Hierarchical Fair Scheduling: A Reality Check

Natchanon Luangsomboon Jörg Liebeherr

University of Toronto

(also joint work with Almut Burchard and Sahana Radhaharan)

WoNeCa 2020

Motivation

Interest in hierarchical bandwidth allocation for data centers

 Available hierarchical packet scheduling algorithms in Linux kernel found to be inadequate:

Class Based Queuing (CBQ)[Floyd/ Jacobson `93]

Hierarchical Token Bucket (HTB) [devik `03]

Hierarchical Fair Service Curve (HFSC) [Stoica/Zhang/Ng `97]

- A scheduler with desirable (provable) properties is available but not implemented:
 - Hierarchical Packet Fair Queuing (HPFQ)
 [Bennett/Zhang `97]

Fair Queuing

Goal: Realize a scheduler that simultaneously serves all backlogged flows at the same rate

Processor Sharing (PS): Bit-by-bit (fluid flow) round robin

Realizes max-min fairness

Weighted Fair Queuing

Goal: Serve each backlogged class at a rate proportional to its weight

Generalized Processor Sharing (GPS):

Weighted version of bit-by-bit (fluid flow) round robin

Many packet level implementations:

Weighted Max-Min Fair Allocation

 $egin{array}{ll} {\cal N} & ext{set of classes} \ {\cal C} & ext{Link capacity} \ & x_j & ext{requested rate by class } j \ & y_j & ext{allocated rate by class } j \ & (y_j \leq x_j) \ & \phi_j & ext{weight of class } j \ \ & \end{array}$

Weighted Max-Min Fair Allocation

- 1 If $y_i < x_i$ then $\frac{y_i}{\phi_i} \ge \frac{y_j}{\phi_j}$ for all $j \in \mathcal{N}$,

Weighted Max-Min Fair Allocation

The allocation to class i is

$$y_i = \min(x_i, \phi_i \mathbf{f_i})$$

with

$$\mathbf{f_i} = \max_{M \subseteq \mathcal{N} \setminus \{i\}} \frac{1}{\sum_{j \notin M} \phi_j} \Big(C - \sum_{j \in M} x_j \Big)$$

fi are uniquely determined

GPS extends max-min fair allocation to time-variable traffic

```
A_j(s,t) arrivals in [s,t) from class j \mathcal{E}_j(t) envelope of class j (concave), i.e., \mathcal{E}_j(t-s) \geq A_j(s,t) for all s,t \mathcal{C}(t) strict service curve of link (convex)
```

Best possible strict service curve for class i

$$S_i(t) := \max_{M \subseteq \mathcal{N} \setminus \{i\}} \frac{\phi_i}{\sum_{j \notin M} \phi_j} \left(C(t) - \sum_{j \in M} \mathcal{E}_j(t) \right)$$

Hierarchical Link Sharing

Resource sharing at multiple levels of aggregation

- Link-Sharing
 - Service to a class should be similar to a dedicated link (with varying capacity)
 - Excess capacity should be shared between sibling classes
- Aggregation levels in Google's BwE B4 (Sigcomm`15):
 - Task flow group
 - Job flow group
 - User flow group
 - Cluster flow group
 - Site flow group

Definitions

Leaf classes

Child classeschild(i)Parent classp(i)Descendantsdesc(i)Leaf descendantsldesc(i)Siblingsib(i)Ancestorsanc(i)

All traffic arrives at leaf classes

Hierarchical Weighted Max-Min Fair Allocation

```
egin{array}{ll} {\cal N} & 	ext{set of classes} \\ {\cal C} & 	ext{Link capacity} \\ \hline x_j & 	ext{requested rate by class } j \\ y_j & 	ext{allocated rate by class } j \ (y_j \leq x_j) \\ \phi_j & 	ext{weight of class } j \end{array}
```

Non-leaf class:
$$x_i = \sum_{j \in \text{child}(i)} x_j, \quad y_i = \sum_{j \in \text{child}(i)} y_j$$

Hierarchical Weighted Max-Min Fair Allocation

- 1 If $y_i < x_i$ then $\frac{y_i}{\phi_i} \ge \frac{y_j}{\phi_j}$ for all $j \in \operatorname{sib}(i)$
- $2 y_{root} = \min(x_{root}, C)$

Hierarchical Weighted Max-Min Fair Allocation

The allocation to class i is

$$y_i = \begin{cases} \min(x_i, C), & i = root \\ \min(x_i, \phi_i \mathbf{f_i}), & \text{otherwise} \end{cases}$$

with

$$\mathbf{f_i} = \max_{M \subseteq \mathrm{sib}(i)} \frac{1}{\sum_{j \notin M} \phi_j} \left(y_{p(i)} - \sum_{j \in M} \sum_{k \in \mathrm{ldesc}(j)} x_k \right)$$

- f_i are uniquely determined
- f_i can be computed by a waterfilling algorithm

Hierarchical GPS (H-GPS)

Hierarchical GPS (H-GPS) extends hierarchical max-min fair allocation to time-variable traffic

Best possible strict service curve for class i

$$S_i(t) = \max_{M \subseteq \text{sib}(i)} \frac{\phi_i}{\sum_{j \notin M} \phi_j} \left(S_{p(i)}(t) - \sum_{j \in M} \sum_{k \in \text{Idesc}(j)} \mathcal{E}_k(t) \right)$$

with
$$S_{root}(t) = C(t)$$

Schedulers for Hierarchical Link Sharing

There is a scheduling algorithm

- Hierarchical Packet Fair Queuing (HPFQ)
 - [Bennett/Zhang `97]

- Multiple stages of WFQ scheduling
- Bounded deviation from H-GPS

... but HPFQ is nowhere implemented. Available in Linux are:

Class Based Queueing (CBQ)

[Jacobson/Floyd `93]

- Multiple sharing policies
- Hierarchical Token Bucket (HTB)

[devik '03]

- Seeks to improve CBQ
- Emerged from Linux developer community

CBQ and HTB

- Note: Neither scheduler specifically targets max-min fairness
- Classes are rate controlled at the guaranteed rate:
 - Rate estimation in CBQ
 - Token bucket in HTB
- A rate-limited class can "borrow" bandwidth from other classes
- Scheduling is done with DRR

Measurement Experiments with CBQ and HTB

On Emulab:

Findings:

- Confirmed results from published measurements
- HTB and CBQ are good at supporting minimum rate guarantees, but poor at sharing excess capacity
- Link sharing is not strategy-proof

• Blue and red classes should always get the same rate

- Experiment lasts 25s
- Green flow stops for $10s \le t \le 20s$

• Blue and red classes should always ge

Green flow stops for $10s \le t \le 20s$

CBQ and HTB: poor link sharing

Root cause: Both only account for weights/rates of leaf classes when sharing bandwidth

Unstable allocation of CBQ

- Every 4 seconds, all senders briefly stop for ½ second and then resume
- There are different outcomes!
- Root cause: Sharing policy is underdetermined (hierarchical max-min fairness satisfies sharing rules, but not vice versa)

HLS – Hierarchical Link Sharing Scheduler

- Strategy-proof round robin scheduler that achieves hierarchical max-min fairness
- Differences to HTB
 - Replaces borrowing of unsatisfied classes by donations from satisfied classes
- Operates in rounds
 - active classes have a backlog at start of a round
 - Each active class obtains a quota
- Balance B_i : # bytes class i is allowed to transmit

Operation of HLS

- Quota is pushed from root to active leaf classes
- Balance is updated for each transmission (subtracted from class, added to root)
- If class becomes inactive, remaining quota is added to parent
- Here: all classes have same weight

Total balance is invariant!

Backlog

HLS experiments

Yields hierarchical max-min fairness

Overhead

Experiment:

- TCP traffic
- Send 1-byte packets in ping-pong fashion (NetPerf TCP-RR)
- Class hierarchy is binary tree
- → Overhead is similar

Summary of Contributions

- Solutions for hierarchical max-min fairness with fixed-rate and time-variable traffic
- Strict service curve for hierarchical max-min fairness
- Found shortcomings in link sharing schedulers in Linux:
 - Poor link sharing
 - Allocation not unique (CBQ)
- Proposed HLS, which achieves hierarchical max-min fairness
 - without drawbacks of HTB and CBQ
 - with similar overhead

Thank you!