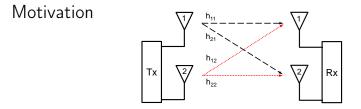


Aspects on the Flow-Level Performance of Wireless Fading Channels

Amr Rizk

in parts joint work with K. Mahmood, Y. Jiang, N. Becker and M. Fidler

Institute of Communications Technology Leibniz Universität Hannover, Germany



Outline

- ► Application of network calculus to MIMO wireless channels
- Ongoing work: Delays introduced on Layer 2 in a real world LTE system

- MIMO employed by modern wireless/cellular networks for high data rate (IEEE 802.11n, 3GPP LTE)
- ► fundamental tradeoff robustness vs. capacity
- MIMO studies focused mainly on capacity limits
- ► modern wireless applications are delay-sensitive

Goal:

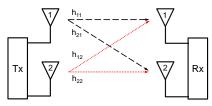
 Non-asymptotic delay analysis of MIMO wireless channels with memory in spatial multiplexing mode

Analytical performance evaluation of wireless networks

- ► Tools: Queueing theory, effective capacity, network calculus,... e.g.: [Jiang'05], [Wu'06], [Fidler'06], [Li'07], [Ciucu'11]..
- ► Challenge: Time varying nature of the wireless channel

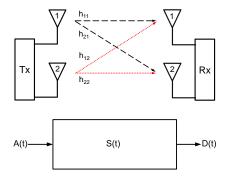
Goal:

Non-asymptotic probabilistic delay bound of the form


 $\mathsf{P}\left[W>d\right]\leq\varepsilon$

using stochastic network calculus based on moment generating functions (MGF) $% \left(MGF\right) =0$

Focus: MIMO under spatial multiplexing: Example (N=2)



- ▶ block fading characteristic for all sub-channels {h₁₁, h₂₁, h₁₂, h₂₂}
- CSI at transmitter such that arrivals are transmitted in FIFO manner
- Capacity $C = \log_2 \left[\det \left(\mathbf{I} + \frac{\rho}{N} \mathbf{H} \mathbf{H}^{\dagger} \right) \right]$
- Channel matrix describing the scattering environment

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$$
, finite scatter model (NLOS, Rayleigh)

A stochastic network calculus approach

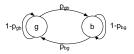
- ► Stochastic modeling of traffic arrivals and node service (MGF)
- Performance bounds, e.g., $\mathsf{P}\left[W > d\right] \leq \varepsilon$
- Multiplexing and composition results (independence)

Moment generating function

MGF of a stationary process X(t) for $\theta > 0$, $t \ge 0$

$$\mathsf{M}_X(\theta, t) = \mathsf{E}\left[e^{\theta X(t)}\right]$$

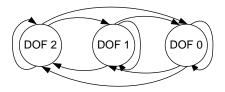
 Backlog and delay bounds are known [Fidler'06], using Chernoff's bound, Boole's inequality:


$$\begin{split} \mathsf{P}\left[W > & \inf_{\theta > 0} \left[\inf \left[\tau : \frac{1}{\theta} \left(\ln \sum_{s=\tau}^{\infty} \mathsf{M}_{A}(\theta, s-\tau) \overline{\mathsf{M}}_{S}(\theta, s) - \ln \varepsilon \right) \leq 0 \right] \right] \right] \leq \varepsilon \\ \text{where } \overline{\mathsf{M}}_{S}(\theta, t) = \mathsf{M}_{S}(-\theta, t). \end{split}$$

Discrete time block fading model

On-Off Markov chain (Gilbert-Elliot) model for each sub-channel

Model the $N \times N$ MIMO channel by a MC consisting of 2^{N^2} states


- ► For N = 2 the MC consists of 16 permutations/states of the form $\{g, g, g, g\}, \{g, g, g, b\} \dots \{b, b, b, b\}$ for $\{h_{11}, h_{12}, h_{21}, h_{22}\}$
- ► Group the states according to degree of freedom (DOF): The receiver can decode **two**, **one** or **no** spatial streams.
- ► A receiver antenna can only decode one spatial stream at a time (i.e. {g, g, b, b} belongs to DOF 1)

Channel model cont. (Example N = 2)

• The state space is reduced to N+1

The MGF of the service process

The MGF of such a Markov chain is known [Chang'00]

$$\overline{\mathsf{M}}_{S}(\theta, t) = \boldsymbol{\pi}(\mathbf{R}(-\theta)\mathbf{Q})^{t-1}\mathbf{R}(-\theta)\mathbf{1}$$

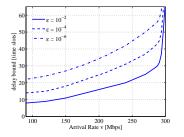
- ► The service rates r_i are ordered into a matrix $\mathbf{R}(\theta) = \text{diag}\left(\mathbf{e}^{\theta \mathbf{r}_1, \cdots, \theta \mathbf{r}_{N+1}}\right)$
- ► The transition probability matrix Q has the elements {p_{ij}} denoting the transition probability from state i to state j
- lacksquare The steady state probability vector $oldsymbol{\pi}=oldsymbol{\pi}\cdot\mathbf{Q}$

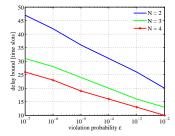
The MGF of the service process

The MGF of such a Markov chain is known [Chang'00]

$$\overline{\mathsf{M}}_{S}(\theta, t) = \boldsymbol{\pi}(\mathbf{R}(-\theta)\mathbf{Q})^{t-1}\mathbf{R}(-\theta)\mathbf{1}$$

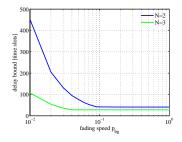
- ► The service rates r_i are ordered into a matrix $\mathbf{R}(\theta) = \text{diag}\left(\mathbf{e}^{\theta \mathbf{r}_1, \cdots, \theta \mathbf{r}_{N+1}}\right)$
- ► The transition probability matrix Q has the elements {p_{ij}} denoting the transition probability from state i to state j
- ullet The steady state probability vector $oldsymbol{\pi}=oldsymbol{\pi}\cdot\mathbf{Q}$

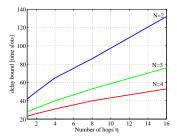

Nevertheless no analytical expression for $\overline{\mathsf{M}}_S$ for more than two states -> numerical evaluation.



Example: Flow level delay bounds for IEEE 802.11n

- periodic arrival source with known $M_A(\theta, t)$
- parametrize arrivals according to MCS
- ▶ parametrize MC: normalized Doppler frequency to block transmission rate [Zorzi'98] -> p_{bg}, p_{gb}


Stochastic delay bounds for N = 2.


Exponential decay due to Chernoff's bound. Arrival rate v = 240 Mbps.

Fading speed and end-to-end delay bounds

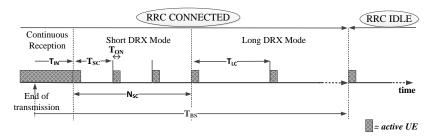
 Impact of statistical multiplexing vs. memory

End-to-end bounds for statistically independent wireless links.

- Bound scales at most linearly
- Slope changes with the number of antennas N (increase in capacity)

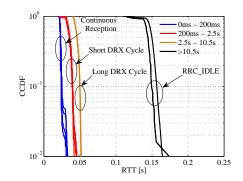
Outline

- ► Application of network calculus to MIMO wireless channels
- Ongoing work: Delays introduced on Layer 2 in a real world LTE system


Measurement study in a major commercial LTE network

- ► Measurements from user equipment (UE) perspective
- ► Layer 2 mechanism: Discontinuous Reception Mode (DRX)
 - 1. UE turns off circuitry to save power
 - 2. UE monitors control channel in intervals seeking paging messages
 - 3. If UE idles for too long -> logical connection tear down

Discontinuous reception mode (DRX)

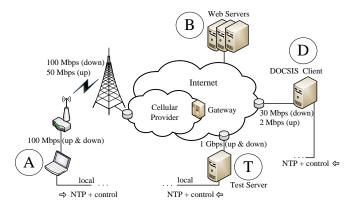

- ► UE is in one of the radio resource control (RRC) states:
 - 1. RRC_CONNECTED state
 - 1.1 Continuous Reception
 - 1.2 Short DRX Mode
 - 1.3 Long DRX Mode
 - 2. RRC_IDLE state

Discontinuous reception mode (DRX)

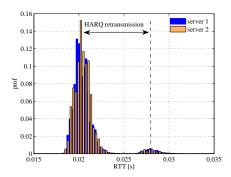
- we measure packet round-trip times (RTT) for periodic ping packets
- ► we vary the period length, i.e., the inter-packet gap and measure for each gap 5 × 10³ RTTs
- delay increase due to "wake up time"

Summary

- Delay analysis of MIMO wireless channels in spatial multiplexing using MGF network calculus
 - 1. impact of channel memory (fading speed)
 - 2. impact of the number of antennas
- Real world measurements: Layer 2 mechanism that contributes substantially to packet delay.



Backup



HARQ-retransmissions

Block retransmission after error detection. Combination of multiple copies of the data block to increase decoding likelihood. Out-of-order blocks wait in the receive buffer.

- we measure packet round-trip times (RTT) in continuous reception mode.
- LTE specifies HARQ-retransmissions in rigid 8 ms intervals.
- substantial delay increase for short RTT connections.

