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Feedback system

o Feedback system:
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@ For the analysis we use network calculus methodology
@ Network calculus has analyzed feedback systems under
deterministic assumptions
Open problem in network calculus J

Analysis of feedback systems with probabilistic assumptions




Related work

@ Performance bonds for flow control protocols?

- Deterministic analysis
- Min-plus algebra
- Window flow control model

@ A min,+ system theory for constrained traffic regulation and
dynamic service guarantees?

- Deterministic analysis
- Min-plus algebra
- Window flow control model

@ TCP is max-plus linear?

- Deterministic service process
- Max-plus algebra
- TCP Tahoe and TCP Reno
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Related work

@ TCP congestion avoidance®

- Deterministic analysis

- Min-plus algebra

- Window flow control model
- TCP Vegas and Fast TCP

e Window flow control in stochastic network calculus®

- Stochastic analysis
- Min-plus algebra
- Window flow control model

4M. Chen et al. “TCP congestion avoidance: A network calculus interpretation and performance
improvements”. In: /EEE INFOCOM. vol. 2. 2005, pp. 914-925.

5M. Beck and J. Schmitt. “Window flow control in stochastic network calculus - The general service case”. In:
ACM VALUETOOLS. Jan. 2016.



Bivariate network calculus

(f A g) (87 t) = min{f(‘s? t)? g(sa t)}
(f ® g) (Sa t) = srgnggt{f(saT) + g(Ta t)}

(f®@g)(s,t) # (g f)(s,t)

e (A,®) operations form a non-commutative dioid over
non-negative non-decreasing bivariate functions

e discrete-time domain (¢ =0,1,2,...)

@ Sub-additive closure:
FESAAFONOA = A f™
n=0

where f("1) = f(") @ f for n > 1, fO) =5, and fV) = f



Moment-generating function network calculus®

@ Moment-generating function of a random variable X:

My (0) = B ["¥]

@ Moment-generating function of operations ® and ©:
Migq(—0,5,1) ZMf —0,5,7)My(—6,7,1)

Mipg(0,s,t) < ZMf@Tt) 4(—=0,7,5)
=0

e For Pr(S(s, t) < S¢(s, t)) < g, statistical service bound

6 [e—
S°(s,t) = %1a8<0{10g6 log Mg(—0, s, t)}

SM. Fidler. “An end-to-end probabilistic network calculus with moment generating functions”. In: |EEE
IWQoS. 2006, pp. 261-270.



State-of-the-art: Window flow control

X < window
arrivals throttle departures
A" =min {A, D'}
/ s .
w s>t A"'— D=min{A, D+ w}—D
5 (s, 1) = = <Dtw-D
0o s<t -

= w




State-of-the-art: Window flow control

@ Delay element represent feedback delay:
da(s,t) =d(s,t —d)
o Equivalent feedback service:

Suin = (S®5d®5+W)*®s J

D

A D



Results: Exact result

Feedback system with w > 0, d > 0
and with an additive service process

t—1
~Y g
k=s

ci's are arbitrary sequence of
non-negative random variables

If feedback delay is one (d = 1),

Swin (s, t) Z min { ¢, w}
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Results: Upper and lower bounds

For the equivalent service process Syin Of a general feedback
system with window size w > 0, and feedback delay d > 0, we have

@ Upper and lower bounds:

win($, 1) < Swin(s, t) < min {S(s, 1), [52] w}

win

v in (8, t) is the equivalent service process of the feedback system

with window size w’ = w/d and feedback delay d' = 1

@ The lower bound corresponds to the exact result
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Results: Equivalent service

@ Feedback system with window size w > 0 and delay d > 0:

[5*] n
Swin(s, t) = { min <Z(S(Ti1,n — d)) + S(7y, t)) + nw}

n=0 (Cn(st) \;5

where C), (s, t) is given as

Cn(s,t)={s=7< - <1, <t|Vi=0,...,n 7, —T_1 > d}
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Results: Feedback system with VBR

Variable Bit Rate (VBR) server

t—1
S<57 t) = Z Ck
k=s

where c¢;'s are independent and identically distributed random
variables

For a feedback system with VBR server with window size w > 0
and delay d > O:

Mg, (=0, 5,1) < (Mo(=0)" + de™") KR J

M_.(0) is the moment-generating function of ¢y,
M(0) = E ["*]

13/20



Results: Feedback system with MMOO

Markov-modulated On-Off (MMOO) server operates in two states:
@ ON (state 1): The server transmits a constant amount of
P > 0 units of traffic per time slot, ¢, = P
o OFF (state 0): The server does not transmit, ¢ = 0
The MMOO server offers an additive service process

t—1
S(s,t) = Z Ck
k=s

For a feedback system with MMOO server with window size w > 0
and delay d > 0, if pg1 + p1o < 1:

t—s

Mo (~0,5,0) < (s (<0)% + de00) LT J

m. () is the larger eigenvalue of the matrix

Poo  Po1 1 0
L(0) =
(©) <p10 p11><0 69P>
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Numerical results: Statistical service bounds

1
win(8,£) = max o {loge —log Ms,,, (=0, 5,1) |
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Numerical results: Effective capacity

) 1
PySwin<_0) = tli)rglo _7 log MSwin(_07 07 t)
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Numerical results: Backlog and delay bounds

t—1
A(s, t) = Z ar  with exponential aj and average rate A
k=s
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Conclusions

Results:
o Exact results
@ Upper and lower service bounds
@ Equivalent service of the feedback system
@ Bounds for a feedback system with VBR server
@ Bounds for a feedback system with MMOO server
@ Backlog and delay bounds
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Thank you
Q&A
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