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Motivation
• Interest in hierarchical bandwidth allocation for data centers

• Available hierarchical packet scheduling algorithms in Linux kernel 
found to be inadequate: 
– Class Based Queuing (CBQ) [Floyd/ Jacobson `93]
– Hierarchical Token Bucket (HTB) [devik `03]
– Hierarchical Fair Service Curve (HFSC) [Stoica/Zhang/Ng `97]

• A scheduler with desirable (provable) properties is available but not 
implemented:
– Hierarchical Packet Fair Queuing (HPFQ) [Bennett/Zhang `97]
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Fair Queuing
Goal: Realize a scheduler that simultaneously serves  all  

backlogged flows at the same rate 

Processor Sharing (PS):  Bit-by-bit (fluid flow) round robin 

• Realizes max-min fairness
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available in Linux

Goal: Serve each backlogged class at a rate proportional to its weight

Generalized Processor Sharing (GPS): 
Weighted version of  bit-by-bit (fluid flow) round robin

Many packet level implementations: 

Ease of implementation
Accuracy

Weighted Fair Queuing

WFQ/PGPS SCFQ DRR
WF2Q SFQ WRR
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Hierarchical Link Sharing
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• Resource sharing at multiple 

levels of aggregation

• Link-Sharing

– Service to a class should be 

similar to a dedicated link (with 

varying capacity) 

– Excess capacity should be shared 

between sibling classes

• Aggregation levels in Google’s 

BwE B4 (Sigcomm`15): 

– Task flow group

– Job flow group

– User flow group

– Cluster flow group 

– Site flow group



Definitions

• All traffic arrives at leaf classes
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Leaf classes

Child classes child(i)
Parent class p(i)
Descendants desc(i)
Leaf descendants ldesc(i)
Sibling sib(i)
Ancestors anc(i)
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Schedulers for Hierarchical Link Sharing

There is a scheduling algorithm

– Hierarchical Packet Fair Queuing (HPFQ) [Bennett/Zhang `97]

• Multiple stages of WFQ scheduling

• Bounded deviation from H-GPS

… but HPFQ is nowhere implemented. Available in Linux are: 

– Class Based Queueing (CBQ) [Jacobson/Floyd `93]

– Multiple sharing policies

– Hierarchical Token Bucket (HTB) [devik `03]

– Seeks to improve CBQ

– Emerged from Linux developer community
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CBQ and HTB

• Note: Neither scheduler specifically targets max-min fairness

• Classes are rate controlled at the guaranteed rate: 
• Rate estimation in CBQ
• Token bucket in HTB

• A rate-limited class can “borrow” bandwidth from other classes

• Scheduling is done with DRR
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Measurement Experiments with CBQ and HTB
• On Emulab:

• Findings:
– Confirmed results from published measurements
– HTB and CBQ are good at supporting minimum rate guarantees, 

but poor at sharing excess capacity
– Link sharing is not strategy-proof
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Link sharing results

• Blue and red classes should always get the same rate 16
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Link sharing results

• Blue and red classes should always get the same rate 17
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• Experiment lasts 25s
• Green flow stops for 10s ≤  t ≤ 20s



Link sharing results
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Link sharing results
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CBQ and HTB: poor link sharing 
Root cause: Both only account for weights/rates 
of leaf classes when sharing bandwidth



Unstable allocation of CBQ
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• Every 4 seconds, all senders briefly 
stop for ½ second and then resume

• There are different outcomes !
• Root cause: Sharing policy is 

underdetermined (hierarchical max-min 
fairness satisfies sharing rules, but not vice versa)



HLS – Hierarchical Link Sharing Scheduler

• Strategy-proof round robin scheduler that achieves hierarchical 
max-min fairness

• Differences to HTB
– Replaces borrowing of unsatisfied classes by donations from  

satisfied classes

• Operates in rounds
– active classes have a backlog at start of a round
– Each active class obtains a quota 

• Balance   Bi : # bytes class i is allowed to transmit

21



Operation of HLS
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• If class becomes inactive, remaining 
quota is added to parent

• Here: all classes have same weight

Total balance is invariant!
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HLS experiments
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Overhead

Experiment: 
• TCP traffic 
• Send 1-byte packets in ping-pong 

fashion (NetPerf TCP-RR)
• Class hierarchy is binary tree

à Overhead is similar

24

10 Gbps 10 Gbps

Scheduling
Source Sink



Summary of Contributions

• Solutions for hierarchical max-min fairness with fixed-rate and 

time-variable traffic

• Strict service curve for hierarchical max-min fairness

• Found shortcomings in link sharing schedulers in Linux:

• Poor link sharing

• Allocation not unique (CBQ)

• Proposed HLS, which achieves hierarchical max-min fairness

– without drawbacks of HTB and CBQ

– with similar overhead  
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Thank you!


