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Background in finance domain

Figure : Scatter plot of the daily log returns of the New York Stock Exchange
composite price index (NYSE) versus Taiwan weighted stock index (TAIEX) from
2001 to 2003. (The figure is cited from [chiou2008copula ])

[chiou2008copula] Chiou, Shang C., and Ruey S. Tsay. “A copula-based
approach to option pricing and risk assessment.” Journal of Data Science
6.3 (2008): 273-301.
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What’s the copula?
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Figure : Each point in the
above figure is a sample pair
(x ′, y ′)
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Figure : Each point in the
above figure is a sample pair
(u′, v ′)

(x ′, y ′) is mapping to (u′, v ′) by marginal distribution function, i.e.,

u′ = Fx(x ′) = Prob(x ≤ x ′)

v ′ = Fy (y ′) = Prob(y ≤ y ′)

Copula C (u′, v ′) = Prob(u ≤ u′, v ≤ v ′)
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Definition of Copulas

Definition (Copula)

Copula is a multivariate distribution function which must satisfy that the
marginal distribution of each argument is a uniform distribution on [0,1].

Theorem (Sklar’s theorem)

Let F be an N-dimensional joint distribution function with continuous
margins F1,F2, . . . ,FN . Then F has a unique copula representation:

F (x1, x2, . . . , xN) = C (F1(x1),F2(x2), . . . ,FN(xN)).

Copula is a function that links univariate marginals to their joint
distribution.

Copula is independent of both marginals and joint distribution.
Several popular families have been proposed.

Given marginals, joint distribution is computable by copula modelling.
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Why Are Copulas Powerful?
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Pearson Correlation ρ(X1,Y1) = cov(X1,Y1)
σX1σY1

= 0

Kendall’s Tau ρτ (X1,Y1) = 4
∫ 1
0

∫ 1
0 C (u1, v1)dC (u1, v1)− 1 = 1

Copula measures functional dependence, while the Pearson
correlation only measures linear dependence.
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Why Are Copulas Powerful? (Cont.)
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ρ(X2,Y2) = 1, ρτ (X2,Y2) = 1
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Theorem (The invariant property of copulas)

Let X and Y be continuous random variables with copula CXY . CXY is
invariant under strictly increasing transformations of X and Y .
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Statistical Network Calculus (StatNC)

Arrival DeparturesBuffer Server

System

Arrival Curve Prob{sup0≤s≤t{A(s, t)− α(t − s)} > x} ≤ f (x)
Service Curve Prob{A⊗ β(t)− A∗(t) > x} ≤ g(x)

⇓
Backlog Prob{B(t) > x} ≤ (f ⊗ g)(x − α� β(0))

Delay Prob{D(t) > h(α + x , β)} ≤ (f ⊗ g)(x)

The values of the bounding function on the right hand of the
inequations are expected to be as small (tight) as possible.
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Statistical Network Calculus (StatNC)

Arrival Curve Prob{ sup
0≤s≤t

{A(s, t)− α(t − s)} > x} ≤ f (x)

Statistical Method

Characterize the arrival traffic by random variable
let X =sup0≤s≤t{A(s, t)− α(t − s)} as the statistic of arrival A.
Sampling it along time series, it can be regarded as random variable.

The arrival curve of traffic flow turns to be the complementary
distribution of the random variable: Prob{X > x} = F̄X (x) ≤ f (x).
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Integration of Copulas into StatNC

Two Flows Situation

Arrival 1

DeparturesBuffer Server

System

Arrival 2

Goal: to capture dependence between A1 and A2, and characterize
aggregate traffic A1 + A2.

Statistical Method: the goal turns to capture dependence between X1

and X2, and determine the complementary distribution of the sum
Z = X1 + X2
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Integration of Copulas into StatNC (cont.)

Problem Formation: If we know two flow curves F̄X1 and F̄X2 , how to
calculate the aggregate flow curve F̄Z , where Z = X1 + X2?
Traditional Solutions:

General Case (No matter independent or not)

F̄Z (z) ≤ (F̄X1 ⊗ F̄X2)(z),⊗is (min,+) convolution.

Independent Case

F̄Z (z) = 1− (F̄X1 ∗ F̄X2)(z), ∗is the Stieltjes convolution operation.

New Solution with the Copula:

F̄Z (z) = 1−
∫∫

x+y<z
dC (FX1(x),FX2(y))
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Integration of Copulas into StatNC (Cont.)

Copula case: Let Z be the sum of two random variables X and Y . Then

ˆ̄FZ (z) ≥ F̄Z (z) ≥ ˘̄FZ (z), (1)

where

ˆ̄FZ (z) = 1− sup
x+y=z

{W (FX (x),FY (y))}, (2)

˘̄FZ (z) = 1− inf
x+y=z

{W̄ (FX (x),FY (y))}, (3)

W (u, v) = [u + v − 1]+, (4)

W̄ (u, v) = [u + v ]1. (5)
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Integration of Copulas into StatNC (Cont.)

Numerical Examples: X1 ∼ Exp(0.5),X2 ∼ Exp(0.5),Z = X1 + X2
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Figure : Arrival Curve of Aggregate Flow
Z = X1 + X2

Promising aspects of copulas:

Copula could measure the
dependence between two traffic
flows more accurately

Copula-based analysis for
aggregate traffic leads to tighter
bounds than general bounds

The upper and lower bounds
derived by copulas show the
range that statistical network
calculus can achieve.
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A Study on Real-world Traffic

Experiment Setting

IP 1

IP 2

IP 3

A Skype group call with three
clients

The traffic data of two outflows
from IP 1 are captured by
Wireshark.

There are three independent
experiments, each records traffic
for more than 20 minutes. The
corresponding traffic data are
stored in three datasets, Dataset
1, Dataset 2 and Dataset 3.
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A Study on Real-world Traffic

Traffic Modelling
We define a random variable a to represent traffic sent per second. The
observed samples of this random variables are denoted as â,

A(s, t) =
t∑

i=s+1

âi ,

where âi is the observed value of a in ith second.

We model traffic with a for the sake of the preservation of
characteristics of real-world traffic.

The goals for modelling: 1) study the marginals of a1 and a2; 2)
study the dependence structure between a1 and a2.
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A Study on Real-world Traffic

Marginal Study of a1 and a2
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Figure : Histogram of samples of a1 in
Dataset 1
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Figure : Histogram of samples of a2 in
Dataset 1

Passed the Kolmogorov-Smirnov test that ai conforms to the mixed
normal distribution with distribution function:

F (x) = πΦ(
x − µ1
σ1

) + (1− π)Φ(
x − µ2
σ2

).
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A Study on Real-world Traffic

Copula Study Between a1 and a2

We choose three of Archimedean parametric (θ) copulas (Clayton, Frank,
Gumbel) to model the copula between a1 and a2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

v

Clayton Copula with θ=3

Figure : Clayton Copula
with θ = 3
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Figure : Frank Copula
with θ = 3
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Figure : Gumbel Copula
with θ = 3

Parameter θ is related directly to the Kendall’s tau.

The three copulas has three extreme features on tail dependence
(Tail dependence is also copula based dependence).
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A Study on Real-world Traffic

Copula Study Between a1 and a2

Dataset 1 Dataset 2 Dataset 3

θ 1.1464 1.0597 1.6791

P -value 0.41 0.5 0.94

θ 1.2531 0.4483 4.465

P -value 0.23 0.41 0.4

θ 0.2057 0.0327 0.7574

P -value 0.07 0.21 0

Gumbel

Frank

Clayton

Table : ’Blanket’ goodness of fit test for copula between a1 and a2 across three
datasets.

Remarks:

1 P-Value is a measure of fit, with larger values being better.

2 Dependence between flows is best characterized by Gumbel copula.
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Copula Analysis with Simulated Traffic

Performance analysis

Definition (Backlog for Constant Service Rate System)

Given the arrival A(s, t) and a constant service rate R, the backlog B(t) is:

B(t) = sup
0≤s≤t

{A(s, t)− R(t − s)}.

Recall that statistic of A, X = sup0≤s≤t{A(s, t)− α(t − s)}

In the special case that the service rate is constant, the backlog
turns out to have the same form with the statistic of A.
Statistical method is applied on backlog directly. The backlog bounds
from statistical method will be consistent with the derived bounds.

We define a random variable B to represents the backlog. The
backlog bound now is the complementary distribution function of the
sum of r.v.s for two subflows. Prob{B > x} = Prob{B1 + B2 > x}
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Copula Analysis with Simulated Traffic

Statistical Distribution of Backlogs
Null hypothesis: the random variable Bi (i = 1, 2) conforms to the mixture
of two normal distribution with parameters given by the parameter
estimates. (Can’t be rejected based on the K-S test.)

B1 B2

π 0.316657 0.31119

μ1 6402.2 6912.625

μ2 10741.37 12382.1

σ1 1650.444 2439.608

σ2 1930.165 4116.222

0.021 0.0233

Degree of freedom 1000

Critical values D 0.01 0.0515

Random variable

Estimate

 of 

paramters

Statistical value D

Table : Kolmogorov-Smirnov test for backlogs based on simulated dataset.

Remark: Statistical property of backlog is essentially inherited from that of
simulated arrival traffic flows.
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Copula Analysis with Simulated Traffic

Backlog Bound Curves
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Figure : Backlog bound curve of flow A1.
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Figure : Backlog bound curve of flow A2.
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Copula Analysis with Simulated Traffic

Copula-based Dependence Between backlogs

θ 2.48

P -value 0.03

θ 9.3526

P -value 0.21

θ 3.5

P -value 0.68

Gumbel

Frank

Clayton

Table : ’Blanket’ goodness of fit test for copula between B1 and B2 based on
simulated dataset.

Remarks:
1) P-Value is a measure of fit, with larger values being better.
1) Dependence between backlogs is best characterized by Clayton copula.
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Copula Analysis with Simulated Traffic

Backlog Bound for Aggregate Flow

General bound Prob{B(t) > x} ≤ F̄B1 ⊗ F̄B2 .

Backlog bound Prob{B(t) > x} ≤ 1−
∫ ∫

b1+b2<x dC (FB1 ,FB2)
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Figure : Backlog bound for aggregate traffic flow A = A1 + A2.
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Conclusion and Future Work

1 Copula can be used as a statistical tool to capture network traffic
dependence.

2 Copula analysis discloses the range that stochastic network calculus
can achieve.

3 We show how to integrate copula analysis into the StatNC framework
to provide tighter performance bounds.

4 A real-world case study as well as simulation evaluation demonstrate
the copula analysis.

5 So far, we only study the contemporaneous dependence and its
application in StatNC. It is more important to investigate the
temporal dependence in the future.
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Questions?
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The End
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