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Outline

I Application of network calculus to MIMO wireless channels

I Ongoing work: Delays introduced on Layer 2 in a real world
LTE system
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Motivation
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I MIMO employed by modern wireless/cellular networks for high
data rate (IEEE 802.11n, 3GPP LTE)

I fundamental tradeoff robustness vs. capacity
I MIMO studies focused mainly on capacity limits
I modern wireless applications are delay-sensitive

Goal:
I Non-asymptotic delay analysis of MIMO wireless channels with

memory in spatial multiplexing mode
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Analytical performance evaluation of wireless networks

I Tools: Queueing theory, effective capacity, network calculus,..
e.g.: [Jiang’05], [Wu’06], [Fidler’06], [Li’07], [Ciucu’11]..

I Challenge: Time varying nature of the wireless channel

Goal:
I Non-asymptotic probabilistic delay bound of the form

P [W > d] ≤ ε

using stochastic network calculus based on moment generating
functions (MGF)
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Focus: MIMO under spatial multiplexing: Example (N=2)
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I block fading characteristic for all sub-channels
{h11, h21, h12, h22}

I CSI at transmitter such that arrivals are transmitted in FIFO
manner

I Capacity C = log2
[
det
(
I + ρ

NHH†
)]

I Channel matrix describing the scattering environment

H =

[
h11 h12
h21 h22

]
, finite scatter model (NLOS, Rayleigh)
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A stochastic network calculus approach
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I Stochastic modeling of traffic arrivals and node service (MGF)
I Performance bounds, e.g., P [W > d] ≤ ε
I Multiplexing and composition results (independence)
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Moment generating function

MGF of a stationary process X(t) for θ > 0, t ≥ 0

MX(θ, t) = E
[
eθX(t)

]
I Backlog and delay bounds are known [Fidler’06], using

Chernoff’s bound, Boole’s inequality:

P

[
W > inf

θ>0

[
inf

[
τ :

1

θ

(
ln

∞∑
s=τ

MA(θ, s− τ)MS(θ, s)−ln ε

)
≤ 0

]]]
≤ ε

where MS(θ, t) = MS(−θ, t).
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Discrete time block fading model
On-Off Markov chain (Gilbert-Elliot) model for each sub-channel

g b

pgb

pbg

1-pgb 1-pbg

Model the N ×N MIMO channel by a MC consisting of 2N
2
states

I For N = 2 the MC consists of 16 permutations/states of the
form {g, g, g, g} , {g, g, g, b} ... {b, b, b, b} for
{h11, h12, h21, h22}

I Group the states according to degree of freedom (DOF): The
receiver can decode two, one or no spatial streams.

I A receiver antenna can only decode one spatial stream at a
time (i.e. {g, g, b, b} belongs to DOF 1)
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Channel model cont. (Example N = 2)

I The state space is reduced to N + 1

DOF 0DOF 1DOF 2
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The MGF of the service process

The MGF of such a Markov chain is known [Chang’00]

MS(θ, t) = π(R(−θ)Q)t−1R(−θ)1

I The service rates ri are ordered into a matrix
R(θ) = diag

(
eθr1,··· ,θrN+1

)
I The transition probability matrix Q has the elements {pij}

denoting the transition probability from state i to state j
I The steady state probability vector π = π ·Q

Nevertheless no analytical expression for MS for more than two
states -> numerical evaluation.
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Example: Flow level delay bounds for IEEE 802.11n
I periodic arrival source with known MA(θ, t)

I parametrize arrivals according to MCS
I parametrize MC: normalized Doppler frequency to block

transmission rate [Zorzi’98] -> pbg, pgb
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Stochastic delay bounds for N = 2.
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N = 2
N = 3
N = 4

Exponential decay due to Chernoff’s
bound. Arrival rate v = 240 Mbps.
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Fading speed and end-to-end delay bounds
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N=2
N=3

I Impact of statistical
multiplexing vs. memory
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End-to-end bounds for statistically
independent wireless links.

I Bound scales at most linearly
I Slope changes with the number

of antennas N (increase in
capacity)

12/17



10 00

11 01

Outline

I Application of network calculus to MIMO wireless channels

I Ongoing work: Delays introduced on Layer 2 in a real world
LTE system
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Measurement study in a major commercial LTE network

I Measurements from user equipment (UE) perspective

I Layer 2 mechanism: Discontinuous Reception Mode (DRX)
1. UE turns off circuitry to save power
2. UE monitors control channel in intervals seeking paging

messages
3. If UE idles for too long -> logical connection tear down
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Discontinuous reception mode (DRX)
I UE is in one of the radio resource control (RRC) states:

1. RRC_CONNECTED state
1.1 Continuous Reception
1.2 Short DRX Mode
1.3 Long DRX Mode

2. RRC_IDLE state

TIN

NSC

TSC TLC

Continuous

Reception
Short DRX Mode Long DRX Mode
TON

RRC CONNECTED RRC IDLE

TBS

time
End of 

transmission

= active UE
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Discontinuous reception mode (DRX)

I we measure packet
round-trip times (RTT) for
periodic ping packets

I we vary the period length,
i.e., the inter-packet gap
and measure for each gap
5× 103 RTTs

I delay increase due to “wake
up time”
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Summary

I Delay analysis of MIMO wireless channels in spatial
multiplexing using MGF network calculus
1. impact of channel memory (fading speed)
2. impact of the number of antennas

I Real world measurements: Layer 2 mechanism that contributes
substantially to packet delay.
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Backup
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HARQ-retransmissions

Block retransmission after error detection. Combination of multiple
copies of the data block to increase decoding likelihood.
Out-of-order blocks wait in the receive buffer.

I we measure packet
round-trip times (RTT) in
continuous reception
mode.

I LTE specifies
HARQ-retransmissions in
rigid 8 ms intervals.

I substantial delay increase
for short RTT connections. 0.015 0.02 0.025 0.03 0.035
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