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Student project at ETHZ 2010: 
Heterogeneous Communication System (HCS) 
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Network traffic:  
•  Clock synchronization 
•   Audio streaming  
•  Event-based traffic (reading 

light, …) 
•  Background traffic (network 

signalling) More than 200 
individual 
components 
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Audio 
Audio 

Small scale RTC Model (3 flows-of-intrests)     
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Greedy Processing Component (GPC), 

↵u
i,⇤ = min{(↵u

⇤,i ⌦ �u
⇤,i) ↵ �l

⇤,i,�
u
i,⇤}

↵l
i,⇤ = min{(↵l

⇤,i ↵ �u
⇤,i) ⌦ �l

⇤,i,�
l
⇤,i}

�u
i,⇤ = (�u

⇤,i � ↵l
⇤,i)↵ 0

�l
i,⇤ = (�l

⇤,i � ↵u
⇤,i)⌦ 0

Flow equations of GPC, [Wandeler’06] 
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delayi ≤ sup
λ≥0

{
inf{τ ≥ 0 : αu

∗,i(λ) ≤ βl
∗,i(λ+ τ)}

}

backlogi ≤ sup
φ≥0

{
αu
∗,i(φ)− βl

∗,i(φ)
}

αu
∗,i βl

∗,i

GPC analysis follows a Total Flow Analysis:  
end-to-end delay computed from sum of 

GPC-delays 
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Problems 

 
•  Long execution times 

•  Large memory consumption (“out of memory”-errors) 

1)   Enormous effort for manually creating an MPA model for the 
HCS due to its sheer size (number of GPCs) 

2)   For large systems, the representation of the arrival and 
services  curves gets complex very fast, leading to: 

 

Even with up-scaling of curves and 
simplifications, the HCS model as a set of 

standard GPCs could not be analyzed 
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Envisioned Solution 

•   Automatic generation of the MPA model for the HCS system 

•   Safe “approximation” of arrival/service curves with 
simpler curves  

 
•   Doing as less approximations as possible 

 → acquiring the most  accurate result 
 
•  Doing approximation automatically → providing a 

general  framework instead of generating a use-
case-specific solution 

Goal:   Analysis of the entire HCS reference topology 
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Source of the scaling problem 
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Many NC-based tools use pseudo-periodic curves, so does the MPA-toolbox  
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Source of the scaling problem 

+ Stored segments of an 
output curve to a RTC-
operation cover 
hyperperiod of input 
curves. 
 
Hyperperiod: 
least common multiple 
of periods of input 
curves. 

With co-prime periods of curves this yields an exponential blow up of curves 



UU/IT 

4/7/16 | #‹#› @ UU/IT 

A first solution to the scaling problem 
[Suppiger, Perathoner, Lampka, Thiele’10] 
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↵u(T )

let constant c 
define the length 
of the aperiodic 
part, here c = 3 

Replace complex periodic 
part by a single segment. 

The complex tail 
you must eliminate 
and efficiency you 

will find. 
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Conservative 
 approximation 

original 
aperiodic  

part 
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c = pd0 +R · pdx

² Let R be the  number of 
expansions of period into 
aperiodic part 

² Needs to be provided by 
system designer 

explicitly added 
segments 

original periodic 
part 
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Curve layout 

new aperiodic part 
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² This storage format is already 

supported in the MPA-toolbox, 
(no need to re-implement RTC 
with finite curves) 

² Provides significant runtime 
savings c 
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Modelling Approach run-time
PTP delay
(video period
40 ms)

PTP delay
(video period
40.5 ms)

piece-wise linear pseudo-
periodic curves 282.33 s 6.1250 ms memory exhausted

Single linear segment 0.36 s 17.2979 ms 17.2921 ms
NC on compact domain 1.13 s 6.1250 ms 6.1250 ms

Use of conservative “conversion 
rule” (overapproximation) on the HCS 

Effect on runtime as function of R 

Runtime of few 
seconds opposed to 

few minutes 
Why do they 

bother? 
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Server
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²  The HCS can be partitioned into 4 toplines 

²  Each topline can be evaluated in isolation 

²  Upscaled resolution of curves (increases pessimism  
at the benefit of few number of segments) 

Note: Quantitative evaluation  methods might be 
part of design space exploration techniques 

=> we need to be fast as 
possible 

Moderate runtime of HCS is misleading: 
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new 
delay 

new 
backlog 

↵u
⇤,i

�l
⇤,i

T

When done wrong (or arbitrary), unknown loss of 
tightness has to be expected. 

²  Losing accuracy. 

²  Tightness of the obtained 
delay/backlog bound 
becomes a function of the 
length of the prefix and 
thereby a function of R 

Shortcoming of solution 1 
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End-to-end delay of the video stream in the HCS plotted 
for different values of R 

Shortcoming of solution 1 
I cannot accept 
a deal with an 
unknown loss of 

precision. 
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but......... at least we can bound the error by using 
linear “under-approximation” 

lower 
backlog 
bound 

↵u
⇤,i

�l
⇤,i

T

lower delay 
bound 

Under-approximation: 
bound arrival from below 
& service from above; 
excludes behaviour (is 
not safe) 

Overapproximation: bound 
arrival from above & 
service from below; 
includes more behaviour 
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backlog 
↵u
⇤,i

�l
⇤,i

T

delay 

↵u
⇤,i

�l
⇤,i

Linear overapproximation of arrival and service 

Overapproximation, linear bound 
from above and below: 

Backlog and delay 
bound derived from 

overapproximations are 
an upper bound on the 

actual values! 

"�u
(�) = max(0, Nl + � ·�)  �l

(�)

#↵u
(�) = max(0, Nu + ⇢ ·�) � ↵u

(�)
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backlog 
↵u
⇤,i

�l
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T

delay 
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⇤,i

�l
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Linear under-approximations of arrival and 
service 

Under-approximation, linear 
bound from below and above: 

Backlog and delay 
bound derived from 
underapproximations 
are a lower bound on 

the actual values! 

#�l
(�) = max(0, Nl + � ·�) � �l

(�)

"↵u
(�) = max(0, Nu + ⇢ ·�)  ↵u

(�)
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Take-away message for solution 1 

² Linear overapproximation of periodic part (tail) speeds up 
computation significantly 

² When done correctly, i..e, with an aperiodic part (prefix) 
of sufficient length no loss in precision has to be 
expected 
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Intuition for a rule to compute c for a component 

backlog 
↵u
⇤,i

�l
⇤,i

T

delay 

↵u
⇤,i

�l
⇤,i

Intersection of 
overapproximated arrival 
and service curves bounds 
the stretch where backlog 
and delay bound reside 
(max. busy window, known 
from scheduling theory) 

S

Can this be a 
bound for c? 

yes, but ........ 
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(a ⌦ b)(�) = inf0��{a(�� �) + b(�)}

(a ↵ b)(�) = sup��0{a(�+ �)� b(�)}

(a⌦ b)(�) = sup0��{a(�� �) + b(�)}

(a↵ b)(�) = inf��0{a(�+ �)� b(�)}
² Convolution operations (Δ ≤ S implies 0 ≤ λ ≤ S)  

If the output curve needs to be defined up to S, input curve a 
and b have to be defined only up to S too (problem solved). 

² Deconvolution operations (Δ ≤ S implies ???)  
No trivial solution as no bound for λ can be derived from the 
definitions directly. 
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A second (GPC-based) solution   [Guan,Wang’13] 

3 

4 

5 

6 

7 

8 

9 

3 7 8 0 1 2 5 4 6 10 9 

2 

1 

T

↵u(T )

Explicitly stored segments (prefix) 

ci = S#↵(⇤,i),"�(⇤,i) +K

² Sa,b is the latest 
intersection value of 
overapproximated arrival 
curve a and service 
curve b input to GPC Ci 

² Ki is the prefix size 
requested by the 
down-streamed 
component of Ci 

ci = S#↵(⇤,i),"�(⇤,i) +Ki
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# ↵1,2

GPC C1 GPC C2 

�1 �2

↵0,1

�1

# ↵0,1

" �1

S2 S1 

K1 = S1 + K2 K2 = S2 

K2 K1 

↵1,2↵0,1

input curves to C1 input curves to C2 

" �2

Execute analysis with overapproximations and 
compute prefix lengths 

propagation of prefix size along the transitive closure of the input relation 
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Take away message for 2nd solution 

①  Computation of prefix sizes can be done efficiently 

² System analysis based on linear overapproximations 

² back-propagation of prefix sizes along the input 
paths 

②  Size of prefixes resembles “busy window” approach 
known from scheduling theory and proofs related to 
the GPC and its input curves. How to be used with 
other “component models” or NC-theorem like 
PBOO, PMOO was unknown. 

③  GPC-based system analysis does not reflect the 
state-of-the-art (to slow & not tight) 
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Running example from [Guan,Wang’13] 

GPC-based 
methods runtime end-to-end delay 

E4 

pseudo-periodic 
curves 315.97s 21 

prefixed curves 0.24s 21 

Tightness of 
results 
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Exploiting PBOO with running example 

methods runtime end-to-end delay 
E4 

pseudo-periodic 
curves (GPC) 315.97s 21 

prefixed curves 
(GPC) 0.24s 21 

pseudo-periodic 
curves (PBOO) 35.67s 19 

Can we do 
still better 
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Exploiting PMOO with running example 

methods runtime end-to-end delay 
E4 

pseudo-periodic 
curves (GPC) 315.97s 21 

prefixed curves 
(GPC) 0.24s 21 

pseudo-periodic 
curves (PBOO) 35.67s 19 

pseudo-periodic 
curves (PBOO) 17.67s 15 
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Towards a new solution 

with prefixed 
curves we gain 
significantly 
speed in the 
analysis 

with GPC-
style of 

analysis we 
significantly 
lose precision 

Finitary-RTC but with prefix 
sizes derived for RTC-

operators (and not GPCs) 

So
lu
t
ion 

(GPC-based) 
Finitary-RTC 

.......also simplifies proofs 
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Problem definition: 
• Let curves a and b be standard RTC curves defined on the

interval [0,+1).

• Let curves a0 and b0 be their prefixed counterparts, i.e., they

are defined on the finite interval [0, ka] and [0, kb], where for
� 2 [0, ka] : a(�) = a0(�) and for � 2 [0, kb] : b(�) = b0(�)

holds.

• Let � be an operator relevant for RTC, i.e.,

� 2 {⌦,⌦,min,+,�, ↵ , ↵ }

For a finite constant k we need to clarify the condition on the size

of ka and kb w.r.t.k and operator � such that

8� 2 [0, k] : (a� b)(�) = (a0 � b0)(�)
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↓ α(∆)

↑ β(∆)

↓ β(∆)

↑ α(∆)

α(∆)

β(∆)

lower service curve: β(∆)

linear approx. from below ↑ β(∆)

linear approx. from above ↓ α(∆)

linear approx. from below ↑ α(∆)
linear approx. from above ↓ β(∆)

upper arrival curve α(∆)

�	�������
�����
	��

��������
�����
	�

Recall: linear over- and underapproximations as 
defined before: 
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prefix length of c is k 
(as before) 

Domain bounds with common RTC operators 

standard 
RTC-

operator 

a 

b 
c 

Let the operators of group I be from the set {⌦,⌦,min,+,�}.

Satisfaction of the relation k  min(ka, kb) yields that for

� 2 {⌦,⌦,min,+,�} and � 2 [0, k] :

(a� b)(�) = (a0 � b0)(�) holds .

This directly arises from the definition of these RTC-operators, e.g., 

(a ⌦ b)(�) = inf0��{a(�� �) + b(�)}

(a ↵ b)(�) = sup��0{a(�+ �)� b(�)}

(a⌦ b)(�) = sup0��{a(�� �) + b(�)}

(a↵ b)(�) = inf��0{a(�+ �)� b(�)}

prefix length of 
b is kb 

prefix length of 
a is ka 

input curves 
output curve 
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prefix length of c is k 
(as before) 

Domain bounds with min-plus deconvolution 

a 

b 
c 

There is no trivial solution, because: 
(a ⌦ b)(�) = inf0��{a(�� �) + b(�)}

(a ↵ b)(�) = sup��0{a(�+ �)� b(�)}

(a⌦ b)(�) = sup0��{a(�� �) + b(�)}

(a↵ b)(�) = inf��0{a(�+ �)� b(�)}

prefix length of 
b is kb 

prefix length of 
a is ka 

input curves 
output curve 

but ......... 
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yields following property 

①  Compute lower bound on maximum vertical distance of a and b 
(backlog bound with underapproximations) 

②  Compute pseudo-inverse vdp of the lower vertical distance bound 
but with respect to over-approximations of a and b. 

Recipe for deriving domain bound for min-plus 
deconv. 

sup
0�vdp

{a(�+ �)� b(�)} � sup
�>vdp

{a(�+ �)� b(�)}

Assuming that a is subadditive, b superadditive 
and their longterm rates are not equal, i.e., the 

backlog bound is finite 
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T

Step 1 

Compute lower bound on maximum 
vertical distance of a and b (backlog 
bound with underapproximations) a 

a

b

b

v(a,b) 

Lower bounding the max. vertical distance 
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T

Step 2 

Compute pseudo-inverse vdp of 
lower bound on maximum vertical 
distance but w.r.t. 
overapproximations of a and b. 

a 

a

b

b

v(a,b) 

Pseudo-inverse of the lower bound on the max. vertical 
distance 

vdp 
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T

Δ 

Δ 

When computing the min-plus deconvolution for a 
specific Δ  

Δ 

sup
0�vdp

{a(�+ �)� b(�)} � sup
�>vdp

{a(�+ �)� b(�)}

vdp 

yeah we are done! 
almost.... 
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node Ci 
terminal
node Cj 

Execute analysis with over- and 
underapproximations to compute prefix lengths 

α*,i 

β*,i 

αi,j 

βk,j 
vdpi 

Kj = vdpj 

vdpi + Kj 

² At an inner node Ci we (back)propagate (the max.) 
vdpi in the direction of α*,i and vdpi + Kj for β*,i 

² At the terminal node of a path, it is sufficient to 
back-propagate the max. vdp of that node. 

Kj
 = vdpj 
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For the running example from 
[Guan,Wang’13]  Runtimes 

(a) Run times and delay bounds

Linear RTC Ci-finit !-finit
GPC 0.137s 315.97s 0.240s 0.228s

PBOO 0.140s 35.67s – 0.148s
PMOO 0.035s 17.67s – 0.035s
Delay bounds linear: GPC≈72, PBOO≈57, PMOO≈23

Delay bounds others: GPC=21, PBOO=19, PMOO=15
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Running example from [Guan,Wang’13] 
Prefix sizes 

(b) Component-wise prefixes for the GPC analysis

R1 R2 R3

Ci-finit !-finit Ci-finit !-finit Ci-finit !-finit
E1 98 81 90 61 74 35
E2 90 81 78 61 59 35
E3 78 81 60 61 35 35
E4 60 56 35 35 35 35
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Conclusion 
²  For large systems, the representation of the arrival and 

services  curves gets complex very fast as experienced with 
the HCS model 

²  Function prefixing avoids this by limiting curves to finite 
domains, HCS case study provided evidence but lacked formal 
criterion on the prefix size. 

² Finitary RTC provided sucha criterion, but is 
limited to GPC-models and their flow equations. 

² but, GPC-based system modelling is 
unaccpetable, runtime and precision-wise. 

² This called for re-visiting of function prefixing, 
but at the level of individual RTC-operators 
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Thank you for your time 


