
Institutionen för informationsteknologi | www.it.uu.se

In
fo

rm
at

io
ns

te
kn

ol
og

i
Network Calculus with

Compact Domains

Steffen Bondorf, bondorf@cs.uni-kl.de
Jens Schmitt, jschmitt@cs.uni-kl.de

Embedded Systems Group,
Department for Information Technology
Uppsala University, Sweden

In
fo

rm
at

io
ns

te
kn

ol
og

i Kai Lampka, lampka@it.uu.se

Distributed Computer Systems (DISCO) Lab
Computer Science Department
University of Kaiserslautern, Germany

Institutionen för informationsteknologi | www.it.uu.se

In
fo

rm
at

io
ns

te
kn

ol
og

i

UU/IT

4/7/16 | #‹#› @ UU/IT

Student project at ETHZ 2010:
Heterogeneous Communication System (HCS)

Server

NAC NAC NAC NAC NAC NAC NAC NAC

NAC NAC NAC NAC NAC NAC NAC NAC

Server

NAC

DEV

DEV

DEV

DEV

DEV

DEV

DEV

DEV

DEV

DEV

DEV

CAM

Sensor

Network traffic:
•  Clock synchronization
•  Audio streaming
•  Event-based traffic (reading

light, …)
•  Background traffic (network

signalling) More than 200
individual
components

UU/IT

4/7/16 | #‹#› @ UU/IT

Audio
Audio

Small scale RTC Model (3 flows-of-intrests)
SERV NAC DEV

PTP Master

Announc.

Audio

GPC
PTP Slave

10 x

Speaker

Signaling sink Signaling source

GPC

GPC

GPS GPS

. . .

Ethernet Ethernet

Server Device

NAC

10% 10% 40% 10% 20%

Background traffic

Event sink GPC

GPC

Event source

20%

+
Sync &
Follow-up Delay-resp.

Delay-req.

OR GPC

UU/IT

4/7/16 | #‹#› @ UU/IT

Ci

�������������������
�����������������
���������������������

�������������������
�����������
������	�����
���������������������

���������
�����
�������������

���������
�������
�������

β∗,i

βi,∗

α∗,i αi,∗

Greedy Processing Component (GPC),

↵u
i,⇤ = min{(↵u

⇤,i ⌦ �u
⇤,i) ↵ �l

⇤,i,�
u
i,⇤}

↵l
i,⇤ = min{(↵l

⇤,i ↵ �u
⇤,i) ⌦ �l

⇤,i,�
l
⇤,i}

�u
i,⇤ = (�u

⇤,i � ↵l
⇤,i)↵ 0

�l
i,⇤ = (�l

⇤,i � ↵u
⇤,i)⌦ 0

Flow equations of GPC, [Wandeler’06]

��	���

����	
��

φ λ+ τλ

�	����������
����
	���������������
���������

delayi ≤ sup
λ≥0

{
inf{τ ≥ 0 : αu

∗,i(λ) ≤ βl
∗,i(λ+ τ)}

}

backlogi ≤ sup
φ≥0

{
αu
∗,i(φ)− βl

∗,i(φ)
}

αu
∗,i βl

∗,i

GPC analysis follows a Total Flow Analysis:
end-to-end delay computed from sum of

GPC-delays

UU/IT

4/7/16 | #‹#› @ UU/IT

Problems

•  Long execution times

•  Large memory consumption (“out of memory”-errors)

1)  Enormous effort for manually creating an MPA model for the
HCS due to its sheer size (number of GPCs)

2)  For large systems, the representation of the arrival and
services curves gets complex very fast, leading to:

Even with up-scaling of curves and
simplifications, the HCS model as a set of

standard GPCs could not be analyzed

UU/IT

4/7/16 | #‹#› @ UU/IT

Envisioned Solution

•  Automatic generation of the MPA model for the HCS system

•  Safe “approximation” of arrival/service curves with
simpler curves

•  Doing as less approximations as possible

 → acquiring the most accurate result

•  Doing approximation automatically → providing a

general framework instead of generating a use-
case-specific solution

Goal: Analysis of the entire HCS reference topology

UU/IT

4/7/16 | #‹#› @ UU/IT

Source of the scaling problem

�
���	�����

���� ����	����
���� �����
�
��������

�
���	��������

����������������
���	��������
%��+!��+&�5�%.!1&�

%+!.!+&�

%-!0!+&�

%,!/!+&�

%+!+!+&�

%-!-!+&�
���
�������
�
����������

�
��
����������
���	��������
%�	�!�	�&�5�%/!.&�

.�

/�

0�

1�

2�

3�

4�

.� 2� 3�+� ,� -� 0�/� 1� ,+�4�

-�

,�

T

events

��
�����
����	
�
	������
���������
�#��
�$� ��
���	�������#�'%+!.!+&"%,!/!+&"%-!0!+&(�
��$� �
���	��������#�'%+!+!+&"�%-!-!+&"��

�%��+!���+&�#5�%.!1&"��
�%�	�!�	�&�#5�%/!.&(��

�

αu(T)

Many NC-based tools use pseudo-periodic curves, so does the MPA-toolbox

UU/IT

4/7/16 | #‹#› @ UU/IT

Source of the scaling problem

+ Stored segments of an
output curve to a RTC-
operation cover
hyperperiod of input
curves.

Hyperperiod:
least common multiple
of periods of input
curves.

With co-prime periods of curves this yields an exponential blow up of curves

UU/IT

4/7/16 | #‹#› @ UU/IT

A first solution to the scaling problem
[Suppiger, Perathoner, Lampka, Thiele’10]

Aperiodic
part

3

4

5

6

7

8

9

3 7 8 0 1 2 5 4 6 10 9

2

1

T

events

↵u(T)

let constant c
define the length
of the aperiodic
part, here c = 3

Replace complex periodic
part by a single segment.

The complex tail
you must eliminate
and efficiency you

will find.

UU/IT

4/7/16 | #‹#› @ UU/IT

Conservative
 approximation

original
aperiodic

part

3

4

5

6

7

8

9

3 7 8 0 1 2 5 4 6 10 9

2

1

T

↵u(T)

c = pd0 +R · pdx

² Let R be the number of
expansions of period into
aperiodic part

² Needs to be provided by
system designer

explicitly added
segments

original periodic
part

UU/IT

4/7/16 | #‹#› @ UU/IT

Curve layout

new aperiodic part

3

4

5

6

7

8

9

3 7 8 0 1 2 5 4 6 10 9

2

1

T

↵u(T)
² This storage format is already

supported in the MPA-toolbox,
(no need to re-implement RTC
with finite curves)

² Provides significant runtime
savings c

UU/IT

4/7/16 | #‹#› @ UU/IT

Modelling Approach run-time
PTP delay
(video period
40 ms)

PTP delay
(video period
40.5 ms)

piece-wise linear pseudo-
periodic curves 282.33 s 6.1250 ms memory exhausted

Single linear segment 0.36 s 17.2979 ms 17.2921 ms
NC on compact domain 1.13 s 6.1250 ms 6.1250 ms

Use of conservative “conversion
rule” (overapproximation) on the HCS

Effect on runtime as function of R

Runtime of few
seconds opposed to

few minutes
Why do they

bother?

UU/IT

4/7/16 | #‹#› @ UU/IT

Server

NAC12 NAC13NAC11 NAC14

NAC22 NAC23NAC21 NAC24

NAC32 NAC33NAC31 NAC34

NAC42 NAC43NAC41 NAC44

DEV4411 DEV4421 DEV4431 DEV4441

DEV4412 DEV4422 DEV4432 DEV4442

DEV4413 DEV4423 DEV4433 DEV4443

DEV4414 DEV4424 DEV4434 DEV4444

DEV4411LQHQ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LQ

●

●

●

●

●

●

●

●

●

LQ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

HQ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

LQ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Topline 1

Topline 2

Topline 3

Topline 4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

cam

cam

cam

cam

cam

cam

E
n

d
 d

ev
ic

e
 d

a
is

y
ch

a
in

backbone backbone backbone backbone

Server

²  The HCS can be partitioned into 4 toplines

²  Each topline can be evaluated in isolation

²  Upscaled resolution of curves (increases pessimism
at the benefit of few number of segments)

Note: Quantitative evaluation methods might be
part of design space exploration techniques

=> we need to be fast as
possible

Moderate runtime of HCS is misleading:

UU/IT

4/7/16 | #‹#› @ UU/IT

new
delay

new
backlog

↵u
⇤,i

�l
⇤,i

T

When done wrong (or arbitrary), unknown loss of
tightness has to be expected.

²  Losing accuracy.

²  Tightness of the obtained
delay/backlog bound
becomes a function of the
length of the prefix and
thereby a function of R

Shortcoming of solution 1

UU/IT

4/7/16 | #‹#› @ UU/IT

End-to-end delay of the video stream in the HCS plotted
for different values of R

Shortcoming of solution 1
I cannot accept
a deal with an
unknown loss of

precision.

UU/IT

4/7/16 | #‹#› @ UU/IT

but......... at least we can bound the error by using
linear “under-approximation”

lower
backlog
bound

↵u
⇤,i

�l
⇤,i

T

lower delay
bound

Under-approximation:
bound arrival from below
& service from above;
excludes behaviour (is
not safe)

Overapproximation: bound
arrival from above &
service from below;
includes more behaviour

UU/IT

4/7/16 | #‹#› @ UU/IT

backlog
↵u
⇤,i

�l
⇤,i

T

delay

↵u
⇤,i

�l
⇤,i

Linear overapproximation of arrival and service

Overapproximation, linear bound
from above and below:

Backlog and delay
bound derived from

overapproximations are
an upper bound on the

actual values!

"�u
(�) = max(0, Nl + � ·�) �l

(�)

#↵u
(�) = max(0, Nu + ⇢ ·�) � ↵u

(�)

UU/IT

4/7/16 | #‹#› @ UU/IT

backlog
↵u
⇤,i

�l
⇤,i

T

delay

↵u
⇤,i

�l
⇤,i

Linear under-approximations of arrival and
service

Under-approximation, linear
bound from below and above:

Backlog and delay
bound derived from
underapproximations
are a lower bound on

the actual values!

#�l
(�) = max(0, Nl + � ·�) � �l

(�)

"↵u
(�) = max(0, Nu + ⇢ ·�) ↵u

(�)

UU/IT

4/7/16 | #‹#› @ UU/IT

Take-away message for solution 1

² Linear overapproximation of periodic part (tail) speeds up
computation significantly

² When done correctly, i..e, with an aperiodic part (prefix)
of sufficient length no loss in precision has to be
expected

UU/IT

4/7/16 | #‹#› @ UU/IT

Intuition for a rule to compute c for a component

backlog
↵u
⇤,i

�l
⇤,i

T

delay

↵u
⇤,i

�l
⇤,i

Intersection of
overapproximated arrival
and service curves bounds
the stretch where backlog
and delay bound reside
(max. busy window, known
from scheduling theory)

S

Can this be a
bound for c?

yes, but

UU/IT

4/7/16 | #‹#› @ UU/IT

(a ⌦ b)(�) = inf0��{a(�� �) + b(�)}

(a ↵ b)(�) = sup��0{a(�+ �)� b(�)}

(a⌦ b)(�) = sup0��{a(�� �) + b(�)}

(a↵ b)(�) = inf��0{a(�+ �)� b(�)}
² Convolution operations (Δ ≤ S implies 0 ≤ λ ≤ S)

If the output curve needs to be defined up to S, input curve a
and b have to be defined only up to S too (problem solved).

² Deconvolution operations (Δ ≤ S implies ???)
No trivial solution as no bound for λ can be derived from the
definitions directly.

UU/IT

4/7/16 | #‹#› @ UU/IT

A second (GPC-based) solution [Guan,Wang’13]

3

4

5

6

7

8

9

3 7 8 0 1 2 5 4 6 10 9

2

1

T

↵u(T)

Explicitly stored segments (prefix)

ci = S#↵(⇤,i),"�(⇤,i) +K

² Sa,b is the latest
intersection value of
overapproximated arrival
curve a and service
curve b input to GPC Ci

² Ki is the prefix size
requested by the
down-streamed
component of Ci

ci = S#↵(⇤,i),"�(⇤,i) +Ki

UU/IT

4/7/16 | #‹#› @ UU/IT

↵1,2

GPC C1 GPC C2

�1 �2

↵0,1

�1

↵0,1

" �1

S2 S1

K1 = S1 + K2 K2 = S2

K2 K1

↵1,2↵0,1

input curves to C1 input curves to C2

" �2

Execute analysis with overapproximations and
compute prefix lengths

propagation of prefix size along the transitive closure of the input relation

UU/IT

4/7/16 | #‹#› @ UU/IT

Take away message for 2nd solution

①  Computation of prefix sizes can be done efficiently

² System analysis based on linear overapproximations

² back-propagation of prefix sizes along the input
paths

②  Size of prefixes resembles “busy window” approach
known from scheduling theory and proofs related to
the GPC and its input curves. How to be used with
other “component models” or NC-theorem like
PBOO, PMOO was unknown.

③  GPC-based system analysis does not reflect the
state-of-the-art (to slow & not tight)

UU/IT

4/7/16 | #‹#› @ UU/IT

Running example from [Guan,Wang’13]

GPC-based
methods runtime end-to-end delay

E4

pseudo-periodic
curves 315.97s 21

prefixed curves 0.24s 21

Tightness of
results

UU/IT

4/7/16 | #‹#› @ UU/IT

Exploiting PBOO with running example

methods runtime end-to-end delay
E4

pseudo-periodic
curves (GPC) 315.97s 21

prefixed curves
(GPC) 0.24s 21

pseudo-periodic
curves (PBOO) 35.67s 19

Can we do
still better

UU/IT

4/7/16 | #‹#› @ UU/IT

Exploiting PMOO with running example

methods runtime end-to-end delay
E4

pseudo-periodic
curves (GPC) 315.97s 21

prefixed curves
(GPC) 0.24s 21

pseudo-periodic
curves (PBOO) 35.67s 19

pseudo-periodic
curves (PBOO) 17.67s 15

UU/IT

4/7/16 | #‹#› @ UU/IT

Towards a new solution

with prefixed
curves we gain
significantly
speed in the
analysis

with GPC-
style of

analysis we
significantly
lose precision

Finitary-RTC but with prefix
sizes derived for RTC-

operators (and not GPCs)

So
lu
t
ion

(GPC-based)
Finitary-RTC

.......also simplifies proofs

UU/IT

4/7/16 | #‹#› @ UU/IT

Problem definition:
• Let curves a and b be standard RTC curves defined on the

interval [0,+1).

• Let curves a0 and b0 be their prefixed counterparts, i.e., they

are defined on the finite interval [0, ka] and [0, kb], where for
� 2 [0, ka] : a(�) = a0(�) and for � 2 [0, kb] : b(�) = b0(�)

holds.

• Let � be an operator relevant for RTC, i.e.,

� 2 {⌦,⌦,min,+,�, ↵ , ↵ }

For a finite constant k we need to clarify the condition on the size

of ka and kb w.r.t.k and operator � such that

8� 2 [0, k] : (a� b)(�) = (a0 � b0)(�)

UU/IT

4/7/16 | #‹#› @ UU/IT

↓ α(∆)

↑ β(∆)

↓ β(∆)

↑ α(∆)

α(∆)

β(∆)

lower service curve: β(∆)

linear approx. from below ↑ β(∆)

linear approx. from above ↓ α(∆)

linear approx. from below ↑ α(∆)
linear approx. from above ↓ β(∆)

upper arrival curve α(∆)

�	�������
�����
	��

��������
�����
	�

Recall: linear over- and underapproximations as
defined before:

UU/IT

4/7/16 | #‹#› @ UU/IT

prefix length of c is k
(as before)

Domain bounds with common RTC operators

standard
RTC-

operator

a

b
c

Let the operators of group I be from the set {⌦,⌦,min,+,�}.

Satisfaction of the relation k min(ka, kb) yields that for

� 2 {⌦,⌦,min,+,�} and � 2 [0, k] :

(a� b)(�) = (a0 � b0)(�) holds .

This directly arises from the definition of these RTC-operators, e.g.,

(a ⌦ b)(�) = inf0��{a(�� �) + b(�)}

(a ↵ b)(�) = sup��0{a(�+ �)� b(�)}

(a⌦ b)(�) = sup0��{a(�� �) + b(�)}

(a↵ b)(�) = inf��0{a(�+ �)� b(�)}

prefix length of
b is kb

prefix length of
a is ka

input curves
output curve

UU/IT

4/7/16 | #‹#› @ UU/IT

prefix length of c is k
(as before)

Domain bounds with min-plus deconvolution

a

b
c

There is no trivial solution, because:
(a ⌦ b)(�) = inf0��{a(�� �) + b(�)}

(a ↵ b)(�) = sup��0{a(�+ �)� b(�)}

(a⌦ b)(�) = sup0��{a(�� �) + b(�)}

(a↵ b)(�) = inf��0{a(�+ �)� b(�)}

prefix length of
b is kb

prefix length of
a is ka

input curves
output curve

but

UU/IT

4/7/16 | #‹#› @ UU/IT

yields following property

①  Compute lower bound on maximum vertical distance of a and b
(backlog bound with underapproximations)

②  Compute pseudo-inverse vdp of the lower vertical distance bound
but with respect to over-approximations of a and b.

Recipe for deriving domain bound for min-plus
deconv.

sup
0�vdp

{a(�+ �)� b(�)} � sup
�>vdp

{a(�+ �)� b(�)}

Assuming that a is subadditive, b superadditive
and their longterm rates are not equal, i.e., the

backlog bound is finite

UU/IT

4/7/16 | #‹#› @ UU/IT

T

Step 1

Compute lower bound on maximum
vertical distance of a and b (backlog
bound with underapproximations) a

a

b

b

v(a,b)

Lower bounding the max. vertical distance

UU/IT

4/7/16 | #‹#› @ UU/IT

T

Step 2

Compute pseudo-inverse vdp of
lower bound on maximum vertical
distance but w.r.t.
overapproximations of a and b.

a

a

b

b

v(a,b)

Pseudo-inverse of the lower bound on the max. vertical
distance

vdp

UU/IT

4/7/16 | #‹#› @ UU/IT

T

Δ

Δ

When computing the min-plus deconvolution for a
specific Δ

Δ

sup
0�vdp

{a(�+ �)� b(�)} � sup
�>vdp

{a(�+ �)� b(�)}

vdp

yeah we are done!
almost....

UU/IT

4/7/16 | #‹#› @ UU/IT

node Ci
terminal
node Cj

Execute analysis with over- and
underapproximations to compute prefix lengths

α*,i

β*,i

αi,j

βk,j
vdpi

Kj = vdpj

vdpi + Kj

² At an inner node Ci we (back)propagate (the max.)
vdpi in the direction of α*,i and vdpi + Kj for β*,i

² At the terminal node of a path, it is sufficient to
back-propagate the max. vdp of that node.

Kj
 = vdpj

UU/IT

4/7/16 | #‹#› @ UU/IT

For the running example from
[Guan,Wang’13] Runtimes

(a) Run times and delay bounds

Linear RTC Ci-finit !-finit
GPC 0.137s 315.97s 0.240s 0.228s

PBOO 0.140s 35.67s – 0.148s
PMOO 0.035s 17.67s – 0.035s
Delay bounds linear: GPC≈72, PBOO≈57, PMOO≈23

Delay bounds others: GPC=21, PBOO=19, PMOO=15

UU/IT

4/7/16 | #‹#› @ UU/IT

Running example from [Guan,Wang’13]
Prefix sizes

(b) Component-wise prefixes for the GPC analysis

R1 R2 R3

Ci-finit !-finit Ci-finit !-finit Ci-finit !-finit
E1 98 81 90 61 74 35
E2 90 81 78 61 59 35
E3 78 81 60 61 35 35
E4 60 56 35 35 35 35

UU/IT

4/7/16 | #‹#› @ UU/IT

Conclusion
²  For large systems, the representation of the arrival and

services curves gets complex very fast as experienced with
the HCS model

²  Function prefixing avoids this by limiting curves to finite
domains, HCS case study provided evidence but lacked formal
criterion on the prefix size.

² Finitary RTC provided sucha criterion, but is
limited to GPC-models and their flow equations.

² but, GPC-based system modelling is
unaccpetable, runtime and precision-wise.

² This called for re-visiting of function prefixing,
but at the level of individual RTC-operators

UU/IT

4/7/16 | #‹#› @ UU/IT

Thank you for your time

