Worst-case performance bounds in tree-network and application to networks with cyclic dependencies

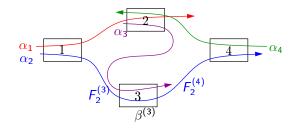
Anne Bouillard (ENS, Paris)

Woneca 2016

A. Bouillard ()

Worst-case performance bounds and cyclic networks

# Model and hypotheses



#### Objective

Is the network stable? performance bounds?

### Hypotheses

- *m* token-bucket arrival curves:  $\alpha_i(t) = b_i + r_i t$ ;
- *n* rate-latency strict service curves:  $\beta^{(j)}(t) = R_j(t T_j)_+$ .

A. Bouillard ()

Worst-case performance bounds and cyclic networks

э

## Computing performance bounds in feed-forward networks

2 Network with cyclic dependencies

3 Proof of the worst-case backlog theorem

4 Conclusion and future work

A. Bouillard ()

Worst-case performance bounds and cyclic networks

3

(日) (同) (日) (日) (日)

# Separated Flow Analysis (SFA) method

In the topological order if the servers, for each flow crossing the server:



- **2** For the flow of interest (flow 1)  $\alpha_{1} \xrightarrow{\beta_{1}^{(j_{1})}} \beta_{1}^{(j_{2})} \xrightarrow{\beta_{1}^{(j_{2})}} \beta_{1}^{(j_{2})} \xrightarrow{\beta_{1}^{(j_{k})}} \beta_{1}^{(j_{k})} \xrightarrow{\beta_{1}^{(j_{k})}} \beta_{1}^{(j_{k})}$
- Oblay bound:  $h(\alpha_1, \beta)$ , Backlog bound:  $v(\alpha_1, \beta)$ 
  - Efficient algorithms
  - Pessimistic performance bounds
  - Symbolic computation (for simple classes of functions)

Greedy algorithm for tandem networks Joint work with Thomas Nowak [Performance 2015]

#### Theorem

Consider a tandem network of n servers. The worst-case delay is linear in the bursts and latencies:

$$D = \sum_{j \in \llbracket m \rrbracket} \lambda_j T_j + \sum_{i \in \llbracket m \rrbracket} \mu_i b_i$$

where the coefficients  $\lambda_j$  and  $\mu_i$  depend only on the arrival and service rates and can be effectively computed in time  $O(n^2 + m)$ .

- Efficient algorithm in tandem network
- Tight delay bound
- Symbolic on some parameters

A. Bouillard ()

# Greedy algorithm

This theorem can be adapted to backlog at server n and for tree-topologies:



#### Theorem

Consider a tree network of n servers, and p flows of interest at server n. The worst-case backlog at server n for the flows of interests is linear in the bursts and latencies:

$$B = \sum_{j \in \llbracket n \rrbracket} \lambda_j T_j + \sum_{i \in \llbracket n \rrbracket} \xi_i b_i + \sum_{i \in \llbracket p \rrbracket} b_i^*$$

where the coefficients  $\lambda_j$  and  $\xi_i < 1$  depend only on the arrival and service rates and can be effectively computed in time  $O(n^2 + m + p)$ .

Computing the worst-case backlog

$$\begin{vmatrix} \xi_n^n \leftarrow (\sum_{i \le n} r_i^*)(R_n - r_n^n)^{-1}; \\ \text{for } j \text{ from } n - 1 \text{ to } 1 \text{ do} \\ | k \leftarrow n; \\ \text{while } \xi_{j+1}^k < (\sum_{i \le j} r_i^* + \sum_{\ell > k} \xi_{j+1}^\ell r_j^\ell)(R_j - \sum_{\ell=j}^k r_j^\ell)^{-1} \text{ do} \\ | \xi_j^k \leftarrow \xi_{j+1}^k; \\ | k \leftarrow k - 1; \\ \text{for } \ell \text{ from } j \text{ to } k \text{ do} \\ | \xi_j^\ell \leftarrow (\sum_{i \le j} r_i^* + \sum_{\ell > k} \xi_{j+1}^\ell r_j^\ell)(R_j - \sum_{\ell=j}^k r_j^\ell)^{-1}; \\ \text{for } j \text{ from } 1 \text{ to } n \text{ do } \lambda_j \leftarrow \sum_{i \le j} r_i^* + \sum_{k \le j} \xi_j^k r_j^k; \\ end \end{aligned}$$

A. Bouillard ()

Worst-case performance bounds and cyclic networks

・ロト (四) (日) (日) (日) (日)

### 1 Computing performance bounds in feed-forward networks

### 2 Network with cyclic dependencies

3 Proof of the worst-case backlog theorem

#### 4 Conclusion and future work

A. Bouillard ()

Worst-case performance bounds and cyclic networks

э

# Stability in cyclic networks

Consider a server offering a strict service curve  $\beta : t \mapsto R(t - T)_+$  and a flow crossing it, with arrival curve  $\alpha : t \mapsto b + rt$ .

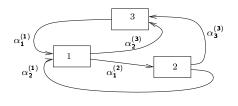
- This server is said *unstable* if its worst-case backlog is bounded: R < r;
- This server is said *critical* if its worst-case backlog is bounded, but the lengths of its backlogged periods are not bounded bounded: R = r;
- This server is said *stable* if the length of its backlogged periods is bounded: *R* > *r*.

## Definition (Global stability)

A network is *globally stable* if for all its servers, the length of the maximal backlogged period is bounded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

# Stopped-time/fix-point method



(service curves and arrival curves of exogenous arrivals are constants of the problem)

$$\begin{aligned} \alpha_1^{(2)} &= H_1^{(1)}(\alpha_1^{(1)}, \alpha_2^{(1)}) \\ \alpha_2^{(3)} &= H_2^{(1)}(\alpha_1^{(1)}, \alpha_2^{(1)}) \\ \alpha_1^{(1)} &= H_2^{(3)}(\alpha_3^{(3)}, \alpha_2^{(3)}) \dots \end{aligned}$$

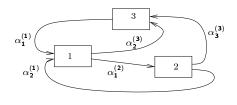
We write this equation for each output flow at each server and obtain a system

$$lpha = \mathsf{H}(lpha)$$

- We can assume w.l.o.g. that **H** is non-decreasing in any variable
- If  $\alpha$  is a solution of  $\alpha = H(\alpha)$ , is it a family of arrival curves for the intermediate flows?
- If service curves are rate-latency and arrival curves token bucket, this is a linear equation:  $\mathbf{b} = M\mathbf{b} + N$ .

A. Bouillard ()

# Stopped-time/fix-point method



(service curves and arrival curves of exogenous arrivals are constants of the problem)

$$\begin{aligned} \alpha_1^{(2)} &= H_1^{(1)}(\alpha_1^{(1)}, \alpha_2^{(1)}) \\ \alpha_2^{(3)} &= H_2^{(1)}(\alpha_1^{(1)}, \alpha_2^{(1)}) \\ \alpha_1^{(1)} &= H_2^{(3)}(\alpha_3^{(3)}, \alpha_2^{(3)}) \dots \end{aligned}$$

We write this equation for each output flow at each server and obtain a system

 $\alpha = \mathsf{H}(\alpha)$ 

#### Lemma

If the system is stable, then there exists a family  $\alpha = (\alpha_{i,j})_{i,j}$  of arrival curves for the flows  $(F_i^{(j)})$  such that  $\alpha \leq H(\alpha)$ .

Take the best arrival curves, they will satisfy every inequality.

4 E N 4 E N

Stopped times From [Le Boudec, Thiran, 2001]

Let  $\alpha_0$  be the greatest finite solution of  $\alpha \leq H(\alpha)$ . Then  $\alpha$  is a family of arrival curves for the network.

## Stopped times at au > 0

Exogenous arrivals in the network are stopped at time  $\tau:$  arrival curves of type

$$\alpha^{\tau} = \alpha(t \wedge \tau).$$

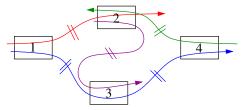
For all  $\tau$ , the system is stable (finite amount of arrivals in the system), so there exists a solution

$$oldsymbol{lpha}^ au \leq {\sf H}(oldsymbol{lpha}^ au) \hspace{0.2cm} ext{so} \hspace{0.2cm} oldsymbol{lpha}^ au \leq oldsymbol{lpha}^0.$$

As **H** is non-decreasing,  $\mathbf{H}(\alpha^{\tau}) \leq \mathbf{H}(\alpha_0) = \alpha_0$ . So  $\alpha = \sup_{\tau} \alpha^{\tau}$  is a solution, and  $\alpha \leq \alpha_0$ , which is also a solution.

Decomposition of the network

• SFA decomposition: at each server for each flow

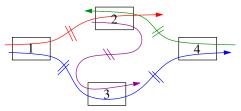


э

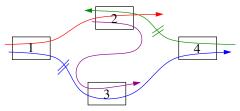
(日) (同) (三) (三)

Decomposition of the network

• SFA decomposition: at each server for each flow



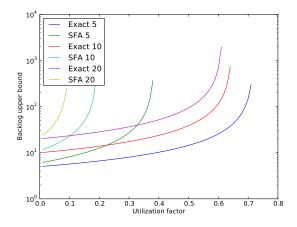
• "Exact" decomposition: decompose into trees



A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

## Numerical comparisons

## Unidirectional ring



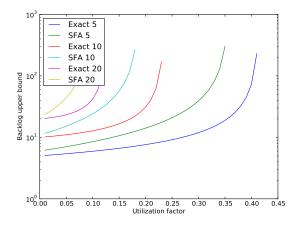
Worst-case performance bounds and cyclic networks

э

イロト イヨト イヨト イヨト

## Numerical comparisons

### Bidirectional ring



Worst-case performance bounds and cyclic networks

э

イロト イヨト イヨト イヨト

# Ring stability revisited

## Theorem (Tassiulas, Georgiadis, 96)

"The ring is stable" under assumption for stability of each server Additional assumption: the traffic is upper-bounded in each link.

We have

$$B = \sum_{j \in \llbracket n \rrbracket} \lambda_j T_j + \sum_{i \in \llbracket n \rrbracket} \xi_i b_i + \sum_{i \in \llbracket n \rrbracket} b_i^*$$

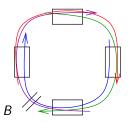
where the coefficients  $\lambda_j$  and  $\xi_i < 1$  depend only on the arrival and service rates.

$$B \leq C + \xi B$$

where  $\xi = \sup \xi_j^n < 1$  and

$$B\leq \frac{C}{1-\xi}.$$

A. Bouillard ()



1 Computing performance bounds in feed-forward networks

2 Network with cyclic dependencies

Proof of the worst-case backlog theorem

4 Conclusion and future work

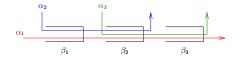
A. Bouillard ()

Worst-case performance bounds and cyclic networks

э

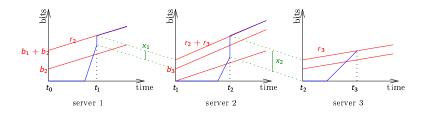
(日) (同) (日) (日) (日)

## Properties of a worst-case scenario



- (H<sub>1</sub>) Service policy is SDF (shortest-to-destination first): for two flows iand j, if  $d_i < d_j$ , then flow i is served with higher priority than flow j.
- (H<sub>2</sub>) Server j has the unique backlogged period  $(t_{j-1}, t_j)$  and provides infinite service outside its backlogged period.
- (H<sub>3</sub>) Each server provides exact service in its backlogged period and  $t_j t_{j-1} \ge T_j$ .
- $(H_4)$  The new arrivals at server j are maximal from time  $t_{j-1}$  on and zero before that.
- (H<sub>5</sub>) The flows of interest are always transmitted instantaneously.

## Properties of a worst-case scenario



Theorem

There exists a worst-case scenario that satisfy  $(H_1, \ldots, H_5)$ .

**Consequence:** we only have to optimize on the dates of start of backlog period  $t_0, t_1, \ldots, t_n$ .

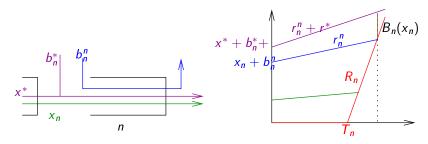
A. Bouillard ()

э

(日) (同) (三) (三)

# A backward computation

Server n:



$$B_n(x_n, x^*) = b_n^* + x^* + r^* (T_n + \frac{x_n + b_n^n + r_n^n T_n}{R_n - r_n^n})$$
  
=  $b_n^* + x^* + \lambda_n T_n + \frac{r^*}{R_n - r_n^n} (x_n + b_n^n).$ 

 $\xi_n^n = \frac{r^*}{R_n - r_n^n} < 1.$ 

A. Bouillard ()

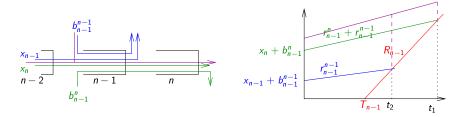
Worst-case performance bounds and cyclic networks

э

(4) E > (4) E >

## A backward computation

Server 
$$n-1$$
:  $(q_i = x_i + b_{n-1}^i + r_{n-1}^i T_{n-1}; T = T_{n-1})$ 



$$B_{n-1}^{1}(x_{n-1}, x_n, x^*) = B_n(0, b^* + r^* t_1)$$
$$B_{n-1}^{2}(x_{n-1}, x_n) = B_n(q_n + r_{n-1}^n t_2, b^* + r^* t_2)$$

A. Bouillard ()

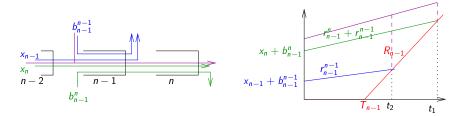
Worst-case performance bounds and cyclic networks

э

イロト イポト イヨト イヨト

## A backward computation

Server 
$$n-1$$
:  $(q_i = x_i + b_{n-1}^i + r_{n-1}^i T_{n-1}; T = T_{n-1})$ 



$$B_{n-1}^1 > B_{n-1}^2 \Leftrightarrow \frac{1}{R_n - r_n^n} < \frac{1}{R_{n-1} - r_{n-1}^n - r_{n-1}^{n-1}}$$

A. Bouillard ()

Worst-case performance bounds and cyclic networks

19 / 23

æ

イロト イポト イヨト イヨト

Delay from server j when flows ending after server k are served instantaneously.

$$B_j^k(x_j^j,\ldots,x_j^n)=B_{j+1}(0,\ldots,0,x_{j+1}^{k+1},\ldots,x_{j+1}^n,x^*+r^*t_j)$$

with 
$$t_j = \frac{\sum_{\ell=j}^{k} Q_j^{\ell}}{R_j - \sum_{\ell=j}^{k} r_j^{\ell}}$$
,  $x_{j+1}^{\ell} = Q_j^{\ell} + r_j^{\ell} t_j$ , and  $Q_j^{\ell} = x_j^{\ell} + r_j^{\ell} T_j$ .

#### Lemma

There exists k such that  $\forall x_j, \ldots, x_n$ ,

$$B_j(x_j,\ldots,x_n)=B_j^k(x_j,\ldots,x_n).$$

Finally,

$$B=B_1(0,\ldots,0).$$

A. Bouillard ()

Worst-case performance bounds and cyclic networks

20 / 23

・ロト (四) (日) (日) (日) (日)

Computing the worst-case backlog

$$\begin{vmatrix} \xi_n^n \leftarrow (\sum_{i \le n} r_i^*)(R_n - r_n^n)^{-1}; \\ \text{for } j \text{ from } n - 1 \text{ to } 1 \text{ do} \\ | k \leftarrow n; \\ \text{while } \xi_{j+1}^k < (\sum_{i \le j} r_i^* + \sum_{\ell > k} \xi_{j+1}^\ell r_j^\ell)(R_j - \sum_{\ell=j}^k r_j^\ell)^{-1} \text{ do} \\ | \xi_j^k \leftarrow \xi_{j+1}^k; \\ | k \leftarrow k - 1; \\ \text{for } \ell \text{ from } j \text{ to } k \text{ do} \\ | \xi_j^\ell \leftarrow (\sum_{i \le j} r_i^* + \sum_{\ell > k} \xi_{j+1}^\ell r_j^\ell)(R_j - \sum_{\ell=j}^k r_j^\ell)^{-1}; \\ \text{for } j \text{ from } 1 \text{ to } n \text{ do } \lambda_j \leftarrow \sum_{i \le j} r_i^* + \sum_{k \le j} \xi_j^k r_j^k; \\ end \end{aligned}$$

A. Bouillard ()

Worst-case performance bounds and cyclic networks

Conclusion and future work

## D Computing performance bounds in feed-forward networks

2 Network with cyclic dependencies

Proof of the worst-case backlog theorem

#### 4 Conclusion and future work

A. Bouillard ()

Worst-case performance bounds and cyclic networks

3

(日) (同) (日) (日) (日)

Conclusion and future work

# Conclusion and future work

## Conclusion

- A new efficient algorithm to compute tight worst-case delays and backlog.
- Application to networks with cyclic dependencies:
  - best stability conditions
  - stability of the ring without additional assumptions

## Future work

- Application to stochastic network calculus
- Extension to feed-forward networks (we conjecture that a simple generalization can lead to the same approximation with one linear program)
- Improvement of the conditions with the "ring trick"
- Extension to some service policies (FIFO for example)

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・