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Model and hypotheses

(651 (671
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Objective

Is the network stable? performance bounds?

Hypotheses

o m token-bucket arrival curves: «;(t) = b; + rit;

o n rate-latency strict service curves: SU)(t) = R;(t — T})+.
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Computing performance bounds in feed-forward networks

@ Computing performance bounds in feed-forward networks
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Computing performance bounds in feed-forward networks

Separated Flow Analysis (SFA) method

© In the topological order if the servers, for each flow crossing the server:

O((J') e
o = (60 =52l of) %fi
I . K
o) — o) ¢, g0) o) :
B
@ For the flow of interest (flow 1)
o | | —
(V1 | === ===
(ja) 5(]2) (k)
1 1 1

© Delay bound: h(a1,f),
Backlog bound: v(ay, 3)

e Efficient algorithms
@ Pessimistic performance bounds

@ Symbolic computation (for simple classes of functions)
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Computing performance bounds in feed-forward networks

Greedy algorithm for tandem networks
Joint work with Thomas Nowak [Performance 2015]

Theorem

Consider a tandem network of n servers. The worst-case delay is linear in
the bursts and latencies:

D= Z AiTi+ Z i bj
J€lnl ie[m]

where the coefficients \; and p; depend only on the arrival and service
rates and can be effectively computed in time O(n? + m).

o Efficient algorithm in tandem network
e Tight delay bound

@ Symbolic on some parameters
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Computing performance bounds in feed-forward networks

Greedy algorithm

This theorem can be adapted to backlog at server n and for tree-topologies:

o

K~
=
o
N%
=

T o
N

Theorem

Consider a tree network of n servers, and p flows of interest at server n.

The worst-case backlog at server n for the flows of interests is linear in the
bursts and latencies:

B = Z AT+ Z &b + Z b}
Jj€lnl ie[m] i€[p]

where the coefficients \; and {; < 1 depend only on the arrival and service
rates and can be effectively computed in time O(n®> + m + p).

A. Bouillard () Worst-case performance bounds and cyclic networks 6 /23



Computing performance bounds in feed-forward networks

Computing the worst-case backlog

begin

§g<_(21<n I)(R — I ) 1;

for j from n—1to 1 do

k < n;

while ff+1 < (i 1+ sk ff+1 (R — Y = J) ! do
k— k—1;

for ¢ from j to k do

é—f A (ZI_] iy Z€>k éJ—l—lrj )(RJ Zéf_J ,f) ;
r;

for jfromltondo A< > .rf4+3 kak,
end
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Network with cyclic dependencies

© Network with cyclic dependencies
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Network with cyclic dependencies

Stability in cyclic networks

Consider a server offering a strict service curve 5 : t+— R(t — T)4 and a
flow crossing it, with arrival curve o : t — b+ rt.

@ This server is said unstable if its worst-case backlog is bounded:
R<r;

o This server is said critical if its worst-case backlog is bounded, but the
lengths of its backlogged periods are not bounded bounded: R = r;

@ This server is said stable if the length of its backlogged periods is
bounded: R > r.

Definition (Global stability)

A network is globally stable if for all its servers, the length of the maximal
backlogged period is bounded.
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Network with cyclic dependencies

Stopped-time/fix-point method

(service curves and arrival curves of
exogenous arrivals are constants of

the problem)
o2~ HO(al), o)

ol = Hal? ol

1 3 3 3
ol — HO(), aD)..

We write this equation for each output flow at each server and obtain a
system

a =H(a)

@ We can assume w.l.0.g. that H is non-decreasing in any variable

o If o is a solution of & = H(«), is it a family of arrival curves for the
intermediate flows?

@ If service curves are rate-latency and arrival curves token bucket, this
is a linear equation: b = Mb + N.
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Network with cyclic dependencies

Stopped-time/fix-point method
(service curves and arrival curves of

exogenous arrivals are constants of

the problem)
o2~ KO (ol ol
o) = Dl o)

2
aft = ) (af . of?)...

We write this equation for each output flow at each server and obtain a
system

a =H(a)

Lemma

If the system is stable, then there exists a family o = (v j)ij of arrival
curves for the flows (FI-(J)) such that a < H(a).

Take the best arrival curves, they will satisfy every inequality.
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Network with cyclic dependencies

Stopped times
From [Le Boudec, Thiran, 2001]

Let ag be the greatest finite solution of a < H(a).
Then « is a family of arrival curves for the network.

Stopped times at 7 > 0

Exogenous arrivals in the network are stopped at time 7:
arrival curves of type
a” =a(tAT).

For all 7, the system is stable (finite amount of arrivals in the system),
so there exists a solution

a” <H(a") so a’ <a’.

As H is non-decreasing, H(a™) < H(ayp) = ap.
So a = sup, a7 is a solution, and a < g, which is also a solution.
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Network with cyclic dependencies

Decomposition of the network

@ SFA decomposition: at each server for each flow
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Network with cyclic dependencies

Decomposition of the network

@ SFA decomposition: at each server for each flow
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Network with cyclic dependencies

Numerical comparisons

Unidirectional ring
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Network with cyclic dependencies

Numerical comparisons

Bidirectional ring
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Network with cyclic dependencies
Ring stability revisited
Theorem (Tassiulas, Georgiadis, 96)

“The ring is stable” under assumption for stability of each server
Additional assumption: the traffic is upper-bounded in each link.

We have
B = Z AT+ Z &b + Z b}
J€lnl ie[m] ieflp]

where the coefficients \; and &; < 1 depend only
on the arrival and service rates.

B<C+¢B
where § = sup {7 <1 and
C
< —.
B < ¢
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Proof of the worst-case backlog theorem

© Proof of the worst-case backlog theorem
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Proof of the worst-case backlog theorem

Properties of a worst-case scenario

az Qs

Service policy is SDF (shortest-to-destination first): for two flows i
and j, if d; < d;, then flow / is served with higher priority than flow ;.

Server j has the unique backlogged period (tj_1, t;) and provides
infinite service outside its backlogged period.

Each server provides exact service in its backlogged period and
ti—ti1 2> TJ

The new arrivals at server j are maximal from time t;_; on and zero
before that.

The flows of interest are always transmitted instantaneously.
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Proof of the worst-case backlog theorem

Properties of a worst-case scenario

bits

B3

to t3 time

server 1 server 2 server 3

Theorem
There exists a worst-case scenario that satisfy (Hy, ..., Hs).

Consequence: we only have to optimize on the dates of start of backlog
period to, t1, ..., ts.
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Proof of the worst-case backlog theorem

A backward computation

Server n:

x* + b+

by /r X, + b

Bo(xn,x™) = by +x"+r(T,+

é'g:Rfr"<1
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Proof of the worst-case backlog theorem

A backward computation

Server n—1: (C],’ =X + bf,_l + I’,{,_l Tho1; T = 7-nfl)

bis

P

Xp |

n—2 ‘ n—1 n \b
br1

Brllfl(XN—17Xn7X*) = Bn(O, b* + r*tl)
Br%—l(xn%’Xn) = Bn(gn + ry_1t2, b" + r't2)
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Proof of the worst-case backlog theorem

A backward computation

Server n —1: (g; = x; + b;',,l + r,’;,l To-1; T=Ta1)

by~1

N —

Zn— 2 ‘ n—1 n Q/
bia

A. Bouillard () Worst-case performance bounds and cyclic networks 19 / 23



Proof of the worst-case backlog theorem

Delay from server j when flows ending after server k are served
instantaneously.

k(xJ — k+1
Bi(x, - x) = Bj1(0,.. ., 0, x5 X, X 4 r7E)

- _ S5 ot 0
Wlthtj—m,xj_i_l—(?j—i—lytj,and QJ—XJ‘f‘rJE

Lemma
There exists k such that Vx;, ..., xn,

Bi(xj, ..., xn) = Bj!‘(xj-, ey Xn)-
Finally,

B = By(0,...,0).
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Proof of the worst-case backlog theorem

Computing the worst-case backlog

begin

§g<_(21<n I)(R — I ) 1;

for j from n—1to 1 do

k < n;

while ff+1 < (i 1+ sk ff+1 (R — Y = J) ! do
k— k—1;

for ¢ from j to k do

é—f A (ZI_] iy Z€>k éJ—l—lrj )(RJ Zéf_J ,f) ;
r;

for jfromltondo A< > .rf4+3 kak,
end
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Conclusion and future work

@ Conclusion and future work
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Conclusion and future work

Conclusion and future work

Conclusion

@ A new efficient algorithm to compute tight worst-case delays and
backlog.

@ Application to networks with cyclic dependencies:
o best stability conditions
o stability of the ring without additional assumptions

Future work
@ Application to stochastic network calculus

@ Extension to feed-forward networks (we conjecture that a simple
generalization can lead to the same approximation with one linear
program)

@ Improvement of the conditions with the “ring trick”

e Extension to some service policies (FIFO for example)
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