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Relevance of Freshness in WNCS
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» WNCS need to support time-critical closed-loop app.
» Example: automation, augmented reality, power grid etc.
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» Untimely actuations: random delays in wireless links
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» Example: automation, augmented reality, power grid etc.
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Untimely actuations: random delays in wireless links

v

Minimizing end-to-end packet delay or maximizing
throughput doesn’t guarantee timely actuations
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WNCS need to support time-critical closed-loop app.
» Example: automation, augmented reality, power grid etc.

v

Untimely actuations: random delays in wireless links

v

Minimizing end-to-end packet delay or maximizing
throughput doesn’t guarantee timely actuations

v

Need for a design of the system using freshness
metric
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Age of Information (Aol): Freshness Metric

Definition [Kaul,2011]: Time elapsed since the most recently
generated packet that is received,;

» A(t) = t— generation time of freshest packet
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Figure: Example evolution of Aol at the receiver (Controller).

» Aol = Delay, when a packet is received
» Lower Aol implies fresh samples

Jaya Prakash Champati (jpra@kth.se)




Aol vs Delay

In FCFS queues, as sampling rate increases [Kaul et. al.’12]:
» Aol first decreases and then increases
» Delay increases
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Problem Statement
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» Assume control algorithm processing delay is negligible
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» Assume control algorithm processing delay is negligible
» Two-hop network, sensor samples at rate R

» QoS requirement: End-to-end Aol at the actuator cannot
exceed age limit d
» Timely actuation based on fresh sample
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Figure: Wireless Networked Control System.

v

Assume control algorithm processing delay is negligible

v

Two-hop network, sensor samples at rate R

QoS requirement: End-to-end Aol at the actuator cannot
exceed age limit d
» Timely actuation based on fresh sample

v

Compute R that minimizes Aol violation probability
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Aol related work

Queuing Analysis
» M/M/1, M/D/1, and D/M/1 FCFS - [Kaul12]
» LCFS - [Kaul12],[Najm16]
» No queue, unit capacity queue [Costa16], [Soysal18]
> ...
Optimization
» Average Aol -
[Yates15,Huang16,Talak’18,Soysal’19,Bacinoglu’19,Talak’19]
» Optimal sampling instants, single hop - [Sun et.
al.17,Champati’20]

> ...
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Aol related work

Queuing Analysis
» M/M/1, M/D/1, and D/M/1 FCFS - [Kaul12]
» LCFS - [Kaul12],[Najm16]
» No queue, unit capacity queue [Costa16], [Soysal18]
> ...
Optimization
» Average Aol -
[Yates15,Huang16,Talak’18,Soysal’19,Bacinoglu’19,Talak’19]
» Optimal sampling instants, single hop - [Sun et.
al.17,Champati’20]
> ...
Our work: periodic arrivals, FCFS, tandem queuing, Aol
violation probability minimization
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System Model and Objective
A(nR)—>m—v:@—' D(nR)

Figure: Two-hop network model.

» n - packet index, k € {1,2} - node index

» Service time for packet n at node k - X/ (i.i.d.)
» Heterogeneous and generally distributed
» Mean service rate pi, and p = min{pu1, pa}

» Packets are served using FCFS
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Figure: Two-hop network model.

» n - packet index, k € {1,2} - node index

» Service time for packet n at node k - X/ (i.i.d.)
» Heterogeneous and generally distributed
» Mean service rate pi, and p = min{pu1, pa}

» Packets are served using FCFS

Given d > 0, minimize the Aol violation probability.
P: min lim P(A(t,R) > d).
R t—o
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Rest of the Talk

» We characterize Aol violation probability
» In the feasibility rate region {A(t, R) > d} = {D(hg) > t}
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Rest of the Talk

v

We characterize Aol violation probability
» In the feasibility rate region {A(t, R) > d} = {D(hg) > t}

P{D(hgr) > t} is intractable
» Use union bound - Upper Bound Minimization Problem
(UBMP)

UBMP is computationally intensive
» «-relaxed upper bound - a-UBMP sol.
» Chernoff upper bound - Chernoff-UBMP sol.

Numerical evaluation: different service-time distributions
» Properties of the upper bounds
» Compare performance of Chernoff-UBMP and a-relaxed
UBMP solutions with optimal rate solutions (simulated)

v

v

v
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Characterizing Aol Distribution

Theorem
Aol violation probability for a single-source single-receiver
system under FCFS network is characterized as follows:
1. IfR > 1, limiyeo P{A(t, R) > d} = limi_0o P{D(R15) > t}
2. Elseif R < &, then

limsupP{A(t,R) > d} =1,

t—o0

liminf P{A(t,R) > d} = lim P{D(Pg) > t},
t—o0 t—o00

hr denotes the index of the first arrival on or immediately after
timet—d.

» R> (1—1 is a necessary condition for existence of Aol
violation probability
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Equivalent Problem 7

» An equivalent problem to P

P:  min lim P(D(Ag) > t)
%§R<M t—o0

» R < p ensures queue stability

» Max-plus algebra: input-output relation at link k

Di(n) = max {Ac(n—v,R) +Zx" i

0<n<n

» Exact expression for P(D(hg) > t) is intractable
» D(hg) - maximum of hig + 1 correlated random variables
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Upper Bound Min. Problem (UBMP)

Lemma: Given d, an upper bound for Aol violation probability

is given by
nR nR Vo
lim P(D(hR) > )< | ®(vo, vy, R),
fm PO > = Jim D D #(o.w

A % i ’ i Vo+ v — 1
®(vo, v, R) £ P> Xo+) Xi>d+——Fp—".

i=0 i=0

» ®(vp, vy, R) - distribution of sum of independent rvs
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Upper Bound Min. Problem (UBMP)

Lemma: Given d, an upper bound for Aol violation probability

is given by
nR nR Vo
lim P(D(hR) > )< | ®(vo, vy, R),
fm PO > = Jim D D #(o.w

A % i ’ i Vo+ v — 1
®(vo, v, R) £ P> Xo+) Xi>d+——Fp—".

i=0 i=0
» ®(vp, vy, R) - distribution of sum of independent rvs

UBMP: Minimize upper bound for R € [, 1)
» However, UBMP requires computation of infinite terms
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a-UBMP

Theorem: For any K > 1, the a-relaxed upper bounded is

given by o(K) - S04 S Zh & (v, vi, R),

minses V(s,d, R, K)

Y w_0®(vo, vi,R)’
(81(s)+85(s)— 51(s) 85(s))

(1=B1(s)(1=p2(s))

where 5i(s) £ M) and M(s) is MGF of X{.

a(K)=1+

W(s.d, R, K) =& 503 M; (s)My(s)

Jaya Prakash Champati (jpra@kth.se)




a-UBMP

Theorem: For any K > 1, the a-relaxed upper bounded is

given by o(K) - S04 S Zh & (v, vi, R),

minses V(s,d, R, K)

Y w_0®(vo, vi,R)’
(81(s)+85(s)— 51(s) 85(s))

(1=B1(s)(1=p2(s))

s}, and M (s) is MGF of X.

a(K)=1+

W(s.d, R, K) =& 503 M; (s)My(s)

& M(
- S

where [5k(s) o5/

a-UBMP: Minimize a-relaxed upper bound for R € [3, 11).
» o-UBMP sol.: use exhaustive search on [13, )
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Chernoff-UBMP

The Chernoff upper bound is given by,
lim;_, . P{D(hR) > t} < melg Vy(s,d, R),
S

e~ SR M, (5)Ms(s)
(1= B1(s))(1 = Ba(s))

» The bound is loose compared to a-relaxed UB

Vy(s,d,R) =

» Vy(s,d, R) is convex with respect to s and ,1—?.
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Chernoff-UBMP

The Chernoff upper bound is given by,
lim;_, . P{D(hR) > t} < melg Vy(s,d, R),
S

e~ SR M, (5)Ms(s)
(1= B1(s))(1 = Ba(s))

» The bound is loose compared to a-relaxed UB

Vy(s,d,R) =

» Vy(s,d, R) is convex with respect to s and ,1—?.

Chenoff-UBMP: Minimize Chernoff upper bound for R € [17, 1)-
» Chernoff-UBMP sol.: use bisection search on [17, 0
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Numerical Evaluation
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Upper Bounds: Varying R
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Figure: Exponential service at both links with service rate 1.

» Minimum for the upper bound and Aol violation probability
occur near optimal R.
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Upper Bounds: Varying d
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Figure: Exponential service at both links with service rate 1.
» Key: a-relaxed UB is almost linearly proportional to Aol
violation probability
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Hyper-exponential Service
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» Similar trends for Geometric and Erlang service-time
distributions.
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Summary

» Aol violation probability is relevant metric for time-critical
applications

» Modeled WNCS as a two-hop network and characterized
the Aol violation probability

» Proposed a-UBMP and Chernoff-UBMP to solve for
minimizing Aol violation probability

» Demonstrated the efficacy of the heuristic solution for
different service-time distributions
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Future Work: Study different queuing disciplines
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