A Method for Cross-layer Analysis of Transmit Buffer Delays in Message Index Domain WoNeCa

Sami Akın and Markus Fidler

Institute of Communications Technology Leibniz Universität Hannover

February 28, 2018

Outline

Motivation

Contributions

State-of-the-art

Objectives and approach

Results

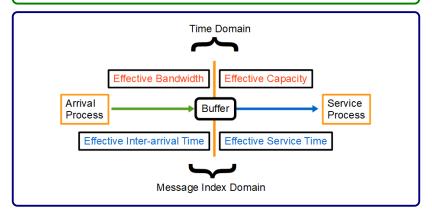
Conclusion

Motivation

- Need for faster and more reliable data transmission techniques
- Effective bandwidth and capacity concepts
- An approximation for the steady-state buffer overflow probability
- Delay violation probability of first-come first-served systems when either the data arrival or service rate is constant
- Difficult to obtain effective bandwidth and capacity in certain scenarios without resorting to numerical techniques or particular assumptions

Contributions

- Analysis in the message index domain
- Waiting time (buffering delay) characterization
- Waiting time violation probability



State-of-the-art

Assuming that the buffer is unbounded (very big), the backlog (queue length) at time instant *t* is

$$q(t) = [q(t-1) + a_q(t) - s_q(t)]^+$$

 $a_q(t)$: arrival rate, $s_q(t)$: service rate $\lceil \cdot \rceil^+ = \max\{0, \cdot \}$

 $q(\infty)$ will converge in distribution to a finite random variable when both $a_q(t)$ and $s_q(t)$ are stationary and ergodic, and when $\mathbb{E}\{a_q(t)\} < \mathbb{E}\{s_q(t)\}$

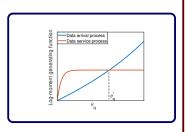
State-of-the-art

When $a_q(t)$ and $s_q(t)$ are independent of each other, there exists a unique θ_q^{\star} such that

$$\lim_{t \to \infty} \frac{\log \mathbb{E}\left\{e^{\theta_q^{\star} \sum_{\tau=1}^{t} a_q(\tau)}\right\}}{t} = -\lim_{t \to \infty} \frac{\log \mathbb{E}\left\{e^{-\theta_q^{\star} \sum_{\tau=1}^{t} s_q(\tau)}\right\}}{t}$$

and

$$heta_q^\star = -\lim_{q_{ ext{th}} o \infty} rac{\log \Pr\{q(\infty) \geq q_{ ext{th}}\}}{q_{ ext{th}}}$$



For large $q_{\rm th}$, $\Pr\{q(\infty) \geq q_{\rm th}\} \approx e^{-\theta_q^{\star}q_{\rm th}}$

For $\theta_q > 0$

Effective bandwidth:
$$\bar{a}_q(\theta_q) = \lim_{t \to \infty} \frac{\log \mathbb{E}\left\{e^{\theta_q \sum_{\tau=1}^t a_q(\tau)}\right\}}{\theta_q t}$$

$$\text{Effective capacity: } \bar{s}_q(-\theta_q) = \lim_{t \to \infty} \frac{\log \mathbb{E}\left\{e^{-\theta_q \sum_{\tau=1}^t s_q(\tau)}\right\}}{-\theta_q t}$$

Given a constant service or arrival rate;

$$\Pr\{d(\infty) \geq d_{\mathsf{th}}\} pprox \varepsilon e^{- heta_q ar{a}_q(heta_q) d_{\mathsf{th}}} \quad \mathsf{or} \quad \varepsilon e^{- heta_q ar{s}_q(- heta_q) d_{\mathsf{th}}}$$

where

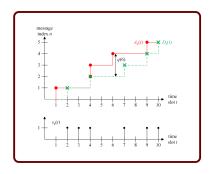
$$d_{\mathsf{th}} = rac{q_{\mathsf{th}}}{ar{a}_q(heta_q)} \; \mathsf{or} \; rac{q_{\mathsf{th}}}{ar{s}_q(- heta_q)}, \; \mathsf{and} \; d(\infty) = rac{q(\infty)}{ar{a}_q(heta_q)} \; \mathsf{or} \; rac{q(\infty)}{ar{s}_q(- heta_q)}$$

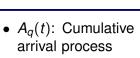
Objectives and approach

- $\Pr\{d(\infty) \ge d_{th}\}$ when both arrival and service processes are stochastic
- Communication scenarios where effective bandwidth and effective capacity are not straightforward

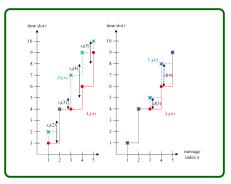
The pseudo-inverse functions of cumulative arrival and service processes: the number of messages and the number of time instants are positioned on the x-axis and y-axis, respectively

Objectives and approach





• *D*_q(*t*): Cumulative departure process



- $A_d(n)$: Message n arrives
- D_d(n): Message n departs
- *U_d*(*n*): Message *n* starts service

Waiting time characterization

The waiting time:

$$d(n) = [d(n-1) + s_d(n) - a_d(n)]^+$$
 for $n \ge 1$

d(n): waiting time of message n

 $a_d(n)$: Inter-arrival time between messages n-1 and n

 $s_d(n)$: Service time of message n-1

Time message *n* starts service:

$$U_d(n) = \max \{A_d(n), U_d(n-1) + s_d(n)\}$$

 $A_d(n) = \sum_{i=1}^n a_d(i)$ is the time message n arrives at the buffer

Steady-State Waiting Time Analysis

 $d(\infty)$ will converge in distribution to a finite random variable when both $s_d(n)$ and $a_d(n)$ are stationary and ergodic, and when $\mathbb{E}\{s_d(n)\} < \mathbb{E}\{a_d(n)\}$

The service process is work-conserving, and the arrival and service processes are independent of each other;

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbb{E}\left\{e^{\theta_d^\star\sum_{i=1}^ns_d(i)}\right\}=-\lim_{n\to\infty}\frac{1}{n}\log\mathbb{E}\left\{e^{-\theta_d^\star\sum_{i=1}^na_d(i)}\right\}$$

where

$$heta_d^{\star} = -\lim_{d_{\mathsf{th}} o \infty} rac{\log \mathsf{Pr}\{d(\infty) \geq d_{\mathsf{th}}\}}{d_{\mathsf{th}}}$$

and large dth

$$\mathsf{Pr}\{d(\infty) \geq d_{\mathsf{th}}\} pprox e^{- heta_d^\star d_{\mathsf{th}}}$$

Effective service time

For $\theta_d > 0$

$$\bar{\mathbf{s}}_d(\theta_d) = \lim_{n \to \infty} \frac{1}{n\theta_d} \log \mathbb{E} \left\{ e^{\theta_d \sum_{i=1}^n \mathbf{s}_d(i)} \right\}$$

When the service time samples are independent and identically distributed;

$$ar{s}_d(heta_d) = rac{1}{ heta_d} \log \mathbb{E} \left\{ e^{ heta_d s_d(n)}
ight\}$$

$$\lim_{\theta_d \to 0} \bar{s}_d(\theta_d) = \mathbb{E}\left\{s_d(n)\right\} \quad \text{and} \quad \lim_{\theta_d \to \infty} \bar{s}_d(\theta_d) = \max\left\{s_d(n)\right\}$$

Effective inter-arrival time

For $\theta_d > 0$

$$\bar{a}_d(-\theta_d) = \lim_{n \to \infty} \frac{-1}{n\theta_d} \log \mathbb{E} \left\{ e^{-\theta_d \sum_{i=1}^n a_d(i)} \right\}$$

When the inter-arrival time samples are independent and identically distributed;

$$ar{a}_d(- heta_d) = -rac{1}{ heta_d}\log \mathbb{E}\left\{e^{- heta_d a_d(n)}
ight\}$$

$$\lim_{\theta_d \to 0} \bar{a}_d(-\theta_d) = \mathbb{E}\left\{a_d(n)\right\} \text{ and } \lim_{\theta_d \to \infty} \bar{a}_d(-\theta_d) = \min\left\{a_d(n)\right\}$$

Message index domain ← Time domain

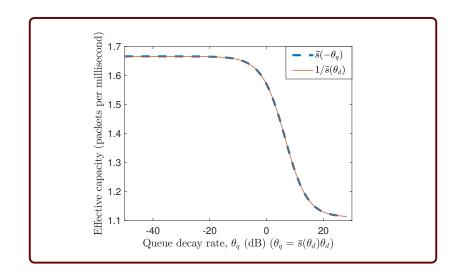
Given that the effective service time of a data service process is $\bar{s}_d(\theta_d)$ for $\theta_d>0$ and the effective capacity of the same service process is $\bar{s}_q(-\theta_q)$ for $\theta_q>0$, there exists a reciprocal relation between $\bar{s}_d(\theta_d)$ and $\bar{s}_q(-\theta_q)$ such that

$$\bar{s}_d(\theta_d)\bar{s}_q(-\theta_q)=1$$
 and $\theta_q=\bar{s}_d(\theta_d)\theta_d$

Given that the effective inter-arrival time of a data arrival process is $\bar{a}_d(-\theta_d)$ for $\theta_d>0$ and the effective bandwidth of the same arrival process is $\bar{a}_q(\theta_q)$, there exists a reciprocal relation between $\bar{a}_d(-\theta_d)$ and $\bar{a}_q(\theta_q)$ such that

$$\bar{a}_d(-\theta_d)\bar{a}_q(\theta_q) = 1$$
 and $\theta_q = \bar{a}_d(-\theta_d)\theta_d$

Message index domain ← Time domain



Conclusion

Thank You

&

Questions