Hierarchical Fair Scheduling:
A Reality Check

Natchanon Luangsomboon
Jorg Liebeherr

University of Toronto
(also joint work with Almut Burchard and Sahana Radhaharan)

WoNeCa 2020

e Interestin hierarchical bandwidth allocation for data centers

e Available hierarchical packet scheduling algorithms in Linux kernel
found to be inadequate:

— Class Based Queuing (CBQ) [Floyd/ Jacobson "93]
— Hierarchical Token Bucket (HTB) [devik "03]
— Hierarchical Fair Service Curve (HFSC) [Stoica/Zhang/Ng "97]

e A scheduler with desirable (provable) properties is available but not
implemented:
— Hierarchical Packet Fair Queuing (HPFQ) [Bennett/Zhang '97]

Goal: Realize a scheduler that simultaneously serves all
backlogged flows at the same rate

Processor Sharing (PS): Bit-by-bit (fluid flow) round robin

A\
—=U-

e Realizes max-min fairness

Weighted Fair Queuing

Goal: Serve each backlogged class at a rate proportional to its weight

Generalized Processor Sharing (GPS):
Weighted version of bit-by-bit (fluid flow) round robin

Many packet level implementations:

WFQ/PGPS SCFQ DRR
WF2Q SFQ WRR
Accuracy
Ease of implementation

—e

Weighted Max-Min Fair Allocation

N set of classes
C Link capacity

T requested rate by class
Yj allocated rate by class j (y; < z;)
oy weight of class 7

Weighted Max-Min Fair Allocation

@ If y; < z; then ﬁz%fmanje/\ﬁ
' J

(9] Z Yy = min(z zj, C).

JEN JEN

Weighted Max-Min Fair Allocation

The allocation to class i is

yi = min(z;, ¢; f;) J

with

1
5= B > ienm @i Ch]%:4 ")

f; are uniquely determined

GPS Service Curve (Burchard/Liebeherr ‘18)

GPS extends max-min fair allocation to time-variable traffic

Aj(s,t) arrivalsin [s,t) from class j

E;(t) envelope of class 7 (concave),
e, Ei(t—s) > Aj(s,t) forall s,t
C(t) strict service curve of link (convex)

Best possible strict service curve for class ¢

Si(t) ;== max i (ZS)

MCN{i} 2 jgm 95 .

Hierarchical Link Sharing

‘ e Resource sharing at multiple
levels of aggregation

Link 40 Gbps

25 Gbps /\15 Gbps

Provider 1 Provider 2

“ ..
~
. G
. .
* o
.* '..
- .

e Link-Sharing
— Service to a class should be
similar to a dedicated link (with
varying capacity)
UofT |15 Gbps York U. | 10 Gbps — Excess capacity should be shared
.......... between sibling classes
6 Gbps
ECE |5Gbps | Math |4 Gbps | Residences
"""""""""""""""""""""""" e Aggregation levels in Google’s
BwWE B4 (Sigcomm15):
— Task flow group
Remote
lectures Web — Job flow group
— User flow group
2 Gbps 1 Gbps /‘\ 1 Gbps — Cluster flow group
— Site flow group
Control || Audio || Video
0.1 Gbps 0.2 Gbps 0.7 Gbps 8

Science Voice

Leaf classes

Child classes child(z)
Parent class p(7)
Descendants desc(?)
Leaf descendants Idesc(7)
Sibling sib (1)
Ancestors anc(1)

» All traffic arrives at leaf classes

Hierarchical Weighted Max-Min Fair Allocation

N set of classes
C Link capacity
T requested rate by class j
Yj allocated rate by class j (y; < x;)
o¥ weight of class j
Non-leaf class: @i = > jecniiag) Tis Yi = 2 jechild(i) Yi

Hierarchical Weighted Max-Min Fair Allocation

O If y; < x; then L2 > Ji

[J
@ Yroot = min (xroota C)

for all j € sib(7)

10

Hierarchical Weighted Max-Min Fair Allocation

The allocation to class 7 is

- min(xi, C) : 1 = root
Ji= min (xz O fi) . otherwise

with

i = Mlgs(}é((z) Eng b, (Z)_Z Z)

JEM Kk€ldesc(y)

v

o f; are uniquely determined

o f; can be computed by a waterfilling algorithm

11

Hierarchical GPS (H-GPS)

Hierarchical GPS (H-GPS) extends hierarchical

max-min fair allocation to time-variable traffic

Best possible strict service curve for class i

B o
0= Mlggl}){@) nggM o (p(z) Z Z o)

JEM Ek€ldesc(j)

with S0t (1) = C(1)

12

Schedulers for Hierarchical Link Sharing

There is a scheduling algorithm

— Hierarchical Packet Fair Queuing (HPFQ) [Bennett/Zhang "97]
e Multiple stages of WFQ scheduling
e Bounded deviation from H-GPS

... but HPFQ is nowhere implemented. Available in Linux are:

— Class Based Queueing (CBQ) [Jacobson/Floyd "93]
— Multiple sharing policies
— Hierarchical Token Bucket (HTB) [devik *03]

— Seeks to improve CBQ
— Emerged from Linux developer community

13

CBQ and HTB

e Note: Neither scheduler specifically targets max-min fairness
e (lasses are rate controlled at the guaranteed rate:

e Rate estimation in CBQ
e Token bucket in HTB

e A rate-limited class can “borrow” bandwidth from other classes

e Scheduling is done with DRR

14

Measurement Experiments with CBQ and HTB

e On Emulab:

Source Scheduling Sink

= 10 Gbps = / 1 Gbps =
=M

e Findings:
— Confirmed results from published measurements

— HTB and CBQ are good at supporting minimum rate guarantees,
but poor at sharing excess capacity

A\
LA
T

— Link sharing is not strategy-proof

15

Link sharing results

Rate guarantee in Mbps

Arrows indicate arrivals
(very high load)]

G
I

e Blue and red classes should always get the same rate 16

Link sharing results

Experiment lasts 25s
Green flow stops for 10s £ t < 20s

Blue and red classes should always ge

1,000 4
_ 800"
ré 600 - [\
(<} C
5 400 - / 5
200 - k .
5 10 15 20 25
Time (s)
1,000 4]
__ 800
% 600 -
g | | C
=% B
200 - Al
5 10 15 20 925

Time (s)

CBQ

17

Link sharing results

@® @@ @
I I

Green flow stops for 10s £ t < 20s

1,000

Rate (Mbps)

800

o= D

) o

o o
1

200

al‘_\l

I U 1 2"

5 10 15 20 25
Time (s)
.
/ HTB
1 | C
/\WMI B2
Al
5 10 15 20 %5

Time (s) 18

Link sharing results

CBQ and HTB: poor link sharing

Root cause: Both only account for weights/rates
of leaf classes when sharing bandwidth

1,000/ _—
800+
= 600-
(B] v
< 400 ¢
(o' —
200 1 Al B2
5 10 15 20 25
Time (s)
1,000 1 o
| [-M(J
800
&
S 600+ {
< 4004 C
E 400 i
200 Al
5 10 15, 20 2

Time (s)

HTB

19

Unstable allocation of CBQ

1000
OO,

I

600

e Every 4 seconds, all senders briefly
stop for /2 second and then resume

e Root cause: Sharing policy is

underdetermined (hierarchical max-min

‘ e There are different outcomes !
fairness satisfies sharing rules, but not vice versa)

—)

400

200 { [

Transmission Rate (Mbps)

Time (s) 20

HLS — Hierarchical Link Sharing Scheduler

e Strategy-proof round robin scheduler that achieves hierarchical
max-min fairness

e Differences to HTB

— Replaces borrowing of unsatisfied classes by donations from
satisfied classes

e QOperates in rounds
— active classes have a backlog at start of a round

— Each active class obtains a quota

e Balance B;:# bytes classiis allowed to transmit

21

Operation of HLS

* Quota is pushed from root to active leaf classes

* Balance is updated for each transmission Hierarchy
(subtracted from class, added to root) with class balance B,
* If class becomes inactive, remaining @]

guota is added to parent

* Here: all classes have same weight a e

K \
0
N—~7

e [T [[T [

\J\J

Total balance is invariant!

22

HLS experiments

1,000 1 o 1,000
i [otal
__ 800- 8004
S 600 S 600
£ 400 C_ 2 400 |c
o= | B2 & B2
200 1 AL o900 Al
5 10 15 20 25 5 10 15 20 25
Time (s) Time (s)

e Yields hierarchical max-min fairness

5

10 15
Time (s)

20

925

23

cheduhng

Source Sink
(. 10 Gbps ‘ I 10 Gbps E.'
Experiment: 400K | [~ HLs
—o— CBQ
e TCP traffic i —e— HTB
e Send 1-byte packets in ping-pong 7 UK
fashion (NetPerf TCP-RR) =
e C(lass hierarchy is binary tree g 200K~
é 100K -
B

- Overhead is similar

10 100 1000
Leaf classes
24

Summary of Contributions

e Solutions for hierarchical max-min fairness with fixed-rate and
time-variable traffic

e Strict service curve for hierarchical max-min fairness

e Found shortcomings in link sharing schedulers in Linux:
e Poor link sharing
e Allocation not unique (CBQ)

e Proposed HLS, which achieves hierarchical max-min fairness
— without drawbacks of HTB and CBQ
— with similar overhead

25

Thank you!

26

