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Objective

Is the network stable? performance bounds?

Hypotheses

m token-bucket arrival curves: αi (t) = bi + ri t;

n rate-latency strict service curves: β(j)(t) = Rj(t − Tj)+.
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Computing performance bounds in feed-forward networks

Separated Flow Analysis (SFA) method
1 In the topological order if the servers, for each �ow crossing the server:
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2 For the �ow of interest (�ow 1)
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3 Delay bound: h(α1, β),
Backlog bound: v(α1, β)

E�cient algorithms

Pessimistic performance bounds

Symbolic computation (for simple classes of functions)
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Computing performance bounds in feed-forward networks

Greedy algorithm for tandem networks
Joint work with Thomas Nowak [Performance 2015]

Theorem

Consider a tandem network of n servers. The worst-case delay is linear in

the bursts and latencies:

D =
∑
j∈[[n]]

λjTj +
∑
i∈[[m]]

µibi

where the coe�cients λj and µi depend only on the arrival and service

rates and can be e�ectively computed in time O(n2 +m).

E�cient algorithm in tandem network

Tight delay bound

Symbolic on some parameters
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Computing performance bounds in feed-forward networks

Greedy algorithm

This theorem can be adapted to backlog at server n and for tree-topologies:

b2

b1 b∗
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b∗
4

Theorem

Consider a tree network of n servers, and p �ows of interest at server n.

The worst-case backlog at server n for the �ows of interests is linear in the

bursts and latencies:

B =
∑
j∈[[n]]

λjTj +
∑
i∈[[m]]

ξibi +
∑
i∈[[p]]

b∗i

where the coe�cients λj and ξi < 1 depend only on the arrival and service

rates and can be e�ectively computed in time O(n2 +m + p).
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Computing performance bounds in feed-forward networks

Computing the worst-case backlog

begin

ξnn ← (
∑

i≤n r
∗
i )(Rn − rnn )

−1;

for j from n − 1 to 1 do
k ← n;
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Network with cyclic dependencies

Stability in cyclic networks

Consider a server o�ering a strict service curve β : t 7→ R(t − T )+ and a

�ow crossing it, with arrival curve α : t 7→ b + rt.

This server is said unstable if its worst-case backlog is bounded:

R < r ;

This server is said critical if its worst-case backlog is bounded, but the

lengths of its backlogged periods are not bounded bounded: R = r ;

This server is said stable if the length of its backlogged periods is

bounded: R > r .

De�nition (Global stability)

A network is globally stable if for all its servers, the length of the maximal

backlogged period is bounded.
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Network with cyclic dependencies

Stopped-time/�x-point method
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We write this equation for each output �ow at each server and obtain a

system

α = H(α)

We can assume w.l.o.g. that H is non-decreasing in any variable

If α is a solution of α = H(α), is it a family of arrival curves for the

intermediate �ows?

If service curves are rate-latency and arrival curves token bucket, this

is a linear equation: b = Mb+ N.
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Network with cyclic dependencies

Stopped-time/�x-point method
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We write this equation for each output �ow at each server and obtain a

system

α = H(α)

Lemma

If the system is stable, then there exists a family α = (αi ,j)i ,j of arrival

curves for the �ows (F
(j)
i ) such that α ≤ H(α).

Take the best arrival curves, they will satisfy every inequality.
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Network with cyclic dependencies

Stopped times
From [Le Boudec, Thiran, 2001]

Let α0 be the greatest �nite solution of α ≤ H(α).
Then α is a family of arrival curves for the network.

Stopped times at τ > 0

Exogenous arrivals in the network are stopped at time τ :
arrival curves of type

ατ = α(t ∧ τ).

For all τ , the system is stable (�nite amount of arrivals in the system),

so there exists a solution

ατ ≤ H(ατ ) so ατ ≤ α0.

As H is non-decreasing, H(ατ ) ≤ H(α0) = α0.

So α = supτ α
τ is a solution, and α ≤ α0, which is also a solution.
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Network with cyclic dependencies

Decomposition of the network

SFA decomposition: at each server for each �ow
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Network with cyclic dependencies

Numerical comparisons

Unidirectional ring
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Network with cyclic dependencies

Numerical comparisons

Bidirectional ring
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Network with cyclic dependencies

Ring stability revisited

Theorem (Tassiulas, Georgiadis, 96)

�The ring is stable� under assumption for stability of each server

Additional assumption: the tra�c is upper-bounded in each link.

We have

B =
∑
j∈[[n]]

λjTj +
∑
i∈[[m]]

ξibi +
∑
i∈[[p]]

b∗i

where the coe�cients λj and ξi < 1 depend only

on the arrival and service rates.

B ≤ C + ξB

where ξ = sup ξnj < 1 and

B ≤ C

1− ξ
.

B
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Proof of the worst-case backlog theorem

Properties of a worst-case scenario

β2β1 β3

α1

α2 α3

(H1) Service policy is SDF (shortest-to-destination �rst): for two �ows i

and j , if di < dj , then �ow i is served with higher priority than �ow j .

(H2) Server j has the unique backlogged period (tj−1, tj) and provides

in�nite service outside its backlogged period.

(H3) Each server provides exact service in its backlogged period and

tj − tj−1 ≥ Tj .

(H4) The new arrivals at server j are maximal from time tj−1 on and zero

before that.

(H5) The �ows of interest are always transmitted instantaneously.
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Proof of the worst-case backlog theorem

Properties of a worst-case scenario
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Theorem

There exists a worst-case scenario that satisfy (H1, . . . ,H5).

Consequence: we only have to optimize on the dates of start of backlog

period t0, t1, . . . , tn.
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Proof of the worst-case backlog theorem

A backward computation
Server n:

xn

bn
n

Tn

Rn

xn + bn
n

n
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x∗

rnn

b∗n

x∗ + b∗n+
rnn + r∗

Bn(xn, x
∗) = b∗n + x∗ + r∗(Tn +

xn + bnn + rnnTn

Rn − rnn
)

= b∗n + x∗ + λnTn +
r∗

Rn − rnn
(xn + bnn).

ξnn = r∗

Rn−rnn
< 1.
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Proof of the worst-case backlog theorem

A backward computation

Server n − 1: (qi = xi + bin−1 + r in−1Tn−1; T = Tn−1)

b
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n−1(xn−1, xn, x
∗) = Bn(0, b

∗ + r∗t1)

B2

n−1(xn−1, xn) = Bn(qn + rnn−1t2, b
∗ + r∗t2)
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Proof of the worst-case backlog theorem

Delay from server j when �ows ending after server k are served

instantaneously.

Bk
j (x

j
j , . . . , x

n
j ) = Bj+1(0, . . . , 0, x

k+1

j+1
, . . . , xnj+1, x

∗ + r∗tj)

with tj =
∑k

`=j Q
`
j

Rj−
∑k

`=j r
`
j

, x`j+1
= Q`

j + r `j tj , and Q`
j = x`j + r `j Tj .

Lemma

There exists k such that ∀xj , . . . , xn,

Bj(xj , . . . , xn) = Bk
j (xj , . . . , xn).

Finally,

B = B1(0, . . . , 0).

A. Bouillard () Worst-case performance bounds and cyclic networks 20 / 23



Proof of the worst-case backlog theorem

Computing the worst-case backlog

begin

ξnn ← (
∑

i≤n r
∗
i )(Rn − rnn )
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Conclusion and future work

Conclusion and future work

Conclusion

A new e�cient algorithm to compute tight worst-case delays and

backlog.

Application to networks with cyclic dependencies:

best stability conditions

stability of the ring without additional assumptions

Future work

Application to stochastic network calculus

Extension to feed-forward networks (we conjecture that a simple

generalization can lead to the same approximation with one linear

program)

Improvement of the conditions with the �ring trick�

Extension to some service policies (FIFO for example)
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