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Accuracy/scalability trade-off

Modular analysis

• Total flow analysis

• Separated flow analysis

Properties

• Low complexity (linear/quadratic)

• Potentially very pessimistic

Global analysis

• Linear programming

• Tandem matching analysis

• Deborah for FIFO

Properties

• High complexity ((super-)exponential)

• Quasi-tight bounds

Question
Can intermediate methods be defined? and used for small/medium scale networks?

2 / 24 Huawei



Accuracy/scalability trade-off

Modular analysis

• Total flow analysis

• Separated flow analysis

Properties

• Low complexity (linear/quadratic)

• Potentially very pessimistic

Global analysis

• Linear programming

• Tandem matching analysis

• Deborah for FIFO

Properties

• High complexity ((super-)exponential)

• Quasi-tight bounds

Question
Can intermediate methods be defined? and used for small/medium scale networks?

2 / 24 Huawei



Contents

Overview of NC methods for FIFO networks

A more scalable linear program for FIFO tree networks

General networks

3 / 24 Huawei



FIFO policy for one server
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I/O transformation

β
α1
α2

Theorem
Consider a FIFO server with service curve
β, crossed by two flows with respective
arrival curves α1 and α2. For all θ ≥ 0, βθ
is a residual service curve for the first flow,
with

βθ = [β − α2 ∗ δθ]+ ∧ δθ.
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Network model and notations

Servers

• Minimum service curve βj : t 7→ Rj(t − Tj)+

• (Greedy) shaping curve is σj : t 7→ Lj + Cj t (Cj = ηjRj with ηj ≥ 1);

Flows

• Arrival curve: αi : t 7→ bi + ri t

• Path: πi = 〈πi (1), . . . , πi (`i )〉
• Arrival curve at server j : α

(j)
i : t 7→ b

(j)
i + ri t

• Successor of server j for flow i : succi (j)
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Total flow analysis (TFA)
[Grieux04, Mifdaoui, Leydier17]

Ideas

TFA The worst-case delay in a FIFO server is the same for all flows crossing it

++ The maximum service rate of the previous server shapes the arrival process

begin
foreach server j in the topological order do

b ←
∑

i∈Fl(j) b
(j)
i ;

dj ← Tj + b
Rj

;

b
(succi (j))
i ← b

(j)
i + ridj

return
∑

j∈πi dj

∆TFA++

∆TFA
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begin
foreach server j in the topological order do

α←
∑

h∈prec(j) min(σh,
∑

i∈Fl(h,j) αi ) +∑
i | πi (1)=j αi ;

dj ← dmax(α, βj);
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Separated Flow Analysis (SFA)

begin
foreach server j in the topological order
do

foreach flow i ∈ Fl(j) do

b ←
∑

k∈Fl(j)−i b
(j)
k ;

b
(succi (j))
i ← b

(j)
i + (Tj + b/Rj)ri ;

T
(j)
i ← (Tj + b/Rj)ri ;

R j
i ← Rj −

∑
k∈Fl(j)−i rk

return
∑

j∈πi0
T

(j)
i0

+ bi0/(minj∈πi0 R
j
i0

)

A locally optimal choice for the value
of θ, minimizing the output burst.

θ = T + b/R

if β(t) = R(t − T )+

and αc(t) = b + rt
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Linear programming [B., Stea 12]
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I/O transformation

Maximize t1 − t2
Under the constraints

• Dates: t0 ≥ t1 ≥ t2

• Monotonicity: Ait0 ≥ Ait1, i ∈ {1, 2}
• Arrival: Ait1 − Ait2 ≤ αi (t1 − t2), i ∈ {1, 2}
• Service: D1t0 +D2t0 ≥ A1t2 + A2t2 + β(t0 − t2)

• FIFO: Dit0 = Ait1, i ∈ {1, 2}

• Tight performances in feed-forward network

• Super-exponential MILP
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Simplification of the linear program

• Number of dates exponential in the
number of servers
I Have to be ordered (with Boolean

variables)
I First approximation: relax monotony

constraints and remove Boolean
variables

• For each server: monotony, arrival (of
new flows)

• Remove service constraints: the
number of dates is quadratic
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Adding TFA++ constraints
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Adding SFA constraints
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Add shaping constraints

σj is a shaper after server j (modeling the maximum service rate of the link for
example)
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F (j) is the aggregate process entering
server j :

F (2)(t3)− F (2)(t5) ≤ σ1(t3 − t5)

F (2)(t3)− F (2)(t6) ≤ σ1(t3 − t6)

F (2)(t5)− F (2)(t6) ≤ σ1(t5 − t6)

F (3)(t1)− F (3)(t2) ≤ σ2(t1 − t2)
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Numerical experiments: two-hop cross-traffic
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Numerical experiments: two-hop cross-traffic
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Numerical experiments: source/sink cross-traffic
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Feed-forward networks: unfolding
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〈1, 3〉

〈2, 3〉

〈3〉

Unfolding construction

• One server per path to the sink-node.

• Duplicate the flows along those servers.
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Feed-forward networks: splitting

0
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(f1, 1)

(f1, 2)

Splitting construction

• Cut the flows to obtain a tree topology

• Compute the arrival curves where the flows are split

• Use maximum service curve as shaping for the ”new” arrival flows (but not for the
flows of interest)
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Numerical experiments: mesh network
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Network with cyclic dependencies

1
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3

4α1

α2 α3

α4

Fix-point equation

x = (xz) is the vector of the bursts.
For each flow z :

Lz(x) = max{Az(x , y)t | Bz(x , y)t ≤ Cz , (x , y) ≥ 0},

Solve: x = Lz(x).
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An equivalent formulation for the fix-point

Fix-point equation (1)

sup{x | x ≤ L(x)} = sup{x | xz ≤ max{Az(x , y)t | Bz(x , y)t ≤ Cz , (x , y) ≥ 0}}.

Linear program (2)

max{
∑

z xz | xz ≤ Az(x , yz)t ,Bz(x , yz)t ≤ Cz , (x , y) ≥ 0, for all z ∈ Z}.

Theorem
The two following statements are equivalent.

1. x is the maximal solution of (1).

2. x is the vector of variables extracted from the optimal solution of (2).

Theorem
The fix-point of x = L(x) is unique.
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Numerical experiments
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Conclusion

Contributions
• Novel LP approach for FIFO networks offering a trade-off between scalability and

accuracy

1. Polynomial number of constraints
2. Takes into account the shaping of the link capacity
3. Generalized to cyclic dependencies

• Comparison with the state of the art

1. TFA++: accurate for small/medium load and strong shaping
2. naive SFA: not efficient
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Conclusion

Contributions

• Novel LP approach for FIFO networks offering a trade-off between scalability and
accuracy

• Comparison with the state of the art

Future work

1. Improve again scalability? can we drop more constraints (arrival/shaping
constraints?)

2. Use these methods in large networks: network decomposition
I What is a good decomposition? (Heuristics, Deep learning?)
I What is the acceptable size of each component?
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