
1

Motivation
• Interest in hierarchical bandwidth allocation for data centers

• Available hierarchical packet scheduling algorithms in Linux kernel
found to be inadequate:
– Class Based Queuing (CBQ) [Floyd/ Jacobson `93]
– Hierarchical Token Bucket (HTB) [devik `03]
– Hierarchical Fair Service Curve (HFSC) [Stoica/Zhang/Ng `97]

• A scheduler with desirable (provable) properties is available but not
implemented:
– Hierarchical Packet Fair Queuing (HPFQ) [Bennett/Zhang `97]

2

Fair Queuing
Goal: Realize a scheduler that simultaneously serves all

backlogged flows at the same rate

Processor Sharing (PS): Bit-by-bit (fluid flow) round robin

• Realizes max-min fairness
3

available in Linux

Goal: Serve each backlogged class at a rate proportional to its weight

Generalized Processor Sharing (GPS):
Weighted version of bit-by-bit (fluid flow) round robin

Many packet level implementations:

Ease of implementation
Accuracy

Weighted Fair Queuing

WFQ/PGPS SCFQ DRR
WF2Q SFQ WRR

4

5

6

7

Hierarchical Link Sharing

8

Link

Provider 1

Science

Math

York U.UofT

Provider 2

Remote

lectures
Web

VideoAudioControl

40 Gbps

10 Gbps15 Gbps

4 Gbps5 Gbps

25 Gbps 15 Gbps

Residences

Voice

ECE

6 Gbps

2 Gbps

0.7 Gbps

1 Gbps

0.1 Gbps 0.2 Gbps

1 Gbps

• Resource sharing at multiple

levels of aggregation

• Link-Sharing

– Service to a class should be

similar to a dedicated link (with

varying capacity)

– Excess capacity should be shared

between sibling classes

• Aggregation levels in Google’s

BwE B4 (Sigcomm`15):

– Task flow group

– Job flow group

– User flow group

– Cluster flow group

– Site flow group

Definitions

• All traffic arrives at leaf classes

9

Leaf classes

Child classes child(i)
Parent class p(i)
Descendants desc(i)
Leaf descendants ldesc(i)
Sibling sib(i)
Ancestors anc(i)

<latexit sha1_base64="Mv1H/tRmOmAM8e/T8z54Tjsb7Ng=">AAAC93icbVLLbtNAFB2bVzGvFBYs2IxIkcomsisQ3YCCyoIFiyBIW6mOopnxtTPKeGzNXKNGVvgVNgixAYm/4Bf4G8ZOCEnTK1m6Og+Pz/HwUkmLYfjH869cvXb9xs7N4NbtO3fvdXbvH9uiMgKGolCFOeXMgpIahihRwWlpgOVcwQmfHjX8yScwVhb6I85KGOUs0zKVgqGDxrvew5hDJnWNjHOps3lwvjXxSxpPpVLBO2ApFYpZC5bG8VkUljgKjiZSJf/hV3QvRjjHWjT4fF8+3XPaYMAMaFzIWlH5j3kDVoBOmMZ1d+LQlbk9OLlUpzaEHyR3TWRrvJV8xb7WAiwWZt3P9NIdxO7lqxrouNMNe2E7dHuJlku3TxYzGHd+x0khqtylbEMu2qmZQSkUzIO4slAyMWUZ1O1/m9MnDkpoWhj3NN006IaO5dbOcu6UOcOJvcg14GXcWYXp4aiWuqwQXL72oLRSFAvaXAKaSAMC1cwtTBjpvpCKCTNMoLsqgYseXQy6vRwf9KJnvefvD7r9w2UJO+QReUz2SURekD55SwZkSIT32fvq/fB++jP/i//N/76Q+t7S84BsjP/rL1bk6ks=</latexit>

10

11

12

Schedulers for Hierarchical Link Sharing

There is a scheduling algorithm

– Hierarchical Packet Fair Queuing (HPFQ) [Bennett/Zhang `97]

• Multiple stages of WFQ scheduling

• Bounded deviation from H-GPS

… but HPFQ is nowhere implemented. Available in Linux are:

– Class Based Queueing (CBQ) [Jacobson/Floyd `93]

– Multiple sharing policies

– Hierarchical Token Bucket (HTB) [devik `03]

– Seeks to improve CBQ

– Emerged from Linux developer community

13

CBQ and HTB

• Note: Neither scheduler specifically targets max-min fairness

• Classes are rate controlled at the guaranteed rate:
• Rate estimation in CBQ
• Token bucket in HTB

• A rate-limited class can “borrow” bandwidth from other classes

• Scheduling is done with DRR

14

Measurement Experiments with CBQ and HTB
• On Emulab:

• Findings:
– Confirmed results from published measurements
– HTB and CBQ are good at supporting minimum rate guarantees,

but poor at sharing excess capacity
– Link sharing is not strategy-proof

15

Source Sink

10 Gbps 1 Gbps

Scheduling

Link sharing results

• Blue and red classes should always get the same rate 16

1000

300 300

140 160 140 160

400

Arrows indicate arrivals
(very high load)

Rate guarantee in Mbps

Link sharing results

• Blue and red classes should always get the same rate 17

1000

300 300

140 160 140 160

400
Rate guarantee in Mbps

HTB

CBQ

• Experiment lasts 25s
• Green flow stops for 10s ≤ t ≤ 20s

Link sharing results

18

1000

300 300

100 200 100 200

400

Green flow stops for 10s ≤ t ≤ 20s

HTB

CBQ

Link sharing results

19

1000

300 300

60 240 30 240

400

HTB

CBQ

CBQ and HTB: poor link sharing
Root cause: Both only account for weights/rates
of leaf classes when sharing bandwidth

Unstable allocation of CBQ

20

1000

200250

24050

250

• Every 4 seconds, all senders briefly
stop for ½ second and then resume

• There are different outcomes !
• Root cause: Sharing policy is

underdetermined (hierarchical max-min
fairness satisfies sharing rules, but not vice versa)

HLS – Hierarchical Link Sharing Scheduler

• Strategy-proof round robin scheduler that achieves hierarchical
max-min fairness

• Differences to HTB
– Replaces borrowing of unsatisfied classes by donations from

satisfied classes

• Operates in rounds
– active classes have a backlog at start of a round
– Each active class obtains a quota

• Balance Bi : # bytes class i is allowed to transmit

21

Operation of HLS

22

200

10 10

5

0

5

0

5 50

12 3 9 1

• Quota is pushed from root to active leaf classes
• Balance is updated for each transmission

(subtracted from class, added to root)

7 3 9 1

0

0

5 5

0

5 5

8

2

0 0

0

5 5

7 0 9 1

13

2

0 0

0

0 5

7 0 4 0

0

9

0 -

11

0 -

7 0 4 1

0

0

9 -

0

11 -

14

2

0 0

4

0 0

• If class becomes inactive, remaining
quota is added to parent

• Here: all classes have same weight

Total balance is invariant!

Hierarchy
with class balance Bi

Backlog

HLS experiments

23

1000

300 300

140 160 140 160

400

• Yields hierarchical max-min fairness

1000

300 300

100 200 100 200

400

1000

300 300

60 240 30 240

400

Overhead

Experiment:
• TCP traffic
• Send 1-byte packets in ping-pong

fashion (NetPerf TCP-RR)
• Class hierarchy is binary tree

à Overhead is similar

24

10 Gbps 10 Gbps

Scheduling
Source Sink

Summary of Contributions

• Solutions for hierarchical max-min fairness with fixed-rate and

time-variable traffic

• Strict service curve for hierarchical max-min fairness

• Found shortcomings in link sharing schedulers in Linux:

• Poor link sharing

• Allocation not unique (CBQ)

• Proposed HLS, which achieves hierarchical max-min fairness

– without drawbacks of HTB and CBQ

– with similar overhead

25

26

Thank you!

