On the Transmission Rate Strategies in Cognitive Radios WoNeCa-3

Sami Akin and Markus Fidler

Institute of Communications Technology Leibniz Universität Hannover

April 6, 2016

Motivation

Problem formulation

Existing and proposed transmission rate models

Performance analysis

Conclusion

Motivation

- In cognitive radios, channel sensing errors have been considered generally in protecting primary users and maximizing transmission throughput
- Transmission rate strategies have not been investigated from a Data-link layer perspective
- Along with existing rate strategy, we proposed two other strategies
- We obtained effective capacity to understand the tradeoff between delay and rate strategies
- We performed low/high signal-to-noise ratio analysis
- There is not a unique strategy that is the best
- In IEEE Trans. Wireless Commun., Mar. 2016

Introduction

Cognitive radio channel model

Channel state

 \mathcal{H}_b : Channel is busy \mathcal{H}_i : Channel is idle

Channel sensing

 $\widehat{\mathcal{H}}_{b}$: Sensed as busy

 $\widehat{\mathcal{H}}_i$: Sensed as idle

Input-output channel model Receiver Transmitter ACK/NACK Data Source Data Sink Buffer Buffer Channel Encoder Decoder х Modulator Demodulator h s n

Transmission power
$$\widehat{\mathcal{H}}_b$$
 : $P_b \leq P_{max}$ $\widehat{\mathcal{H}}_i$: $P_i \leq P_{max}$ $P_b = \mu P_i, 0 \leq \mu \leq 1$

Transmission rate
$\widehat{\mathcal{H}}_{m{b}}$: $m{R}_{m{b}}$ $<$ $m{C}$ $\widehat{\mathcal{H}}_i$: $m{R}_i$ $<$ $m{C}$
C : Channel Capacity

Channel is actually busy

Case 1 : Detected as busy

Case 2 : Detected as idle

Channel is actually idle

Case 3 : Detected as busy

Case 4 : Detected as idle

Sensing performance measures

Probability of detection

$$p_d = \frac{\Pr\{\text{Case 1}\}}{\Pr\{\text{Case 1} \cup \text{Case 2}\}}$$

$$p_f = \frac{\Pr\{\text{Case 3}\}}{\Pr\{\text{Case 3} \cup \text{Case 4}\}}$$

$$\widehat{\mathcal{H}}_b$$
 : $R_b = ?$ and $\widehat{\mathcal{H}}_i$: $R_i = ?$

 $R_{b,i}$ may be set to the channel capacity because the channel fading, h, is known by the transmitter as well

Busy sensing

$$C_{1} = f\left(\widehat{\mathcal{H}}_{b}, \mathcal{P}_{b}, \mathcal{H}_{b}\right)$$
$$C_{3} = f\left(\widehat{\mathcal{H}}_{b}, \mathcal{P}_{b}, \mathcal{H}_{i}\right)$$

Idle sensing

$$C_{2} = f\left(\widehat{\mathcal{H}}_{i}, \mathcal{P}_{i}, \mathcal{H}_{b}\right)$$
$$C_{4} = f\left(\widehat{\mathcal{H}}_{i}, \mathcal{P}_{i}, \mathcal{H}_{i}\right)$$

Busy sensing

$$R_b = C_1$$
 or $R_b = C_3$?
Given $C_1 < C_3$

Idle sensing

$$egin{array}{ll} R_i = C_2 ext{ or } R_i = C_4 \ ? \ ext{Given } C_2 \leq C_4 \end{array}$$

Problem formulation

Example 1

- 1. Channel is sensed as busy and we set $R_b = C_1$
- 2. In *Case 1*, $R_b = C_1$ and R_b bits can be served
- 3. In *Case 3*, $R_b \leq C_3$ and R_b bits can be served
- 4. Due to false alarm, a chance of using a free channel is wasted by sending data at a lower rate

Example 2

- 1. Channel is sensed as idle and we set $R_i = C_4$
- 2. In *Case 4*, $R_i = C_4$ and R_i bits can be served
- 3. In *Case 2*, $R_i \ge C_2$ and 0 bits is possibly served
- 4. Due to miss-detection and interference from primary users, a transmission outage occurs

Existing and proposed transmission models

Optimistic policy (existing)

- ▶ Busy sensing : $R_b = C_1 \iff$ Idle sensing : $R_i = C_4$
- In Cases 1 and 3, R_b bits are served
- In Cases 2 and 4, 0 and R_i bits are served, respectively

Conservative policy (proposed)

- ▶ Busy sensing : $R_b = C_1 \iff$ Idle sensing : $R_i = C_2$
- In Cases 1 and 3, R_b bits are served
- In Cases 2 and 4, R_i bits are served

Greedy policy (proposed)

- Busy sensing : $R_b = C_3 \iff$ Idle sensing : $R_i = C_4$
- In Cases 1 and 2, 0 bits are served
- In Cases 3 and 4, R_b and R_i bits are served, respectively

Effective capacity

Effective capacity

Dual of effective bandwidth; maximum constant arrival rate a stochastic service process can sustain under certain QoS constraints specified by θ

For a stable system, a(t)=?

$$C_{E}(\theta) = -\lim_{t \to \infty} \frac{1}{t\theta} \log_{e} \mathbb{E} \left\{ e^{-\theta \sum_{\tau=1}^{t} s(\tau)} \right\}$$

What to infer from θ ?

- For large q: $\Pr\{Q > q\} \approx e^{-\theta q}$
- Larger $\theta \rightarrow$ stricter constraints on buffer
- Smaller $\theta \rightarrow$ looser constraints on buffer

Properties of effective capacity

1. $\lim_{\theta\to\infty} C_E(\theta) \Longrightarrow$ minimum service rate

2. $\lim_{\theta\to 0} C_E(\theta) \Longrightarrow$ average service rate

Numerical results

- $P_{int} = 20 \text{ dB}$ and $P_{max} = 20 \text{ dB}$
- m=50 (left figure), $\theta = 0.1$ (right figure)
- $p_d = 0.95$, $p_f = 0.1$ and interference = 5 dB

Low/high signal-to-noise ratio regime

Notes

 ${\cal C}_{\cal E}(\theta,\gamma)$ is concave in the space defined by signal-to-noise ratio (γ)

Low signal-to-noise ratio

- Energy-per-bit : $v = \frac{\gamma}{C_{F}(\theta, \gamma)}$
- v_{\min} : The minimum energy-per-bit is obtained as signalto-noise ratio goes to zero, i.e., $\gamma \rightarrow 0$
- \mathcal{S}_0 : Minimum υ and slope of the effective capacity versus υ (in dB) curve at υ_{\min}

High signal-to-noise ratio

•
$$S_{\infty} = \lim_{\gamma \to \infty} \frac{C_E(\theta, \gamma)}{\log_2 \gamma}$$
: High signal-to-noise ratio slope in bits/channel use (3 dB)

- \mathcal{L}_∞ : Power offset with respect to a reference channel having the same slope

Solid lines are low signal-to-noise ratio approximations of the corresponding effective capacities

• m=200 and $\theta = 5$

Numerical results

Solid lines are high signal-to-noise ratio approximations of the effective capacity in Conservative policy

•
$$\kappa = \frac{\theta m}{\log_e 2}$$

• $\kappa = 0.9$ (left figure)

Backup — Effective capacity

Effective capacity as a function of signal-to-noise ratio (γ) and decay rate (θ)

$$C_{E}(\theta,\gamma) = \max_{p_{d}P_{b}+(1-p_{d})P_{i} \leq P_{int}} -\frac{1}{m\theta} \log_{e} \frac{1}{2} \mathbb{E}_{h} \Big\{ A + \sqrt{B^{2} + 4C} \Big\}$$

$$A = p_{b1}e^{-\theta R_1} + p_{b2}e^{-\theta R_2} + p_{i3}e^{-\theta R_3} + p_{i4}e^{-\theta R_4},$$

$$B = p_{b1}e^{-\theta R_1} + p_{b2}e^{-\theta R_2} - p_{i3}e^{-\theta R_3} - p_{i4}e^{-\theta R_4},$$

$$C = (p_{b3}e^{-\theta R_3} + p_{b4}e^{-\theta R_4})(p_{i1}e^{-\theta R_1} + p_{i2}e^{-\theta R_2})$$

$$p_{bk} \text{ and } p_{ik} \text{ are functions of } \alpha, \beta, p_d, p_f \text{ for } k \in \{1, 2, 3, 4\}$$

Optimistic policy : $R_1 = R_3 = C_1$, $R_2 = 0$ and $R_4 = C_4$ Conservative policy : $R_1 = R_3 = C_1$ and $R_2 = R_4 = C_2$ Greedy policy : $R_1 = R_2 = 0$, $R_3 = C_3$ and $R_4 = C_4$

Low/high signal-to-noise ratio regime

Remarks

- v_{\min} does not depend on θ in all transmission models
- S_0 is a function of θ in all policies
- v_{min} and S₀ do not depend on the state transition probabilities of primary users in Conservative policy
- v_{min} and S₀ do not depend on the correlation dynamics of primary users' sampled signals in Greedy policy
- v_{min} and S₀ depend on p_d and p_f only in Optimistic policy
- $\mathcal{S}_{\infty} = 0$ in Optimistic and Greedy policies

•
$$S_{\infty} = 1$$
 if $\frac{\theta m}{\log_e 2} = \kappa < 1$, and $S_{\infty} = \frac{1}{\kappa}$ otherwise in Conservative policy

High signal-to-noise ratio regime

High signal-to-noise ratio regime can be considered when:

- 1) There is no strict interference power constraint
- 2) Secondary users internal power limits are very high

Define

$$\begin{split} \mathcal{S}_{\infty} &= \lim_{\gamma \to \infty} \frac{C_{E}(\theta, \gamma)}{\log_{2} \gamma} : \text{High signal-to-noise ratio slope in bit-}\\ \text{s/channel use (3 dB)}\\ \mathcal{L}_{\infty} &= \lim_{\gamma \to \infty} \left\{ \log_{2} \gamma - \frac{C_{E}(\theta, \gamma)}{\mathcal{S}_{\infty}} \right\} : \text{Power offset with respect}\\ \text{to a reference channel having the same slope}\\ \text{Approximation : } C_{E} &= \mathcal{S}_{\infty} \left[\log_{2} \gamma - \mathcal{L}_{\infty} \right] - o(1) \end{split}$$

Remarks

• $\mathcal{S}_{\infty} = 0$ in Optimistic and Greedy policies

•
$$S_{\infty} = 1$$
 if $\frac{\theta m}{\log_{\theta} 2} = \kappa < 1$, and $S_{\infty} = \frac{1}{\kappa}$ otherwise in Conservative policy

Notes

1) $C_E(\theta, \gamma)$ is concave in the space defined by γ 2) The minimum energy-per-bit is obtained as signal-to-noise ratio goes to zero, i.e., $\gamma \rightarrow 0$

Define

Energy-per-bit :
$$v = \frac{\gamma}{C_E(\theta,\gamma)}$$

Minimum v : $v_{\min} = \lim_{\gamma \to 0} \frac{\gamma}{C_E(\theta,\gamma)} = \frac{1}{\dot{C}_E(\theta,0)}$

Slope of the effective capacity versus υ (in dB) curve at $\upsilon_{\rm min}$:

$$\begin{split} \mathcal{S}_{0} = & \lim_{\upsilon \downarrow \upsilon_{\min}} \frac{C_{E}(\upsilon)}{10 \log_{10} \upsilon - 10 \log_{10} \upsilon_{\min}} 10 \log_{10} 2 \\ = & \frac{2(\dot{C}_{E}(\theta, 0))^{2}}{-\ddot{C}_{E}(\theta, 0)} \log_{e} 2 \text{ bits/channel use/(3 dB)} \end{split}$$