

Buffer-aware Worst-Case Timing Analysis of Wormhole NoCs Using Network Calculus*

Frédéric Giroudot and Ahlem Mifdaoui

WONECA 2018

*Accepted to appear in RTAS'2018

What is challenging in Wormhole NoCs?

No contention

Under contention

The wormhole routing:

- + Reduce drastically the storage buffers in routers
- + The contention-free packet latency becomes insensitive to the path length
- **Complicate** the congestion pattern
- Introduce indirect blocking delays due to buffer backpressure
- ⇒Need appropriate timing analysis to compute safe delay bounds

Related work

		wormhole	multiple VCs	priority sharing	VCs sharing	flows serialization	buffer size	ze B (vs p	acket length L)
Approach	Contribution		-		_		1 flit	$L \leq B^{\uparrow}$	$B \leq L$
	[2]	Х	х				Х	Х	х
Scheduling Theory	[4]	х	Х	Х					
	[5]	х	х	Х			Х		
CPA	[6]	х	-	х				X	
	[7]	х	х	х	х			Х	
Network Calculus	[8]	Х		х			Х	Х	х
	[9]		Х	х		Х		Х	
	our approach	Х	X	X	x	Х	X	X	X

[2] Q. Xiong, F. Wu, Z. Lu, and C. Xie, "Extending real-time analysis for wormhole nocs," *IEEE Transactions on Computers*, vol. PP, no. 99, pp. 1–1, 2017.

- [3] Z. Shi and A. Burns, "Real-time communication analysis for onchip networks with wormhole switching," in *Networks-on-Chip, Second* ACM/IEEE International Symposium on, April 2008.
- [4] Z. Shi and A. Burns, "Real-time communication analysis with a priority share policy in on-chip networks," in 21st Euromicro Conference on Real-Time Systems, pp. 3–12, July 2009.
- [5] M. Liu, M. Becker, M. Behnam, and T. Nolte, "Tighter time analysis for real-time traffic in on-chip networks with shared priorities," in 10th IEEE/ACM International Symposium on Networks-on-Chip, 2016.
- [6] S. Tobuschat and R. Ernst, "Real-time communication analysis for networks-on-chip with backpressure," in *Design, Automation Test in Europe Conference Exhibition*, 2017.
- [7] E. A. Rambo and R. Ernst, "Worst-case communication time analysis of networks-on-chip with shared virtual channels," in *Proceedings of Design, Automation Test in Europe Conference Exhibition*, 2015.
- [8] Y. Qian, Z. Lu, and W. Dou, "Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip," in *Networks*on-Chip, 3rd ACM/IEEE International Symposium on, May 2009.
- [9] F. Jafari, Z. Lu, and A. Jantsch, "Least upper delay bound for vbr flows in networks-on-chip with virtual channels," ACM Trans. Des. Autom. Electron. Syst., vol. 20, pp. 35:1–35:33, June 2015.

⇒None of the existing approaches cover all the implemented mechanisms and/or phenomena

⇒Our proposal: a new buffer-aware timing analysis considering the flows serialization phenomena based on NC

Outline

Context & Problematic

- Main Contributions
 - ✓ System Model and Assumptions
 - ✓ Main Steps of the Buffer-aware Timing Analysis
 - ✓ Performance Evaluation

Conclusions & Perspectives

System Model and Assumptions

- Input-buffered routers
- VCs sharing, i.e., a VC supports many traffic classes
- **Priority sharing**, i.e., many flows mapped on the same priority-level
- Arbitrary⁽¹⁾ multiplexing of flows within the same VC
- Priority-based arbitration of VCs
- Flit-level preemption
- Rate-latency service curve for each output port
- Leaky-bucket arrival curve for each flow

Main Steps of the Buffer-aware Timing Analysis

Main idea: to compute upper bound on end-to-end delay for a *foi* f, we need the granted end-to-end service curve to f:

$$\beta_f(t) = R_f \left(t - T_f \right)^+$$

Where:

 $R_{f}: \text{ the bottleneck rate along the flow path}$ $T_{f}: \text{ the service latency}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{IB} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{P_{f}}$ $T_{f} = T_{hp} + T_{sp} + T_{lp} + T_{p} + T_$

6

#Step1 of the Buffer-aware Timing Analysis

Indirect Blocking flows set

- One-flit buffers
- 3-flit long packets
- One VC
- foi flow 1
- IB₁={3,4} without taking into account the buffer size
- IB₁'={3} under buffer-aware analysis
- The buffer size may limit the indirect blocking set (delay)

#Step1 of the Buffer-aware Timing Analysis

- Find flows blocking the foi even though they do not share resources with it (IB_{foi})
- Determine which section of the IB flow's path is involved
- Quantify the packet spread index of each IB flow f:

$$N_f = \left| \frac{L_f}{B} \right|$$

- Propagate spread sections from the divergence point to compute IB_{foi}
- \Rightarrow The complexity of the computation algorithm of IB_{foi} is linear:

#Step2 of the Buffer-aware Timing Analysis

Theorem [Maximum Direct Blocking Latency]

The maximum direct blocking latency for a *foi* f along its path P_f, in a NoC under **flit-level preemptive FP** multiplexing with strict service curve nodes of the **rate-latency type** and **leaky-bucket** constrained arrival curves is:

$$T_{\mathbb{P}_{f}} + T_{hp} + T_{sp} + T_{lp}$$

$$T_{hp} = \sum_{i \in DB_{f} \cap hp(f)} \frac{\sigma_{i}^{cv(i,f)} + \rho_{i} \cdot \sum_{r \in \mathbb{P}_{f} \cap \mathbb{P}_{i}} \left(T^{r} + \frac{L_{slp(f)}^{r}}{R^{r}}\right)}{R_{i}}$$

$$T_{lp} = \sum_{r \in \mathbb{P}_{f}} \frac{L_{slp(f)}^{r}}{R^{r}} \qquad T_{sp} = \sum_{i \in DB_{f} \cap sp(f)} \frac{\sigma_{i}^{cv(i,f)} + \rho_{i} \cdot \sum_{r \in \mathbb{P}_{f} \cap \mathbb{P}_{i}} \left(T^{r} + \frac{L_{slp(f)}^{r}}{R^{r}}\right)}{R_{f}}$$

$$T_{slp(f)} = \max\left(\max_{j \in sp(f)} \left(L_{j} \cdot \mathbf{1}_{\{sp(f) \supset r\}}\right), S_{flit} \cdot \mathbf{1}_{\{lp(f) \supset r\}}\right) \quad R_{f} = \min_{r \in \mathbb{P}_{f}} \left\{R^{r} - \sum_{j \ni r, j \in shp(f)} \rho_{j}\right\}$$

#Step3 of the Buffer-aware Timing Analysis

Theorem [Indirect Blocking Latency]

The maximum indirect blocking latency for a *foi* f along its path P_f, in a NoC under **flit-level preemptive FP** multiplexing with strict service curve nodes of the **rate-latency** type and **leaky-bucket** constrained arrival curves is:

Performance Evaluation (1)

Comparative analysis vs Scheduling Theory approaches

Flow index	1	2	3
Priority	1	2	3
Period	100	100	100
Deadline	100	100	40
Release jitter	0	0	0
Base latency (no contention)	21	24	14
Packet size	19	20	10
Cycle accurate scenario in [2]	21	43	43
Upper bound by [3]	21	45	38
Upper bound (our approach)	23	57	44

⇒Safe delay bounds with our approach, in comparison to existing ST ones

Performance Evaluation (2)

Comparative analysis vs CPA

⇒When increasing the network congestion or the buffer size, the delay bounds with our approach are tighter, in comparison to CPA

12

Performance Evaluation (3)

Experiments on a Physical Platform

 \Rightarrow The model tightness is high, with reference to experimental results

Outline

Context & Problematic

Main Contributions

- ✓ System Model and Assumptions
- ✓ Main Steps of the Buffer-aware Timing Analysis

✓ Performance Evaluation

Conclusions & Perspectives

Conclusions

Proposed timing analysis of wormhole NoCs

✓ Covering a large panel of NoCs architectures

✓ Taking into-account the **buffer size** (backpressure)

✓ Taking into-account the flows serialization phenomena

Results show:

The safety of the obtained bounds, in comparison to Scheduling Theory approaches

The tightness of the obtained bounds, in comparison to CPA and experimental results

Perspectives

> To conduct a deeper sensitivity analysis of our model (network size, utilization rate, the buffer size, the flow burst and rate...)

Refining the model when specifying a service policy between classes of the same VC and flows of the same class

Further experiments with more complex congestion patterns to measure the tightness of our model

