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Introduction

The performance bounds of SNC are loose:
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Bounds
Simulation

Crucial point: Estimate the supremum of a stochastic process, i.e.

P(sup
n

Xn ≥ σ) ≤
∑
n

P (Xn ≥ σ) “Boole’s inequality”.

Does not account for dependencies/correlation!
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Introduction

For a single random variable X

P(X ≥ σ) ≤ E[X ]σ−1 “Markov inequality”.

Extension to stochastic processes?
Supermartingales:

P(sup
n

Xn ≥ σ) ≤ E[X0]σ−1 “Doob inequality”.
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Supermartingales

Definition

A supermartingale is a process Xn such that for each n ∈ N

E[Xn+1 − Xn | X1, . . . ,Xn] ≤ 0 .

The expected increment is negative.
Analogy: In a queueing system,

average rate ≤ capacity, “Loynes condition”,

expected change of the buffer content is negative as well.
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Supermartingales

Idea: Assign to a queueing system a certain supermartingale Mn

(“Martingale-Envelope”).

Multiplexing results in multiplication of the supermartingales.

Scheduling results in switching between the supermartingales.

The resulting performance bounds become reasonably tight.
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The Model

Discrete time n ∈ N, stationary arrival processes

C
A(n)

A'(n) D'(n)

D(n)

through- and crossflow

constant capacity

SA(n) D(n)

only throughflow

stochastic service process

Performance metrics:

Backlog: Q := supn∈N(A(n)− Cn)

Delay: W (n) := inf{k ∈ N | A(n − k) ≤ D(n)}
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Martingale-Envelope

Definition

For θ > 0 and h monotonically increasing, the flow A admits a
(h, θ,C )-martingale-envelope if

M(n) := h(an)eθ(A(n)−Cn)

is a supermartingale.

C is the allocated capacity

θ and h capture the correlation structure of A
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Estimation of the supremum

Define the threshold

τA,C := inf{x > C | P(ak ∈ [x ,∞)) > 0}.

as the smallest instantaneous arrival larger than C .
With a variant of Doob’s inequality,

Backlog:

P(Q ≥ σ) ≤ E[h(a0)]

h(τA,C )
e−θσ

Delay:

P(W (n) ≥ k) ≤ E[h(a0)]

h(τ(A,C))
e−θCk .
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Multiplexing

Two independent flows A1 and A2 admitting martingale-envelopes
with (h1, θ,C1) and (h2, θ,C2).

Define
h1 ⊗ h2(a) = inf

0≤b≤a
h1(b)h2(a− b) ,

“(min,×)-convolution”.

h1 ⊗ h2 is the smallest function with
h1 ⊗ h2(a + b) ≤ h1(a)h2(b)

if h1,h2 monotonic so is h1 ⊗ h2
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Multiplexing

The aggregate flow A1 + A2 admits a martingale-envelope with
parameters

(h1 ⊗ h2, θ,C1 + C2) .

Proof:
M1(n) and M2(n) corr. supermartingales, M1(n)M2(n) is a
supermartingale as well!
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Scheduling

Only interested in performance of flow A1

Challenge: Plug in the service process into the martingale
calculus!

Obervation: For a “swiching time“ l ∈ N, the process

M̃(n) =

{
M2(n) n ≤ l

M2(n)M1(n) n ≥ l

is a supermartingale!
Sample path bound:

P

(
sup

0≤m<n−l
{A1(m, n − l) + A2(m, n)− C (n −m)} ≥ σ

)

≤ E[h1(a0)]E[h2(a0)]

h1 ⊗ h2(τA1+A2,C1+C2)
e−θ(σ+C1l) .
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Scheduling

For each scheduling policy plug in an appropriate switching time l!
For the delay P(W (n) ≥ k):

FIFO: l = 0 ≤ κe−θCk

SP: l = k ≤ κe−θC1k

EDF: l = y := d1 − d2 ≤ κe−θ(Ck−C2 min(k,y)) ,

where

κ :=
E[h1(a0)]E[h2(a0)]

h1 ⊗ h2(τA1+A2,C1+C2)
.
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Application: on-off-processes

two-state Markov chain an,
A(n) =

∑n
k=1 ak .

stationary distribution π =
(

q
p+q ,

p
p+q

)
Transition matrix:

T :=

(
1− p p

q 1− q

)
 Tθ :=

(
1− p peθ

q (1− q) eθ

)
,

λ(θ) max. pos. eigenvalue, (v0, v1) corr. pos. eigenvector

For a specific value of θ:

M(n) = vaneθ(A(n)−Cn) is a martingale.

⇒ A admits a (v , θ,C )-martingale-envelope!
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Calculating the constant

Multiplexing N independent on-off-sources Ai .
The constant:

κ =
E[h(a0)]N

h⊗N(τ∑Ai ,NC )
=

(π0v0 + π1v1)N

v
N−dNCe
0 v

dNCe
1

In the case of p < 1− q (“bursty traffic”), v0 < v1 and thus

κ ≤

(
π0v0 + π1v1

v1−C
0 vC

1

)N

“Multiplexing Gain”: Exponential decay in the leading constant!
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Applying the martingale bound

For the aggregate flow:

P (Q ≥ σ) ≤ κe−θσ

P (W (n) ≥ k) ≤ κe−θNCk

and for the single flow comprising N1 < N subflows:

FIFO: P (W (n) ≥ k) ≤ κe−θNCk

SP: P (W (n) ≥ k) ≤ κe−θN1C1k

EDF: P (W (n) ≥ k) ≤ κe−θ(NCk−(N−N1)C min(k,d1−d2))
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Simulations

Consider the on-off-process:

N1 = 10, N = 20

p = 0.1, q = 0.5

ρ = 75%⇒ C = 0.22

y = d1 − d2 = 9 for EDF
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Extensions/Challenges

Martingale-Envelopes can be constructed for:

other Markov driven processes

incl. i.i.d. processes

p-order autoregressive processes

explicit solutions!

Challenges:

broader class of arrival models (long-range dependent ...)

multi-hop scenarios
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Conclusions

Characterize the queueing-system by a supermartingale

Multiplexing and Scheduling result in multiplication and
switching of the martingales

Apply Doob’s maximal inequality

⇒ The bounds become reasonably tight!
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