Deterministic Network Calculus Analysis of Multicast Flows

Fabien Geyer - fgeyer@net.in.tum.de Work done in collaboration with Steffen Bondorf

4th Workshop on Network Calculus (WoNeCa-4)

Wednesday 28th February, 2018

Chair of Network Architectures and Services Department of Informatics Technical University of Munich

Motivation

Why studying multicast flows (one source to many destinations)?

- Some network architectures and protocols are heavily based on multicast communication (eg. AFDX)
- The traditional view in network calculus is that flows are unicast

Naming convention

- A multicast flow is made of multiple trajectories, one for each destination
- Locations where packets are duplicated are called forks.

Motivation

Unicast-based methods - Unicast Feed-Forward Analysis

- · Option 1: Transform all trajectories in individual flows
- \rightarrow Unnecessary resource utilization at each server

Motivation

Unicast-based methods - Explicit Intermediate Bounds (EIB)

- Option 2: Split flows in multiple subflows according to their trajectories
- \rightarrow Not a true end-to-end analysis

Outline

Motivation

Multicast Feed-Forward Analysis

Evaluation

Conclusion

Bibliography

Goals

- Have a true end-to-end method
- · Do not require flow or network transformation
- Benefit from PMOO and PBOO principles
- → Welcome mcastFFA: Multicast Feed-Forward Analysis

General idea

 Reduce the network to relevant servers as well as (partial) flows and multicast flow trajectories

Figure 7: Illustrative example

Principles

Concepts

- Iterate over all *n* trajectory of interest and execute separate analyses
- · Identify flows' inter-dependencies by traversing the network in the opposite direction of links
- Derive the sub-network relevant to a specific trajectory
- Use standard feed-forward techniques on this sub-network

Figure 8: Illustrative example – First trajectory

Application to f_2 – First trajectory

PBOO:

$$\beta^{\text{l.o.}f_2^{\mathcal{B}}} = \beta_{\langle 5,6\rangle}^{\text{l.o.}f_2^{\mathcal{B}}} \quad (\text{cut enforced by SFA, no single-tandem analysis})$$
$$= \beta_5^{\text{l.o.}f_2^{\mathcal{B}}} \otimes \beta_6^{\text{l.o.}f_2^{\mathcal{B}}} = \left(\beta_5 \ominus \alpha_5^{t_1^{\mathcal{B}}}\right) \otimes \left(\beta_6 \ominus \alpha_6^{t_1^{\mathcal{B}}}\right)$$
$$= \left(\beta_5 \ominus \left(\alpha^{f_1} \oslash \beta_{\langle 1,2\rangle}^{\text{l.o.}f_1}\right)\right) \otimes \left(\beta_6 \ominus \left(\alpha^{f_1} \oslash \beta_{\langle 1,2\rangle}^{\text{l.o.}f_1^{\mathcal{B}}}\right)\right)$$

PMOO:

$$\begin{split} \beta^{\mathrm{l.o.} f_2^{\mathrm{B}}} &= \beta^{\mathrm{l.o.} f_2^{\mathrm{B}}}_{\langle 5, 6 \rangle} & (\text{there is no enforced cut}) \\ &= (\beta_5 \otimes \beta_6) \ominus \alpha_5^{\mathfrak{f}_1} = (\beta_5 \otimes \beta_6) \ominus \left(\alpha^{\mathfrak{f}_1} \oslash \beta^{\mathrm{l.o.} \mathfrak{f}_1}_{\langle 1, 2 \rangle} \right) \end{split}$$

with $(\beta \ominus \alpha)(d) = \sup\{(\beta - \alpha)(u) \mid 0 \le u \le d\}$ denoting the non-decreasing upper closure of $(\beta - \alpha)(d)$

Figure 10: Illustrative example - First trajectory

ТΠ

Application to f_2 – Second trajectory

PBOO:

$$\begin{split} \beta^{1.0.f_2^A} &= \beta_{\langle 5,4\rangle}^{1.0.f_2^A} \quad \text{(only single-hop interference so cutting is fine)} \\ &= \beta_5^{1.0.f_2^A} \otimes \beta_4^{1.0.f_2^A} = \left(\beta_5 \ominus \alpha_5^{f_1^B}\right) \otimes \left(\beta_4 \ominus \alpha_4^{f_1^A}\right) \\ &= \left(\beta_5 \ominus \left(\alpha^{f_1} \oslash \beta_{\langle 1,2\rangle}^{1.0.f_1}\right)\right) \otimes \left(\beta_4 \ominus \left(\alpha^{f_1} \oslash \beta_{\langle 1,2\rangle}^{1.0.f_1^A}\right)\right) \end{split}$$

PMOO:

A cut of $\beta_{\langle 1,2,3\rangle}^{\text{l.o.f}_1^A}$ into $\beta_{\langle 1,2\rangle}^{\text{l.o.f}_1} \otimes \beta_3^{\text{l.o.f}_1^A}$ was needed in the EIB analysis, meaning that PMOO could not be implemented.

Figure 11: Illustrative example – Second trajectory

ТШ

Evaluation

Comparison to (Non-)Network Calculus Approaches

Comparison against Trajectory Approach (TA) [1] and Forward End-To-End Delay Approach (FA) [3]

v_3 v_2 v_2	[3]		3]	u. trans.	EIB			mcastFFA	
(S_2)	Flow	TA	FA	PMOO	TFA	SFA	PMOO	SFA	РМОО
	<i>v</i> ₁	142	192	142	182	182	142	182	122
$v_2 v_6 v_1 v_1 v_1 v_2 v_1 v_2 v_1 v_2 v_1 v_2 v_2 v_2 v_1 v_2 v_2 v_2 v_1 v_2 v_2 v_2 v_1 v_2 v_2 v_2 v_2 v_2 v_2 v_2 v_2 v_2 v_2$	$V_{2(S_{2})}$	122	122	142	122	122	122	122	122
v_5 $v_2 v_6 S_{12}$ $v_5 v_6$	$V_{2(S_{41})}$	142	192	142	182	182	162	182	142
(ES_4)	V ₃	66	56	56	56	56	56	56	56
$v_7 v_9 v_7 v_9$	<i>v</i> ₄	56	66	56	56	56	56	56	56
(ES_5)	<i>V</i> 5	106	106	96	96	96	96	96	96
(S_3)	<i>v</i> ₆	142	192	142	182	182	142	182	122
	V 7	-	152	142	142	142	142	142	132
	V ₈	92	122	102	112	112	102	112	92
	$V_{9(S_{41})}$	-	162	142	152	152	142	152	132
	V _{9(S42)}	92	122	102	112	112	102	112	92

Figure 12: Evaluated AFDX network

Table 1: Delay bounds (values given in μ s, best in bold).

Evaluation

An Industry-scale AFDX Data Network

Evaluation on AFDX-like network of 650 multicast flows with 1112 trajectories in total.

Conclusion

Contributions

- Analysis of existing restrictions in network calculus due to unicast flow model
- Proposition of mcastFFA: analysis of multicast flows with deterministic network calculus
- Implementation in DiscoDNC (thanks to Bruno Cattelan)

Numerical evaluation

- Match or better results compared to related work
- Promising gains on realistic AFDX use-case

Note: Talk based on contribution at Valuetools 2016 [2] and further extensions

ΠГ

Bibliography

[1] H. Bauer, J. L. Scharbarg, and C. Fraboul.

Applying and optimizing trajectory approach for performance evaluation of afdx avionics network. In IEEE Conference on Emerging Technologies Factory Automation, 2009. ETFA 2009, pages 1–8, Sept. 2009.

[2] S. Bondorf and F. Geyer.

Generalizing Network Calculus Analysis to Derive Performance Guarantees for Multicast Flows.

In Proceedings of the 10th International Conference on Performance Evaluation Methodologies and Tools, VALUETOOLS 2016, Oct. 2016.

[3] G. Kemayo, N. Benammar, F. Ridouard, H. Bauer, and P. Richard.

Improving AFDX End-to-End Delays Analysis.

In Emerging Technologies Factory Automation (ETFA), 2015 IEEE 20th Conference on, pages 1-8, Sept. 2015.