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Instantaneous Capacity

Wireless fading channels are time variant and wireless channel capacity is a
stochastic process [Tse, 2005]
The instantaneous capacity of the channel at time t can be expressed as a
function of the instantaneous SNR γt at this time [Costa and Haykin, 2010]

C(t) = log2(g(γt))

Statistical properties of first order and second order have been investigated
[Rafiq, 2011, Pätzold, 2011]

mean, variance, PDF, CDF, LCR, and ADF
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Motivation of this Work

Capacity and QoS requirements in future wireless communication
more data (500 EB), higher data rate (1000×, 100×), and less latency (<1ms,
round-trip) in 5G [Andrews et al., 2014]

Instantaneous capacity is not sufficient for use in assessing if data transmission
over the channel meets its QoS requirements

capacity behavior of average sense
ergodic capacity

temporal behavior of the capacity
LCR, ADF
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Fundamental Concepts

Cumulative capacity

S(s, t) ≡
t∑

i=s+1
C(i)

Maximum cumulative capacity

S(0, t) ≡ sup
1≤j≤k≤t

S(j , k) = sup
1≤j≤k≤t

 k∑
i=j

C(i)


forward-looking and backward-looking variations

−→
S (0, t) ≡ sup

1≤k≤t
S(0, k),

←−
S (0, t) ≡ sup

1≤j≤t
S(j , t)

Fengyou Sun and Yuming Jiang, NTNU Further Properties of Wireless Channel Capacity



Wireless Channel Capacity
Analysis of Cumulative Capacity

Analysis of Maximum and Minimum Cumulative Capacity
Background
Motivation

Fundamental Concepts (Cont’d)

Minimum cumulative capacity

S(0, t) ≡ inf
1≤j≤k≤t

S(j , k) = inf
1≤j≤k≤t

 k∑
i=j

C(i)


forward-looking and backward-looking variations

S−→(0, t) ≡ inf
1≤k≤t

S(0, k), S←−(0, t) ≡ inf
1≤j≤t

S(j , t)

Range of cumulative capacity

R(0, t) ≡ S(0, t)− S(0, t)
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Exact Expression

The CDF of the cumulative capacity is expressed as

FS(s,t)(x) =
∫

S(s,t)=
∑t

i=s+1 log2(1+γ|hi |2)≤x
dFH(hs+1, hs+2, . . . , ht),

where FH(hs+1, hs+2, . . . , ht) is the joint distribution of channel gains, e.g. the
multivariate generalized Rician distribution [Beaulieu and Hemachandra, 2011]

FH(h1, h2, . . . , hN) =
∫ ∞

t=0

t
m−1

2

Sm−1 exp(−(t + S2))Im−1(2S
√

t)

N∏
k=1

1− Qm

√t
√
σ2

kλ
2
k

Ωk
,

hk
Ωk

 dt.
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Standard Bounds
The CDF of the cumulative capacity satisfies the following inequalities:

F l
S(s,t)(r) ≤ FS(s,t)(r) ≤ F u

S(s,t)(r),

where

F u
S(s,t)(r) ≡ inf

t∑
i=s+1

ri =r

 t∑
i=s+1

FC(i)(ri )


1

,

F l
S(s,t)(r) ≡ sup

t∑
i=s+1

ri =r

 t∑
i=s+1

FC(i)(ri )− (t − s − 1)

+

.
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Improved Bounds
Let F1 = . . . = Fn =: F be distribution functions on R+. Then for any s ≥ 0 it holds
that [Puccetti and Rüschendorf, 2012]

M+
n (s) ≤ D(s) = inf

u<s/n
min

{
n
∫ s−(n−1)u

u F (t)dt
s − nu , 1

}
,

m+
n (s) ≥ d(s) = sup

u>s/n
max

{
n
∫ s−(n−1)u

u F (t)dt
s − nu − n + 1, 0

}
,

where

M+
n (t) = sup

{
P
( n∑

i=1
Xi ≥ t

)
; Xi ∼ Fi , 1 ≤ i ≤ n

}
,

m+
n (t) = inf

{
P
( n∑

i=1
Xi > t

)
; Xi ∼ Fi , 1 ≤ i ≤ n

}
.
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Comonotonicity

The set A ⊆ Rn is said to be comonotonic if for any x ≤ y or y ≤ x holds, where
x ≤ y denotes the componentwise order, i.e., xi ≤ yi for all i = 1, 2, . . . , n.
[Dhaene et al., 2002]
In the special case that all marginal distribution functions are identical
FC(i) ∼ FC , comonotonicity of C(i) is equivalent to saying that
C(s + 1) = C(s + 2), . . . ,= C(t) holds almost surely [Dhaene et al., 2002], i.e.,

FS(s,t)(x) = FC

( x
t − s

)
.
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Independence

If C(i) and C(j), i 6= j , are independent, fS(s,t) = fC(s+1) ∗ . . . ∗ fC(t), where ∗
denotes the convolution operation, namely, FS(s,t)(x) =

∫ x
−∞ fS(s,t)(y)dy .

According to the central limit theorem, FS(s,t)(x) approaches a normal
distribution [Papoulis and Pillai, 2002], i.e.,

FS(s,t)(x) ≈ G
(x − E [S(s, t)]

σ2[S(s, t)]

)
.

For identical marginals FC(i) ∼ FC , according to the Markov inequality

P{Lt ≥ µ} ≤
1
µ
E[Lt ] = 1

µ
, P{St ≥ x} ≤ eθx−tκ(θ),

where κ(θ) = logEeθC(i) = log
∫

eθxF (dx), Lt = eθSt−tκ(θ), and Lt is a mean-one
martingale [Asmussen, 2003].
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Markov Process

For a Markov additive process, denote matrix F̂[θ] with ijthe element
F̂ (ij)[θ] =:

∫
eθxF (ij)(dx), where Fij(dx) = Pi ,0(J1 = j ,Y1 ∈ dx), Yn = Sn − Sn−1.

By Perron-Frobenius theory, the matrix F̂[θ] has a positive real eigenvalue with
maximal absolute value eκ(θ) and the corresponding right eigenvector
h(θ) = (h(θ)

i )i∈E , i.e., F̂[θ]h(θ) = eκ(θ)h(θ). [Asmussen, 2003]
Let

Ln = h(θ)(Jn)
h(θ)(J0)

e−θSn+nκ(θ), Ln = minn(h(θ)(Jn))
h(θ)(J0)

e−θSn+nκ(θ),

according to Markov inequality [Gallager, 2013]

P{Ln ≥ µ} ≤
1
µ
E[Ln] ≤ 1

µ
,

P{Sn ≥ α} ≤ e−nκ(θ)+θαh(θ)(J0)/min
n

(h(θ)(Jn)).
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Non-Granger Causality Assumption

Non-Granger causality refers to a multivariate dynamic system in which each
variable is determined by its own lagged values and no further information is
provided by the lagged values of the other variables.
Then the copula function representing the dependence structure among the
running maxima (minima) at time tn is the same copula function (survival copula
function) representing dependence among the levels at the same time
[Cherubini and Romagnoli, 2010].
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A Lower Bound for Maximum Cumulative Capacity

The CDF of the maximum cumulative capacity is bounded by

P
(

sup
0≤i≤t

S(i) ≤ x
)

= P (S(1) ≤ x ,S(2) ≤ x , . . . ,S(t) ≤ x)

≥ P
(

max C(1) ≤ x , max
1≤i≤2

C(i) ≤ x
2 , . . . , max

1≤i≤t
C(i) ≤ x

t

)
= C

(
FM1(x),FM2

(x
2

)
, . . . ,FMt

(x
t

))
= C

(
F (x),F

(x
2 ,

x
2

)
, . . . ,F

(x
t ,

x
t , . . . ,

x
t

))
,

where F (x1, x2, . . . , xt) = C(FC(1)(x1),FC(2)(x2), . . . ,FC(t)(xt)).
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An Upper Bound for Minimum Cumulative Capacity

The CDF of the minimum cumulative capacity is bounded by

P
(

inf
0≤i≤t

S(i) ≤ x
)

= 1− P (S(1) > x ,S(2) > x , . . . ,S(t) > x)

≤ 1− P
(

min C(1) > x , min
1≤i≤2

C(i) > x
2 , . . . , min

1≤i≤t
C(i) > x

t

)
= 1− C

(
F m1(x),F m2

(x
2

)
, . . . ,F mt

(x
t

))
= 1− C

(
F (x),F

(x
2 ,

x
2

)
, . . . ,F

(x
t ,

x
t , . . . ,

x
t

))
,

where F (x1, x2, . . . , xt) = C(FC(1)(x1),FC(2)(x2), . . . ,FC(t)(xt)).
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Independence

For identical marginals FC(i) ∼ FC , the cumulant generating function and the
likelihood ratio are expressed as [Asmussen, 2003]

κ(θ) = logEeθC(i) = log
∫

eθxF (dx),

Lt = eθSt−tκ(θ),

where Lt is a mean-one martingale.
Let the Lundberg equation κ(θ) = 0 and assume the existence of a solution θ > 0,
then [Asmussen, 2003]

P
{

sup
t≥0

St ≥ x
}
≤ e−θx ,

for all x ≥ 0.
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Markov Process

Let τ(u) = inf{t > 0 : St > u}, I(u) = Jτ(u), ξ(u) = Sτ(u) − u, M = supt≥0 St . Let
the Lundberg equation κ(θ) = 0 and assume the existence of a solution θ > 0. Then
[Asmussen, 2003, Asmussen and Albrecher, 2010]

Pi (M > u) = Pi (τ(u) <∞) = Ei ,θ

 h(θ)
J0

h(θ)
Jθ(u)

e−θSτ(u) ; τ(u) <∞


= e−θuEi ,θ

 h(θ)
i

h(θ)
I(u)

e−θξ(u)

 ,
P(M > u) =

∑
i
πiPi .
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Markov Process (Cont’d)

According to Lundberg’s inequility [Asmussen and Albrecher, 2010]

Pi (M > u) ≤ h(θ)
i

minj∈E h(θ)
j

e−θu.

The above inequality can be improved together with a lower bound. Let

C− = min
j∈E

1
h(θ)

j
· inf

x≥0

Bj(x)∫∞
x eθ(y−x)Bj(dy)

,

C+ = max
j∈E

1
h(θ)

j
· sup

x≥0

Bj(x)∫∞
x eθ(y−x)Bj(dy)

,

where Bj is the distribution of the increment. Then for all j ∈ E and all u ≥ 0,

C−h(θ)
i e−θu ≤ Pi (M > u) ≤ C+h(θ)

i e−θu.
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Conclusion

Advocation of a set of wireless channel capacity
concepts
Analysis of the advocated concepts with focus on CDF
Copula as a unifying technique of analysis considering
dependence (see the paper on arXiv)
Other characterizations, e.g, MGF, MT, SSC (see the
paper on arXiv)
On-going work

analysis of backward-looking variations
range as a measure of tightness of cumulative capacity
bounds
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Further Properties of Wireless Channel Capacity
Fengyou Sun and Yuming Jiang

Abstract

Future wireless communication calls for exploration of more efficient use of wireless channel capacity to meet the increasing
demand on higher data rate and less latency. However, while the ergodic capacity and instantaneous capacity of a wireless
channel have been extensively studied, they are in many cases not sufficient for use in assessing if data transmission over the
channel meets the quality of service (QoS) requirements. Toaddress this limitation, we advocate a set of wireless channel
capacity concepts, namely “cumulative capacity”, “maximum cumulative capacity”, “minimum cumulative capacity”, and “range
of cumulative capacity”, and for each, study its propertiesby taking into consideration the impact of the underlying dependence
structure of the corresponding stochastic process. Specifically, their cumulative distribution function (CDFs) are investigated
extensively, where copula is adopted to express the dependence structures. Results considering both generic and specific dependence
structures are derived. In particular, in addition to i.i.d., a specially investigated dependence structure is comonotonicity, i.e, the
time series of wireless channel capacity are increasing functions of a common random variable. Appealingly, copula canserve
as a unifying technique for obtaining results under variousdependence assumptions, e.g. i.i.d. and Markov dependence, which
are widely seen in stochastic network calculus. Moreover, some other characterizations of cumulative capacity are also studied,
including moment generating function, Mellin transform, and stochastic service curve. With these properties, we believe QoS
assessment of data transmission over the channel can be further performed, e.g. by applying analytical techniques and results of
the stochastic network calculus theory.

I. I NTRODUCTION

In future wireless communication, there will be a continuing wireless data explosion and an increasing demand on higher
data rate and less latency. It has been depicted that the amount of IP data handled by wireless networks will exceed500
exabytes by 2020, the aggregate data rate and edge rate will increase respectively by1000× and100× from 4G to 5G, and the
round-trip latency needs to be less than1ms in 5G [1]. Evidently, it becomes more and more crucial to explore the ultimate
capacity that a wireless channel can provide and to guarantee pluralistic quality of service (QoS) for seamless user experience.

Information theory provides a framework for studying the performance limits in communication and the most basic measure
of performance is channel capacity, i.e., the maximum rate of communication for which arbitrarily small error probability can be
achieved [2]. Due to the time variant nature of a wireless fading channel, its capacity over time is generally a stochastic process.
To date, wireless channel capacity has mostly been analyzedfor its average rate in the asymptotic regime, i.e., ergodiccapacity,
or at one time instant/short time slot, i.e., instantaneouscapacity. For instance, the first and second order statistical properties
of instantaneous capacity have been extensively investigated, e.g. in [3], [4]. However, such properties of wireless channel
capacity are ordinarily not sufficient for use in assessing if data transmission over the channel meets its QoS requirements.
This calls for studying other properties of wireless channel capacity, which can be more easily used for QoS analysis. Tomeet
this need constitutes the objective of this paper.

Specifically, we advocate in this paper a set of (new) concepts for wireless channel capacity and study their properties.
These concepts include “cumulative capacity”, “maximum cumulative capacity”, “minimum cumulative capacity”, and “range
of cumulative capacity”. They respectively refer to the cumulated capacity over a time period, the maximum and the minimum
of such capacity within this period, and the gap between the maximum and the minimum.

Among these (new) concepts, the wireless channel cumulative capacity of a period is essentially the amount of data
transmission service that the wireless channel provides (if there is data for transmission) [5] or is capable of providing
(if there is no data for transmission) [6] in this period. Forthe former, the concept is closely related to the (cumulative) service
process concept that has been widely used in the stochastic network calculus literature, e.g. in [5]–[14]. In particular, in these
works when charactering the cumulative service process using server models of stochastic network calculus and/or applying
the cumulative service process concept to QoS analysis, some special assumptions on the dependence structure of the process
are often considered, such as independence [6]–[8] and Markov property [10], [12], [13].

In addition, we introduce “maximum cumulative capacity”, “minimum cumulative capacity” and “range of cumulative
capacity” that are new but we believe are also crucial concepts for analyzing QoS performance of wireless channels. Thisis
motivated by the fact that, even with the CDF (i.e. full characteristics) or its bounds of the cumulative capacity known,it may
still be difficult to perform QoS analysis of the channel. (One can easily observe this difficulty by assuming fluid traffic input
and trying to find backlog bounds from queueing analysis of the channel. See e.g. [6]). As a special case of these concepts,
forward-looking and backward-looking variations of them are also defined, which turn out to be useful in different application
scenarios.

For the investigation, unlike most existing work in the stochastic network calculus literature, the present paper mainly focuses
directly on the cumulative distribution functions (CDFs) of the corresponding processes of these (new) concepts. For their other
characterizations, e.g. moment generating function [7], Mellin transform [15], and stochastic service curve [6], a number of
results are also reported for cumulative capacity to exemplify how such properties may be analyzed, but this is not focused. An
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Thank you for your attention!
Questions?
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