

Statistical Guarantee Optimization for Aol in Single-Hop and Two-Hop FCFS Systems with Periodic Arrivals

Jaya Prakash Champati

Postdoctoral researcher, School of EECS, KTH (Assistant Professor, IMDEA Networks Institute, Madrid)

WoNeCa 2020

		ĺ	

- WNCS need to support time-critical closed-loop app.
 - Example: automation, augmented reality, power grid etc.

- WNCS need to support time-critical closed-loop app.
 - Example: automation, augmented reality, power grid etc.
- Untimely actuations: random delays in wireless links

- WNCS need to support time-critical closed-loop app.
 - Example: automation, augmented reality, power grid etc.
- Untimely actuations: random delays in wireless links
- Minimizing end-to-end packet delay or maximizing throughput doesn't guarantee timely actuations

- WNCS need to support time-critical closed-loop app.
 - Example: automation, augmented reality, power grid etc.
- Untimely actuations: random delays in wireless links
- Minimizing end-to-end packet delay or maximizing throughput doesn't guarantee timely actuations
- Need for a design of the system using freshness metric

Age of Information (Aol): Freshness Metric

Definition [Kaul,2011]: Time elapsed since the most recently generated packet that is received;

• $\Delta(t) = t$ - generation time of freshest packet

Figure: Example evolution of AoI at the receiver (Controller).

- AoI = Delay, when a packet is received
- Lower Aol implies fresh samples

In FCFS queues, as sampling rate increases [Kaul et. al.'12]:

- Aol first decreases and then increases
- Delay increases

Assume control algorithm processing delay is negligible

- Assume control algorithm processing delay is negligible
- Two-hop network, sensor samples at rate R

- Assume control algorithm processing delay is negligible
- Two-hop network, sensor samples at rate R
- QoS requirement: End-to-end AoI at the actuator cannot exceed age limit d
 - Timely actuation based on fresh sample

- Assume control algorithm processing delay is negligible
- Two-hop network, sensor samples at rate R
- QoS requirement: End-to-end AoI at the actuator cannot exceed age limit d
 - Timely actuation based on fresh sample

Compute *R* that minimizes Aol violation probability

Aol related work

Queuing Analysis

- M/M/1, M/D/1, and D/M/1 FCFS [Kaul12]
- LCFS [Kaul12],[Najm16]
- No queue, unit capacity queue [Costa16], [Soysal18]

▶ ...

Optimization

Average Aol -

[Yates15,Huang16,Talak'18,Soysal'19,Bacinoglu'19,Talak'19]

 Optimal sampling instants, single hop - [Sun et. al.17,Champati'20]

• ...

Aol related work

Queuing Analysis

- M/M/1, M/D/1, and D/M/1 FCFS [Kaul12]
- LCFS [Kaul12],[Najm16]
- No queue, unit capacity queue [Costa16], [Soysal18]

▶ ...

Optimization

Average Aol -

[Yates15, Huang16, Talak'18, Soysal'19, Bacinoglu'19, Talak'19]

 Optimal sampling instants, single hop - [Sun et. al.17,Champati'20]

▶ ...

Our work: periodic arrivals, FCFS, tandem queuing, Aol violation probability minimization

$$A(n,R) \longrightarrow X_1 \longrightarrow X_2 \longrightarrow D(n,R)$$

Figure: Two-hop network model.

- *n* packet index, $k \in \{1, 2\}$ node index
- Service time for packet n at node k Xⁿ_k (i.i.d.)
 - Heterogeneous and generally distributed
 - Mean service rate μ_k , and $\mu = \min\{\mu_1, \mu_2\}$
- Packets are served using FCFS

$$A(n,R) \longrightarrow X_1 \longrightarrow X_2 \longrightarrow D(n,R)$$

Figure: Two-hop network model.

- *n* packet index, $k \in \{1, 2\}$ node index
- Service time for packet *n* at node $k X_k^n$ (i.i.d.)
 - Heterogeneous and generally distributed
 - Mean service rate μ_k , and $\mu = \min\{\mu_1, \mu_2\}$
- Packets are served using FCFS

Given $d \ge 0$, minimize the AoI *violation probability*.

$$\mathcal{P}: \min_{R} \lim_{t\to\infty} \mathbb{P}(\Delta(t,R) > d).$$

- We characterize Aol violation probability
 - In the feasibility rate region $\{\Delta(t, R) > d\} \equiv \{D(\hat{n}_R) > t\}$

- We characterize Aol violation probability
 - In the feasibility rate region $\{\Delta(t, R) > d\} \equiv \{D(\hat{n}_R) > t\}$
- \mathbb{P} { $D(\hat{n}_R) > t$ } is intractable
 - Use union bound Upper Bound Minimization Problem (UBMP)

Rest of the Talk

- We characterize Aol violation probability
 - In the feasibility rate region $\{\Delta(t, R) > d\} \equiv \{D(\hat{n}_R) > t\}$
- \mathbb{P} { $D(\hat{n}_R) > t$ } is intractable
 - Use union bound Upper Bound Minimization Problem (UBMP)
- UBMP is computationally intensive
 - α -relaxed upper bound α -UBMP sol.
 - Chernoff upper bound Chernoff-UBMP sol.

Rest of the Talk

- We characterize Aol violation probability
 - In the feasibility rate region $\{\Delta(t, R) > d\} \equiv \{D(\hat{n}_R) > t\}$
- \mathbb{P} { $D(\hat{n}_R) > t$ } is intractable
 - Use union bound Upper Bound Minimization Problem (UBMP)
- UBMP is computationally intensive
 - α -relaxed upper bound α -UBMP sol.
 - Chernoff upper bound Chernoff-UBMP sol.
- Numerical evaluation: different service-time distributions
 - Properties of the upper bounds
 - Compare performance of Chernoff-UBMP and α-relaxed UBMP solutions with optimal rate solutions (simulated)

Characterizing Aol Distribution

Theorem

Aol violation probability for a single-source single-receiver system under FCFS network is characterized as follows:

- 1. If $R \geq \frac{1}{d}$, $\lim_{t\to\infty} \mathbb{P}\{\Delta(t, R) > d\} = \lim_{t\to\infty} \mathbb{P}\{D(\hat{n}_R) > t\}$
- 2. Else if $R < \frac{1}{d}$, then

$$\begin{split} &\limsup_{t \to \infty} \mathbb{P}\{\Delta(t, R) > d\} = 1, \\ &\liminf_{t \to \infty} \mathbb{P}\{\Delta(t, R) > d\} = \lim_{t \to \infty} \mathbb{P}\{D(\hat{n}_R) > t\}, \end{split}$$

 \hat{n}_R denotes the index of the first arrival on or immediately after time t – d.

• $R \ge \frac{1}{d}$ is a necessary condition for existence of Aol violation probability

An equivalent problem to P

$$ilde{\mathcal{P}}: \quad \min_{rac{1}{d} \leq R < \mu} \lim_{t \to \infty} \mathbb{P}(D(\hat{n}_R) > t)$$

- $R < \mu$ ensures queue stability
- Max-plus algebra: input-output relation at link k

$$D_k(n) = \max_{0 \le n \le n} \{A_k(n - v, R) + \sum_{i=0}^n X_k^{n-i}\}$$

- Exact expression for $\mathbb{P}(D(\hat{n}_R) > t)$ is intractable
 - ► $D(\hat{n}_R)$ maximum of $\hat{n}_R + 1$ correlated random variables

Lemma: Given *d*, an upper bound for Aol violation probability is given by

$$\lim_{t\to\infty}\mathbb{P}(D(\hat{n}_{\mathsf{R}})>t)\leq \lim_{\hat{n}_{\mathsf{R}}\to\infty}\sum_{\nu_0=0}^{\hat{n}_{\mathsf{R}}}\sum_{\nu_1=0}^{\hat{n}_{\mathsf{R}}-\nu_0}\Phi(\nu_0,\nu_1,R),$$

$$\Phi(v_0, v_1, R) \triangleq \mathbb{P}\left\{\sum_{i=0}^{v_0} X_2^i + \sum_{i=0}^{v_1} X_1^i > d + \frac{v_0 + v_1 - 1}{R}\right\}.$$

• $\Phi(v_0, v_1, R)$ - distribution of sum of independent rvs

Lemma: Given *d*, an upper bound for AoI violation probability is given by

$$\lim_{t\to\infty}\mathbb{P}(D(\hat{n}_{\mathsf{R}})>t)\leq \lim_{\hat{n}_{\mathsf{R}}\to\infty}\sum_{v_0=0}^{\hat{n}_{\mathsf{R}}}\sum_{v_1=0}^{\hat{n}_{\mathsf{R}}-v_0}\Phi(v_0,v_1,R),$$

$$\Phi(v_0, v_1, R) \triangleq \mathbb{P}\left\{\sum_{i=0}^{v_0} X_2^i + \sum_{i=0}^{v_1} X_1^i > d + \frac{v_0 + v_1 - 1}{R}\right\}.$$

• $\Phi(v_0, v_1, R)$ - distribution of sum of independent rvs

UBMP: Minimize upper bound for $R \in [\frac{1}{d}, \mu)$

However, UBMP requires computation of infinite terms

Theorem: For any $K \ge 1$, the α -relaxed upper bounded is given by $\alpha(K) \cdot \sum_{v_0=0}^{K-1} \sum_{v_1=0}^{K-1} \Phi(v_0, v_1, R)$,

$$\begin{aligned} \alpha(K) &= 1 + \frac{\min_{s \in S} \Psi(s, d, R, K)}{\sum_{v_0 = 0}^{K-1} \sum_{v_1 = 0}^{K-1} \Phi(v_0, v_1, R)}, \\ \Psi(s, d, R, K) &= e^{-s(d - \frac{1}{R})} M_1(s) M_2(s) \frac{(\beta_1^K(s) + \beta_2^K(s) - \beta_1^K(s)\beta_2^K(s))}{(1 - \beta_1(s))(1 - \beta_2(s))}, \end{aligned}$$

where $\beta_k(s) \triangleq \frac{M_k(s)}{e^{s/R}}$, and $M_k(s)$ is MGF of X_k^n .

Theorem: For any $K \ge 1$, the α -relaxed upper bounded is given by $\alpha(K) \cdot \sum_{v_0=0}^{K-1} \sum_{v_1=0}^{K-1} \Phi(v_0, v_1, R)$,

$$\begin{aligned} \alpha(K) &= 1 + \frac{\min_{s \in S} \Psi(s, d, R, K)}{\sum_{v_0 = 0}^{K-1} \sum_{v_1 = 0}^{K-1} \Phi(v_0, v_1, R)}, \\ \Psi(s, d, R, K) &= e^{-s(d - \frac{1}{R})} M_1(s) M_2(s) \frac{(\beta_1^K(s) + \beta_2^K(s) - \beta_1^K(s)\beta_2^K(s))}{(1 - \beta_1(s))(1 - \beta_2(s))}, \end{aligned}$$

where $\beta_k(s) \triangleq \frac{M_k(s)}{e^{s/R}}$, and $M_k(s)$ is MGF of X_k^n .

 α -UBMP: Minimize α -relaxed upper bound for $R \in [\frac{1}{d}, \mu)$.

• α -UBMP sol.: use exhaustive search on $[\frac{1}{d}, \mu)$

The Chernoff upper bound is given by,

$$egin{aligned} & \lim_{t o\infty} \mathbb{P}\{D(\hat{n}_{\mathsf{R}})>t\}\leq \min_{s\in\mathcal{S}} \Psi_2(s,d,R), \ & \Psi_2(s,d,R)=rac{e^{-s(d-rac{1}{R})}M_1(s)M_2(s)}{(1-eta_1(s))(1-eta_2(s))} \end{aligned}$$

- The bound is loose compared to α-relaxed UB
- $\Psi_2(s, d, R)$ is convex with respect to s and $\frac{1}{R}$.

The Chernoff upper bound is given by,

$$egin{aligned} & \lim_{t o\infty} \mathbb{P}\{D(\hat{n}_{\mathsf{R}})>t\}\leq \min_{s\in\mathcal{S}}\Psi_2(s,d,R), \ & \Psi_2(s,d,R)=rac{e^{-s(d-rac{1}{R})}M_1(s)M_2(s)}{(1-eta_1(s))(1-eta_2(s))} \end{aligned}$$

- The bound is loose compared to α-relaxed UB
- $\Psi_2(s, d, R)$ is convex with respect to s and $\frac{1}{R}$.

Chenoff-UBMP: Minimize Chernoff upper bound for $R \in [\frac{1}{d}, \mu)$.

• Chernoff-UBMP sol.: use bisection search on $\left[\frac{1}{d}, \mu\right)$

Numerical Evaluation

Figure: Exponential service at both links with service rate 1.

Minimum for the upper bound and Aol violation probability occur near optimal R.

Figure: Exponential service at both links with service rate 1.

Key: α-relaxed UB is almost linearly proportional to Aol violation probability

Quality of UBMP Solutions

Figure: Exponential service at both links with service rate 1.

Hyper-exponential Service

Figure: Service time PDF - $p\lambda_1 e^{-\lambda_1 x} + (1-p)\lambda_2 e^{-\lambda_2 x}$, p = 0.91, $\lambda_1 = 0.95$, and $\lambda_2 = 2$.

Hyper-exponential Service

Figure: Service time PDF - $p\lambda_1 e^{-\lambda_1 x} + (1-p)\lambda_2 e^{-\lambda_2 x}$, p = 0.91, $\lambda_1 = 0.95$, and $\lambda_2 = 2$.

 Similar trends for Geometric and Erlang service-time distributions.

Summary

- Aol violation probability is relevant metric for time-critical applications
- Modeled WNCS as a two-hop network and characterized the Aol violation probability
- Proposed α-UBMP and Chernoff-UBMP to solve for minimizing Aol violation probability
- Demonstrated the efficacy of the heuristic solution for different service-time distributions

Summary

- Aol violation probability is relevant metric for time-critical applications
- Modeled WNCS as a two-hop network and characterized the Aol violation probability
- Proposed α-UBMP and Chernoff-UBMP to solve for minimizing Aol violation probability
- Demonstrated the efficacy of the heuristic solution for different service-time distributions
- Future Work: Study different queuing disciplines
 - Non-preemptive and pre-emptive LCFS
 - ► No queue, unit capacity queue with/without replacement

Summary

- Aol violation probability is relevant metric for time-critical applications
- Modeled WNCS as a two-hop network and characterized the Aol violation probability
- Proposed α-UBMP and Chernoff-UBMP to solve for minimizing Aol violation probability
- Demonstrated the efficacy of the heuristic solution for different service-time distributions

Future Work: Study different queuing disciplines

- Non-preemptive and pre-emptive LCFS
- ► No queue, unit capacity queue with/without replacement

J. P. Champati, H. Al-Zubaidy and J. Gross, "Statistical Guarantee Optimization for Aol in Single-Hop and Two-Hop FCFS Systems with Periodic Arrivals," in IEEE Transactions on Communications, Sep. 2020.