Saving Resources on Wireless Uplinks: Models of Queue-aware Scheduling

TECHNISCHE UNIVERSITÄT DARMSTADT

Amr Rizk TU Darmstadt

- joint work with Markus Fidler

Cellular Uplink Scheduling

Cellular Uplink Scheduling

Adaptive Resource Allocation in Cellular Uplink Direction

Input metrics (LTE)

- Buffer status reports (BSR)
- Channel quality indicators (CQI)

Goal

Statistical QoS guarantee

Adaptive Resource Allocation in Cellular Uplink Direction

Input metrics (LTE)

- Buffer status reports (BSR)
- Channel quality indicators (CQI)

Goal

Statistical QoS guarantee

Scheduling epoch Δ

- Arrival traffic A
- Buffer filling B

Methods

Exact analysis for Poisson traffic

> Analytical framework for general arrival and service processes

Model

- Single M/M/1 queue: fixed λ , variable $\mu(t)$
- Given λ and the queue length at epoch start
- Epoch based resource allocation

 \Rightarrow Find $\mu(t)$ that provides a probabilistic bound on the queue length at the end of the epoch

- 1. Queue initially in state k
- 2. Fix $\mu(t)$ during Δ such that
- 3. Probability that the queue at time Δ is longer than $q_{
 m max}$ is less than arepsilon
- ▶ Based on the transient behavior of the M/M/1 queue [Kleinrock].

Model parameters: λ , q_{max} , arepsilon , Δ

• Required μ for various parameters

Parameters: $\lambda = 10, \varepsilon = 10^{-2}, \Delta = 1$ and 10^4 epochs for (b).

- Required μ for various parameters
- \blacktriangleright Improvement w.r.t. the static system with equivalent $\bar{\mu}$

Parameters: $\lambda = 10, \varepsilon = 10^{-2}, \Delta = 1$ and 10^4 epochs for (b).

Utilization comparison:

- Key relation of $\lambda\Delta$ to $q_{
 m max}$ for a given arepsilon
- ▶ Initial queue length is less helpful if the unknown traffic amount in during the epoch, i.e., $\lambda\Delta$, predominates q_{\max}
 - \rightarrow Operation of queue-aware scheduling is non-trivial
- \blacktriangleright Resource savings in the adaptive case \rightarrow Proof of concept

Beyond the Poisson Model

Generalization w.r.t. service and arrival traffic models:

Framework: Stochastic Network Calculus

- ▶ Cumulative arrivals $A(\tau)$ resp. departures $D(\tau)$ up to time τ
- Backlog at τ : $B(\tau) = A(\tau) D(\tau)$
- Service in $(\tau, t]$ as random process $S(\tau, t)$
- Assume strict service resp. adaptive service curve [Burchard et. al'06]

Queueing Model

Evaluation requires a lower bound on the service process

$$\mathsf{P}\left[\mathcal{S}(u,t) \geq \mathcal{S}(t-u), \ \forall u \in [\tau,t]\right] \geq 1 - \varepsilon_s$$

• To derive a lower bound on the departures $D(\tau + \Delta)$

Wireless Channel Model

Basic block fading model for a wireless transmission [Fidler, Al-Zubaidy]

- Time slotted model with iid increments $c_i = \beta \ln(1 + \gamma_i)$
- ▶ Rayleigh fading channel: γ_i is exp distributed with parameter η
- Lower bounding function for the service process

$$\mathcal{S}(t) = \frac{1}{\theta} \Big(\ln(\varepsilon_{\mathbf{p}}) - t \Big[\eta + \theta \beta \ln(\eta) + \ln\left(\Gamma(1 - \theta \beta, \eta) \right) \Big] \Big)$$

with $\theta > 0$, incompl. Gamma fct. Γ and a violation probability $\varepsilon_s = (t - \tau)\varepsilon_p$.

Derivation using Boole's inequality, Chernoff's bound and the Laplace transform of the increments.

Infrequent Adaptation

- ► Bound on backlog at the end of epoch P $|B(\tau + \Delta) \le b_{\max}| \ge 1 \varepsilon_s$
- Requirements on S(t): Allocate resources β during epoch Δ such that the following holds

$$\begin{split} \mathcal{S}(\Delta) &\geq \mathcal{B}(\tau) + \mathcal{A}(\tau, \tau + \Delta) - \mathcal{b}_{\max}, \quad \text{and} \\ \mathcal{S}(\tau + \Delta - u) &\geq \mathcal{A}(u, \tau + \Delta) - \mathcal{b}_{\max}, \quad \forall u \in [\tau, \tau + \Delta] \end{split} \tag{1}$$

Multi-user Scheduling with Infrequent Adaptation

Scenario:

- ▶ *M* homogeneous, statistically independent MS channels
- ► Base station decides on amount of resource blocks β_j for MS j ∈ [1, M] based on the infrequent adaptation technique
- Overall amount of resource blocks β_s in epoch Δ

Multi-user Scheduling with Infrequent Adaptation

Scenario:

- M homogeneous, statistically independent MS
- ▶ Base station decides on amount of resource blocks β_j for MS $j \in [1, M]$ based on the infrequent adaptation technique
- Overall amount of resource blocks β_s in epoch Δ
- Three basic resource allocation algorithms:
 - 1. "deterministic fair": *j*th MS receives $\hat{\beta}_j = \min\{\beta_j, \beta_s/M\}$
 - 2. "priority": MS in class j receives $\hat{\beta}_j = \min\{\beta_j, \beta_s \sum_{k=1}^{j-1} \hat{\beta}_k\}$
 - 3. "proportional fair emulation": Priority scheduler with priorities reordered every epoch Δ according to a score $S_j(\tau, \tau + \Delta)/(D_j(\tau)/\tau)$ similar to [Kelly, et al. '98].

Multi-user Scheduling with Infrequent Adaptation: Simulation

- Adaptive system retains statistical backlog bound depending on scheduling algorithm
- Notable difference only at very high utilization

Parameters: M = 10, $\lambda = 0.65$, $\varepsilon_s = 10^{-2}$, $\Delta = 100$ slots, $b_{max} = 65$, SNR $1/\eta = 3$ dB

Key Takeaway Points

- Poisson case: Analytical results to quantify best-case resource savings.
- Model reveals important relation of $\lambda\Delta$ to q_{\max} .
- Analytical framework identifies two regimes, one where adaptive scheduling is effective and one where it is not.
- A mathematical treatment of queue-aware scheduling that is applicable to a broad class of arrival and service processes.

Related Models

- 1. Optimization of queueing service policies
- 2. Optimization of power and rate allocation in cellular systems

Difference to 1:

online, epoch-based technique for general arrival and service processes

Difference to 2:

- dynamic programming to minimize a cost function of weighted power and rate consumption
- sample path as input