		Theory	Conclusions
Network C	alculus in the	Practice	
Available Band	width Estima	tion Problem	
Kata	arzyna Wasielewsł	(2	
1,410	inzylia wasiciewsi	Na la	
The Crete II.		- in Eller Daland	
The State University	••	0	
The Institu	ute of Applied Infor	matics	

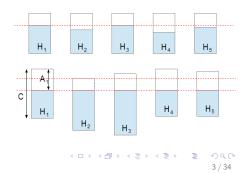
3rd Workshop on Network Calculus (WoNeCa-3)

Münster, April 6th, 2016

・ロト・(四)・(日)・(日)・(日)・(日)

1/34

		Theory	Conclusions
Outline			


- Introduction and motivation
- Ø Methodology
- 8 Results of experiments
- Simulations
- Mathematical background
- Onclusions

Available bandwidth estimation problem

Available bandwidth B on the route at the time t means **unused bandwidth** which an application can use without any influence on the transmission quality of existing flows on this route.

$$B(t) = \min_{1 \leq i \leq n} \{A_i(t)\}$$

- verification of SLA
- route selection
- network traffic engineering
- resource access control

LFV method - Liebeherr, Fidler, Valaee (2008, 2010)

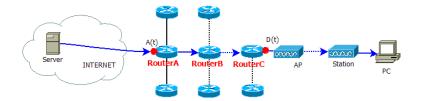
Passive measurement method

$$\tilde{S}(t) = D^p \oslash A^p(t)$$

$$A^{P}$$
 \tilde{S} D^{P}

$$f \oslash g(t) = \sup_{\tau} \left\{ f(t+\tau) - g(\tau) \right\}$$

 A^p and D^p are the arrival and departure functions measured from a traffic trace of one or more flows

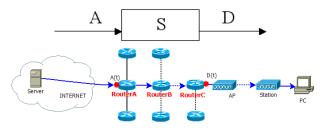

A D N A B N A B N A B N

According to Liebeherr, Fidler and Valaee estimator Š̃ is the best possible estimate of the actual service curve S (describing available bandwidth) that can be justified from measurements of A^p and D^p (Š̃ ≤ S).

J. Liebeherr, M. Fidler, S. Valaee, A system-theoretic approach to bandwidth estimation, IEEE/ACM Transactions on Networking, vol. 18, no. 4, pp. 1040-1053, 2010

Introduction		Theory	Conclusions
The object	ive		

To use and verify the service curve \tilde{S} based on the passive measurements for bandwidth estimation in real ISP network



ISP network

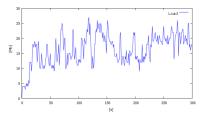
- Fiber optic link on contact with provider 100 Mb/s
- Routers connected by wire and wireless links
- Stable wireless links max 150 Mb/s, max 1 ms
- All routers experience cross traffic
- Tree topology (packets travel the same routes)
- Symmetrical and unsymmetrical links
- Individual and commercial customers
- Limitations on download and upload rate
- No other limitations
- Routers are able to save traffic to .pcap files

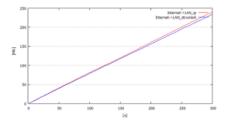
Introduction		Theory	Conclusions
Methodolc	оgy		

- Internet traffic was capturing on the selected interfaces of ISP devices
- Traffic was filtering (single flow, set of flows)
- Solution Time series of A(t) oraz D(t) functions were generated
- **(9)** Values of the service curve $ilde{S}$ were calculated in based LFV method

Specification of traffic probes

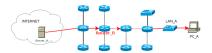
Direction	Duration	Time scale	Amount of observations
	Servi	ce curve of th	e node
	5min	1s	300
Download	1min	100ms	600
	1s	1ms	1000
	100ms	$100 \mu s$	1000
	5min	1s	300
Upload	1min	100ms	600
	1s	1ms	1000
	100ms	$100 \mu s$	1000
	Net	twork service	curve
	5min	1s	300
Download	1min	100ms	600
	1s	1ms	1000
	100ms	$100 \mu s$	1000
	5min	1s	300
Upload	1min	100ms	600
	1s	1ms	1000
	100ms	$100 \mu s$	1000

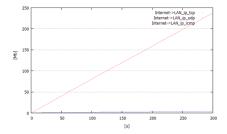

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

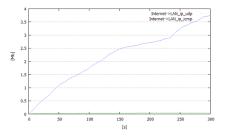

8/34

CASE 1: Single flow - in the node - download

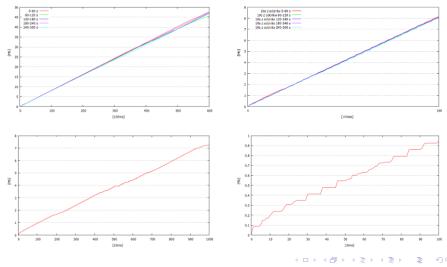
Working day, about 3 PM, 5 minutes



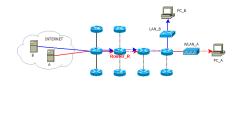

Duration: 300 s Total traffic to PC_A: 31540420 B Single flow: 30715218 B (97,4%) Average rate to PC_A: 0,802 Mb/s

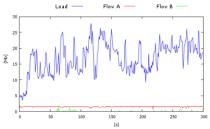

CASE 2: Types of network traffic - node - download

Working day, about 3 PM, 5 minutes



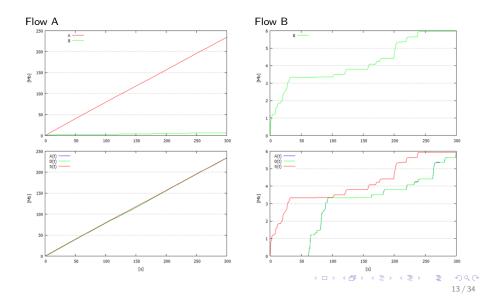
Protocol	Packets [%]	Bytes [%]	
IPv4	100	100	
TCP	79,62	98,12	
UDP	19,09	1,72	
ICMP	1,29	0,17	

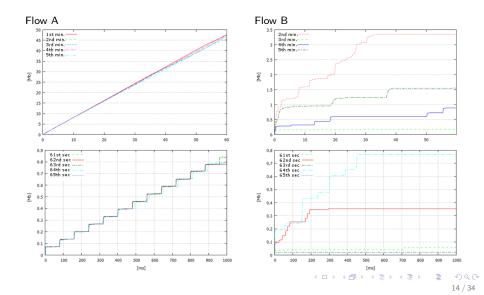



CASE 3: Single flow (60s, 10s, 10s, 1s)

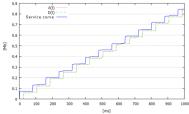
11/34

CASE 4: Traffic flows (A - HTTP, B - HTTPS)

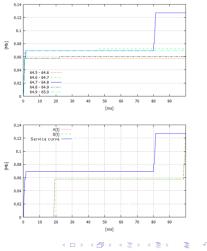



Average rate in the node: 17,7 Mb/s

	Amount of packets	Amount of data which arrive to the node [B]	Average rate [Mb/s]	Amount of data which leave the node [B]	Average rate [Mb/s]
Flow A	21497	30670366	0,818	30670366	0,818
Flow B	812	780366	0,026	779694	0,026


CASE 4: Traffic flows (A - HTTP, B - HTTPS)

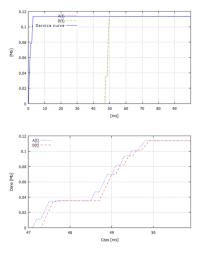
CASE 4: Traffic flows (A - HTTP, B - HTTPS)



CASE 4: Traffic flows (A - HTTP)

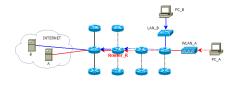
Time [s]	Incoming data [b]	A(t)	Outcoming data [b]	D(t)
61.824	0	673712	0	673712
61.825	0	673712	0	673712
61.826	12112	685824	0	673712
61.827	60560	746384	72672	746384
61.828	0	746384	0	746384
61.829	0	746384	0	746384

61. sec, interval: 1s, time scale: 1ms

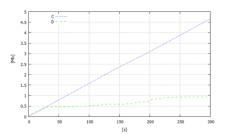

61. sec, interval: 100ms, time scale: $100\mu s$

15/34

CASE 4: Traffic flows (B - HTTPS)

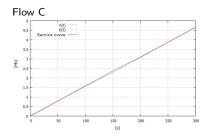

64.7-64.8 sec Duration: 100ms Time scale: 100μ s

Time [s]	Incoming data [b]	A(t)	Outcoming data [b]	D(t)
64.7470	0	0	0	0
64.7471	12112	12112	0	0
64.7472	0	12112	0	0
64.7473	12112	24224	12112	12112
64.7474	12112	36336	12112	24224
64.7475	0	36336	12112	36336
64.7476	592	36928	0	36336
64.7477	0	36928	592	36928
64.7478	0	36928	0	36928
64.7479	0	36928	0	36928

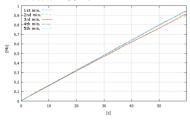


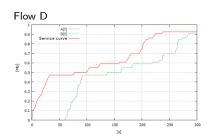
<ロト < 回ト < 巨ト < 巨ト < 巨ト 16/34

CASE 5: Traffic flows (C - HTTP, D - HTTPS) - upload

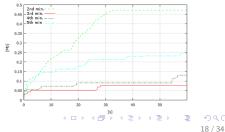


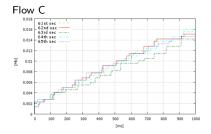
Time scale: 1s



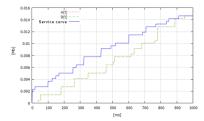

	Amount of packet	Amount of data which arrive to the node [B]	Average rate [Mb/s]	Amount of data which leave the node [B]	Average rate [Mb/s]
Flow C	10170	610320	0,016	549420	0,015
Flow D	459	121501	0,004	119587	0,004

CASE 5: Traffic flows (C - HTTP, D - HTTPS) - upload

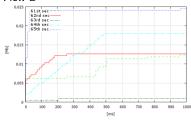




Time scale: 100ms



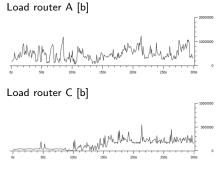
CASE 5: Traffic flows, upload, time scale: 1ms, interval: 1s



Flow C - 65th sec

71 (1)	1 1 1 1 1 1 1	4/23	0.1.1.1.1.1.1	0(1)
Time [s]	Incoming data [b]	A(t)	Outcoming data [b]	D(t)
65.631	0	8640	0	8640
65.632	0	8640	0	8640
65.633	0	8640	0	8640
65.634	0	8640	0	8640
65.635	960	9600	480	9120
65.636	0	9600	480	9600
65.637	0	9600	0	9600
65.638	0	9600	0	9600
65.639	0	9600	0	9600

Flow D



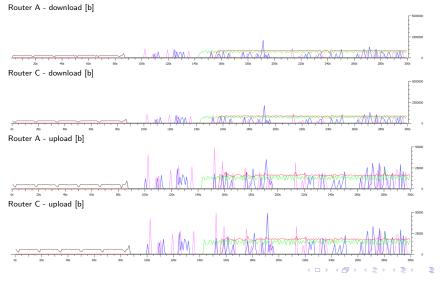
<ロト < 部 ト < 言 ト く 言 ト 言 の Q () 19 / 34

CASE 6: Network service curve

Customer Download: 6560 kb/s (6,41 Mb/s) Uplod: 512 kb/s (0,5 Mb/s)

CASE 6: Network service curve

Characteristics of flows - router A

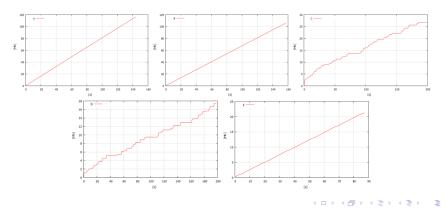

Flow	TCP port	Amount of packets download	Data [MB] download	Rate Mb/s	Amount of packets upload	Data [MB] upload	Rate Mb/s	Color
Α	49349	10718	14,53	0,847	5303	0,28	0,016	red
В	49345	9368	13,19	0,708	4727	0,24	0,013	green
С	50257	2554	3,35	0,145	1367	0,097	0,004	blue
D	50262	1652	2,18	0,094	1076	0,079	0,003	pink
E	62380	1883	2,66	0,261	952	0,049	0,005	black

Characteristics of flows - router C

Flow	TCP port	Amount of packets download	Data [MB] download	Rate Mb/s	Amount of packets upload	Data [MB] upload	Rate Mb/s	Color
Α	49349	10712	14,52	0,847	5304	0,305	0,018	red
В	49345	9361	13,19	0,707	4735	0,272	0,015	green
С	50257	2551	3,35	0,145	1368	0,104	0,005	blue
D	50262	1652	2,18	0,094	1076	0,082	0,004	pink
E	62380	1883	2,66	0,261	952	0,054	0,005	black

Experiments	Theory	Conclusions

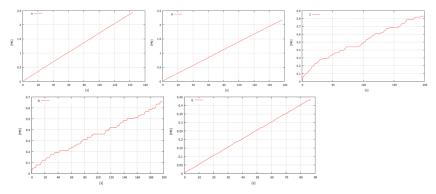
CASE 6: Network service curve


22 / 34

Experiments	Theory	Conclusions

CASE 6: Network service curve - time scale: 1s - download

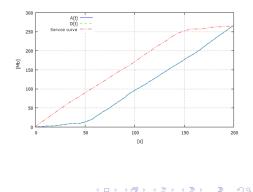
Flow	Duration [s]	Amount of data [Mb]	Average rate [Mb/s]
Α	144	116,19	0,807
В	157	105,48	0,668
С	200	26,73	0,133
D	198	17,46	0,088
E	87	21,24	0,244



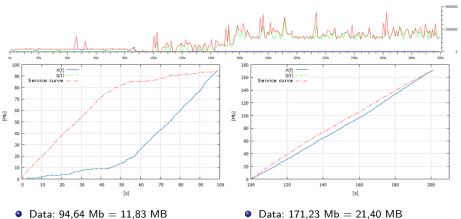
23 / 34

CASE 6: Network service curve - time scale: 1s - upload

Flow	Duration [s]	Amount of data [Mb]	Average rate [Mb/s]
Α	144	2,44	0,017
В	157	2,17	0,014
С	200	0,83	0,004
D	198	0,66	0,003
E	87	0,44	0,005



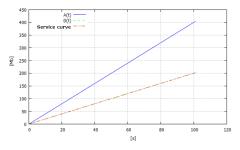
CASE 6: Network service curve - aggregated flows



Red color - the total traffic generated to the customer Green color - the sum of flows A-D Blue color - the flow E

- Measurement length A-D: 200 s
- Amount of data: 265,86 Mb
- Average rate: 1,329 Mb/s
- Max rate: ok. 1,7 Mb/s
- Possible rate: 6,41 Mb/s
- Difference: ok. 4,7 Mb/s

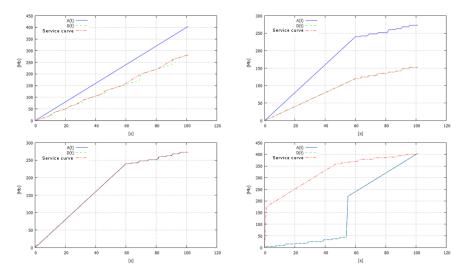
CASE 6: Network service curve - aggregated flows

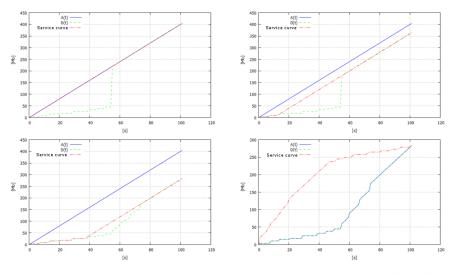


- Data: 94,64 Mb = 11,83 MB ۲
- Average rate: 0,946 Mb/s ۰

- Average rate: 1,712 Mb/s ۲
 - イロト イボト イヨト イヨト 26 / 34

		Simulations	Theory	Conclusions
Simulatio	ns			


- Traffic arrives faster than it can be served
- Departure curve D(t) covers the estimate of the service curve


• D(t) = 2t

Notice that we have no information about capacity of the system.

		Simulations	Theory	Conclusions
Simulatio	ns			

Simulations

イロン イロン イヨン イヨン 2 29 / 34

Mathematical background

Theorem (1)

Let's assume that arrival and departure traffic have constant rate. Let r_A mean the rate of arrival traffic and r_D – the rate of corresponding departure traffic and let $r_D \leq r_A$. Then the estimate of the actual service curve \tilde{S} has a slope of the departure curve D.

Proof.

If $r_D \leqslant r_A$, then

$$\tilde{S}(t) = \sup_{\tau} \left\{ D^{p}(t+\tau) - A^{p}(\tau) \right\} = \sup_{\tau} \left\{ r_{D}(t+\tau) - r_{A}\tau \right\} =$$
$$= \sup_{\tau} \left\{ (r_{D} - r_{A})\tau + r_{D}t \right\} = r_{D}t,$$

what finishes the proof.

Mathematical background

Theorem (2)

If the measurement has been made during time $\left[0,\,t_0\right]\!,$ then we have an equation

$$\tilde{S}(t_0)=D^p(t_0).$$

Proof.

At time t_0 we have

$$ilde{S}(t_0) = \sup_{\tau=0} \left\{ D^p(t_0) - A^p(0) \right\} = D^p(t_0),$$

what finishes the proof.

		Theory	Conclusions
Conclusions			

- The estimate of service curve obtained by the passive measurement represents **possibility of bandwidth usage** and allows the evaluation of bandwidth
- The shorter time scales give more accurate (but not always useful) results
- In order to catch characteristic of estimate, short time scales require longer estimation time
- The moment of estimation starting has no influence on estimation result if estimation begins in advance
- Estimation of bandwidth usage is possible for particular flows as well as agregats of flows (IP addresses, single IP address, services)
- Estimation of bandwidth usage is possible in the single node as well as on the path of interconnected nodes

Available bandwidth estimation with LFV method

Available bandwidth A is the difference between the capacity of the system Cand current bandwidth usage H.

	Theory	Conclusions

Thank you for your attention