?
 ⇒
- Does service curve β_1 exist for single service X_1 with $Y_1 \ge X_1 \otimes \beta_1$ such that: $d_1(t) \le \sup_{t \ge 0} \{ \inf(\tau \ge 0 : \alpha_1(t) \le \beta_1(t+\tau) \} ?$

Theorem: Aggr. Service Curve minus flow 2-Arrival Curve

$$\boldsymbol{\beta}_{1,\tau}(t) = [\boldsymbol{\beta}_{aggr}(t) - \boldsymbol{\alpha}_{2}(t-\tau)]^{+} \cdot \boldsymbol{1}_{t>0}$$

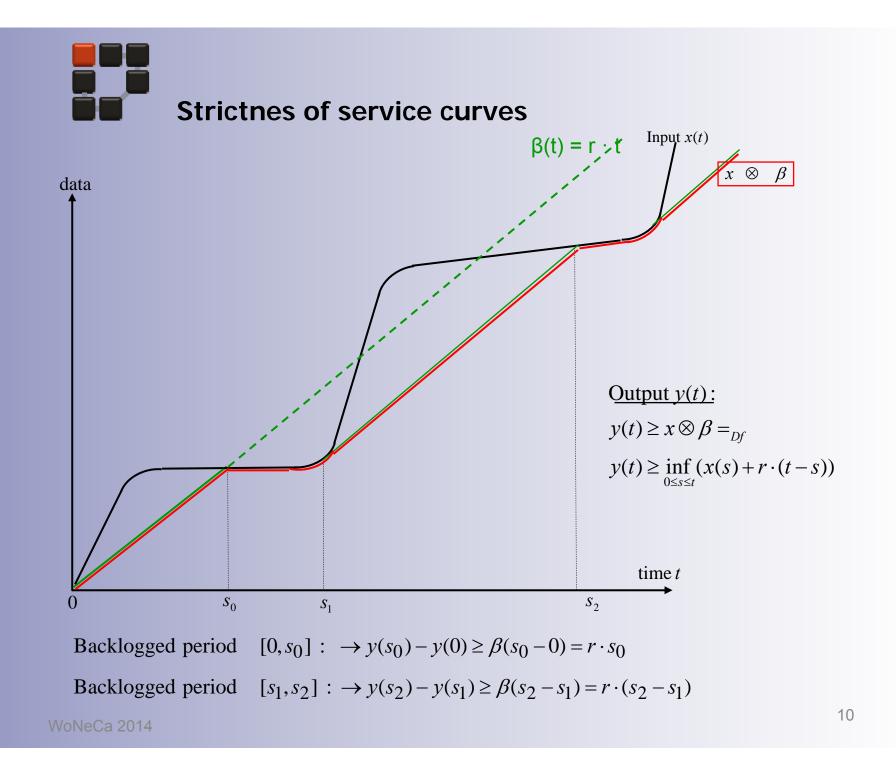
 $\beta_1(t) = \left[\beta_{aggr}(t) - \alpha_2(t)\right]^+ \cdot \mathbf{1}_{t>0}$

- Is generally true for **<u>FIFO</u>** multiplexing
- Is true for <u>Blind</u> multiplexing only if service curve β_{aggr}(t) is strict

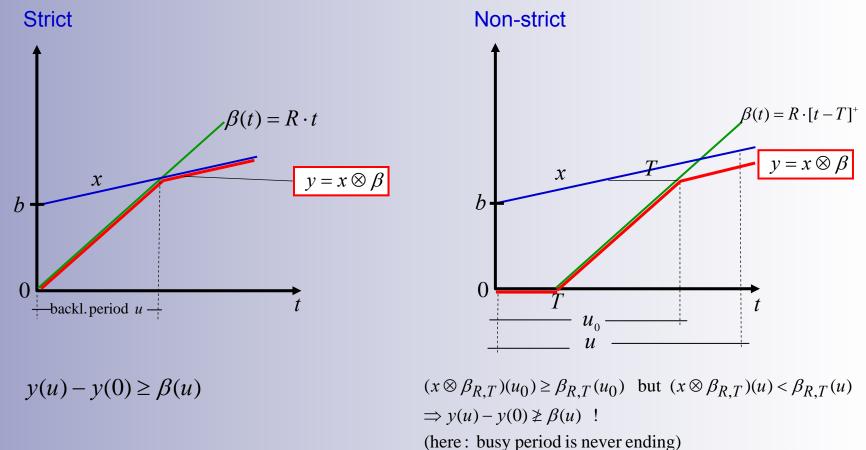
(Blind: Service of flow x_1 and x_2 with unknown arbitration)

Definition :

Service curve β of a system S is a strict service curve if during any backlogged period u = [s, t] the output y is at least equal to $\beta(u)$: $y(t) - y(s) \ge \beta(s - t)$.



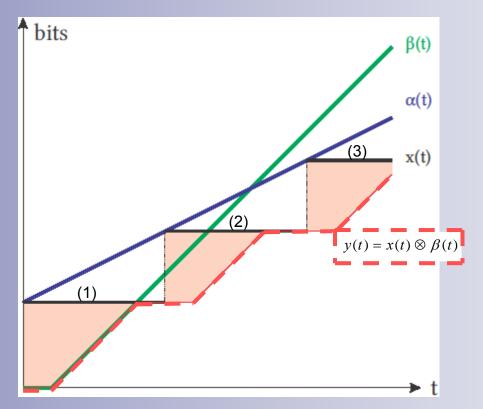
Example: input $x(t) = r \cdot t + b$ output $= y(t) \ge x \otimes \beta = (r \cdot t + b) \otimes \beta_{R,T} = \{b + r(t - T)\} \land \{R(t - T)\}$



WoNeCa 2014

11

Another example



- service curve $\beta = \beta_{R,T}$
- arrival curve $\alpha = \alpha_{r,b}$
- input stair function x
- output function *y*

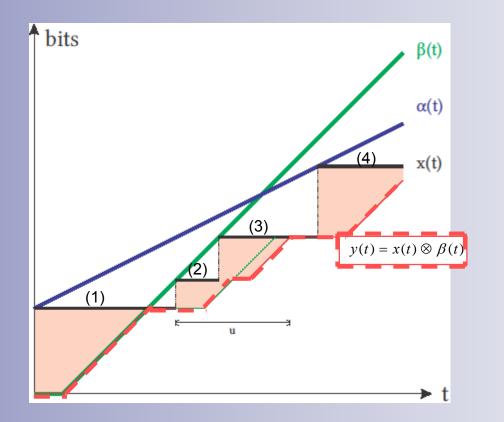
 β is strict

Notice:

 \Rightarrow

Each input of x starts a new backlogged period

Non-strict



- service curve $\beta = \beta_{R,T}$
- arrival curve $\alpha = \alpha_{r,b}$
- input stair function x
- output function *y*

 \Rightarrow

 β is non-strict

Notice:

Input (3) of *x* starts inside the backlogged period u

Remark:

- Any strict service curve is a service curve
- being strict or non-strict depends on service curve <u>and</u> input *x* (in each case verifying is required)
- hope: at least in case of token bucket similar input functions with rate-latency service curves decision is easier ⇒

Theorem:

Given a sytem with rate - latency service curve $\beta_{R,T}$ (worst case scenario) and token bucket arrival curve $\alpha_{r,b}$ with r < R and T > 0. $\beta_{R,T}$ can not be strict, if the input x(t) is a strictly increasing function.

[*f* strictly increasing $\Leftrightarrow \forall a, b \text{ with } a < b : f(a) < f(b)$]

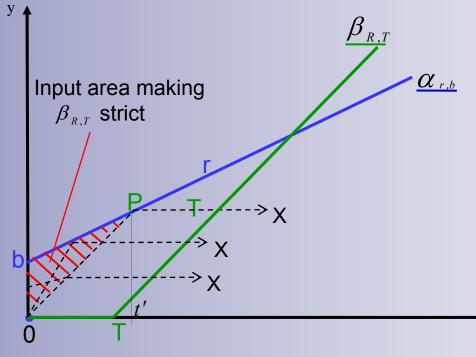
Remark:

Unfortunately, if input x is not strictly increasing - one can <u>not</u> follow that $\beta_{R,T}$ is strict

Examples of strictnes & non-strictness - input x or x'V 🔺 - output y $\alpha_{r,b} = 1,5t+5$ $\beta_{R,T} = 2(t-2)^+$ - arrival curve $\alpha_{\rm r,b}$ - service curve $\beta_{R,T} \begin{cases} \frac{\text{strict}}{\text{non} - \text{strict}} & (x) \\ \frac{\text{non} - \text{strict}}{\text{strict}} & (x') \end{cases}$ 20 ► X $x \otimes \beta_{\scriptscriptstyle R,T}$ 0 $: t \leq 0$ $x \coloneqq \begin{cases} 1,5t+5 : t \le 10 \\ 20 : else \end{cases}$ 16 10 $x' \otimes \beta_{R,T}$ 8 $x' \coloneqq \begin{cases} 0 & : t \le 0\\ 0,75t + 2,5 & : t \le 10\\ 10 & : \text{else} \end{cases}$ 5 4 2 10 12 6 8 4 t 15 WoNeCa 2014

• Obviously, all input functions x causes a strict service curve $\beta_{R,T}$ with

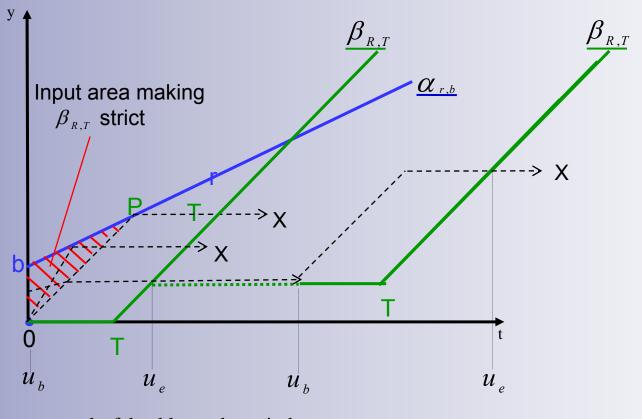
$$x := \begin{cases} mt + n & t: t \le t' \\ constant & : else \end{cases}$$



- constant part of x starts within or at brink of triangle 0bP
- P is intersection of $\alpha_{r,b}$ with curve y=R·t

··· or multiple pattern of this

Examples



 u_e – end of backlogged period u u_b – begin of backlogged period u Example: Service curve for left-over flow

Theorem (Blind):

 $\beta_1(t) = \left[\beta_{aggr}(t) - \alpha_2(t)\right]^+ \cdot \mathbf{1}_{t>0}$

Is true for Blind multiplexing only if <u>service</u> <u>curve</u> $\beta_{aggr}(t)$ is <u>strict</u>!

Example:

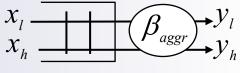
Blind – complete unknown arbitration between two flows ⇒

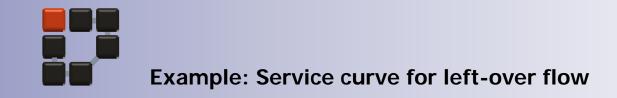
worst case for flow 1: preemptive priority schedule in favour of flow 2:

flow 1 = 'low' := x_1 flow 2 = 'high' := x_h

$$x_{t} := \begin{cases} 0 & : t \le 0 \\ 0,5t+2 & : t \le 10 \\ 7 & : \text{ else} \end{cases} \qquad x_{h} := \begin{cases} 0 & : t \le 0 \\ t+3 & : t \le 10 \\ 13 & : \text{ else} \end{cases}$$

$$\Rightarrow \text{ the aggregated input } x = x_i + x_h = \begin{cases} 0 & : t \le 0\\ 1,5t+5 & : t \le 10\\ 20 & : \text{ else} \end{cases}$$





Again: - Arrival curve $\alpha_{r,b} := 1,5t + 5$ if t > 0, zero else

- Aggregated service curve $\beta_{aggr} = \beta_{R,T} := 2(t-2)^+$

 $\Rightarrow \beta_{aggr}$ (in connection with aggregated input $x = x_l + x_h$) is strict.

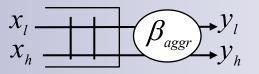
Be arrival curve of $x_h : \alpha_h = t + 3$ As per Theorem (Blind) \Rightarrow $\beta_{\text{low}}(t) = [\beta_{\text{aggr}}(t) - \alpha_h(t)]^+ = [2(t-2) - (t+3)]^+ = [t-7]^+ \text{ is service curve of } x_l.$

$$\Rightarrow \text{ for any low - priority output } y_l: \quad y_l \ge (x_l \otimes \beta_l)(t) = \begin{cases} (t-7)^+ & :t \le 11\\ 2+0,5(t-7)^+ & :11 < t \le 17\\ 7 & :else \end{cases}$$

\Rightarrow	y_l is lower bounded	by	$(t-7)^+$	if $t \in [0, 11]$
		by	2 + 0,5 (t - 7)	if $t \in [11, 17]$
	and	by	7	if $t \ge 17$.

Example: Service curve for left-over flow У. $\boldsymbol{\alpha}_{r,b}$ β_{aggr} Theorem (Blind): β_{low} is service curve of $x_l \Rightarrow$ $y_l \ge x_l \otimes \beta_{low}$ 20 ►X 16 ► X h 13 12 β_{low} 10 $\boldsymbol{x}_{l} \otimes \boldsymbol{\beta}_{low}$ 7 5 4 2 10 11 16 17 8 20 WoNeCa 2014

Remark:



Theorem (Blind) formulates sufficient conditions only :

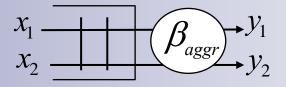
if β_{aggr} is non - strict $\Rightarrow \beta_{low}(t) := [\beta_{aggr}(t) - \alpha_h(t)]^+$ can be both, a service curve for flow x_1 or not - depending on x_1

Therefore :

Can we bypass the question of strictness or non-strictness in case of aggregate scheduling ?

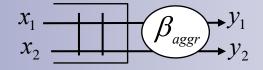
Aggregate scheduling

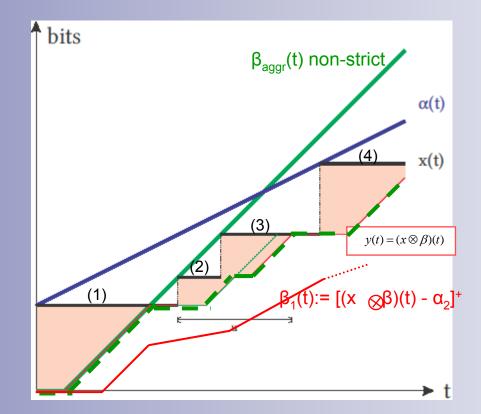
 Trials to bypass question of <u>strictness</u> or <u>non-strictness</u> in case of aggregate scheduling



Statement 1:

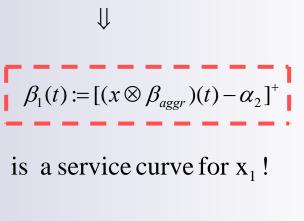
Given a node serving the flows x_1 and x_2 again with unknown arbitration between the flows, $x = x_1 + x_2$ the aggregated input, and $y = y_1 + y_2$ the aggregated output, β_{aggr} - the service curve of x and flow x_2 is bounded by K > 0. If $\beta_1(t) := [\beta_{aggr}(t) - K)]^+$ wide - sense increasing, then β_1 is a service curve for x_1 . Aggregate scheduling





Statement 2:

 β_{aggr} is not strict, so you can't reason $\beta_1(t) := [(\beta_{aggr} - \alpha_2)(t)]^+$ is a service curve for x_1 but



 $\begin{array}{l} \mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2, \ \boldsymbol{\alpha} = \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 \\ \mathbf{x}_2 \ \text{is} \ \boldsymbol{\alpha}_2 - \text{smooth} \end{array}$

- Network Calculus QoS performance evaluation tool of aggregate multiplexing flows
- Aggregate FIFO and Blind service
 - Strict & non-strict service
 - Strictness sufficient condition for service curves of single individual flows within blind scheduling
- Strictness or non-strictness often not a unique feature of service curve per se

Thanks for your attention !