Network Calculus Tests – Naming Scheme

Version 2.0 beta2 (2017-Jun-25)

 \bigodot Steffen Bondorf 2013 - 2017, Some Rights Reserved.

General Information

The network calculus naming scheme presented in this document was created for the purpose of testing the Disco Deterministic Network Calculator $(DiscoDNC)^1$ – an open-source deterministic network calculus tool developed by the *Distributed Computer Systems (DISCO) Lab* at the University of Kaiserslautern.

Changelog:

Version 1.1 (2014-Dec-30): Match latest publications.

- Added definition of token-bucket arrival curves \mathcal{F}_{TB} and rate-latency \mathcal{F}_{RL} service curves to clear up the associated variables.
- Renamed the output bound quantifier from * to '.
- Renamed the newly merging cross-traffic function from x' to \bar{x} .
- Changed the explicit path quantifier from $s_n s_m$ to $\langle s_i, s_j \rangle$.
- Added the flow-based path quantifier $P(f_n)$.
- Added the operators used in the tests.
- Minor fixes in the examples.

Version 2.0 beta2 (2017-Jun-25):

- File Naming Scheme (newly added)
- Variable Nanimg Scheme
 - Aggregate of individual flows: changed from braces to square brackets.

 $^{^{1}} http://disco.cs.uni-kl.de/index.php/projects/disco-dnc$

File Naming Scheme

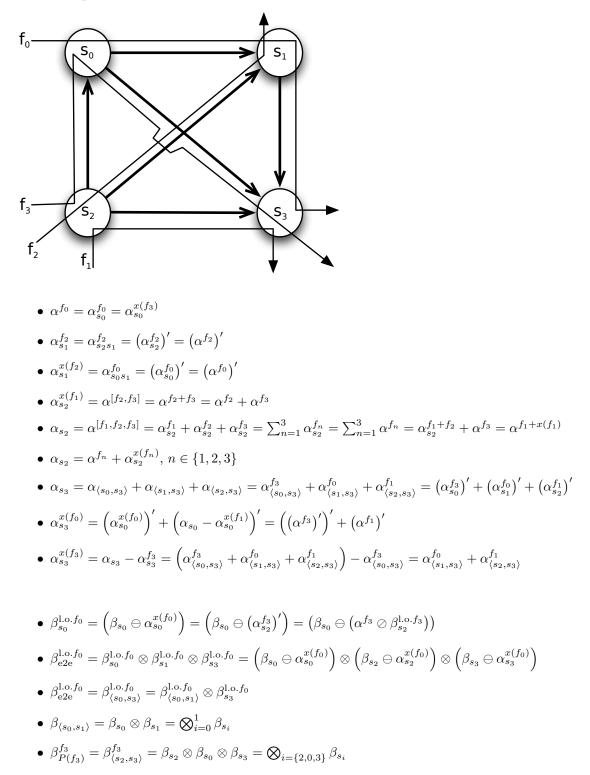
NetworkType_Servers_ServiceCurves_Flows_ArrivalCurves_Paths(_Version)_{}

- TopologyType:
 - S (Single) Server
 - TA Tandem of Servers
 - TR (Sink) Tree
 - FF Feed-Forward
- Servers: $n\mathbf{S}, n \in \mathbb{N}$
- ServiceCurves: mSC, $m \in \mathbb{N}, m \leq n$
- Flows: $xF, x \in \mathbb{N}$
- ServiceCurves: $yAC, y \in \mathbb{N}, y \leq x$
- Paths: $zP, z \in \mathbb{N}, z \leq x$, optional if TopologyType is S
- Version: ver $v, v \in \mathbb{N}$, optional
- TestType:
 - Network the network topology and the flows
 - Test the expected test results

Examples

- $S_{1SC_{2F_{2AC_{Network}}}$
- S_1SC_1F_1AC_Test
- TA_2S_1SC_2F_1AC_2P_Network
- TA_3S_1SC_3F_1AC_3P_Test
- TR_7S_1SC_3F_1AC_3P_Network
- FF_3S_1SC_2F_1AC_2P_Network
- $FF_4S_1SC_4F_1AC_4P_Test$

Variable Naming Scheme


 $variable_{local_quantifier}^{semantic_quantifier}$

- variables:
 - $-\alpha$: arrival curve
 - $-\beta$: service curve
 - $\begin{array}{l} \alpha_{r,b} \in \mathcal{F}_{\mathrm{TB}} \text{ token-bucket arrival curves:} \\ \mathcal{F}_{\mathrm{TB}} = \{\gamma_{r,b} \colon \mathbb{R}^+ \to \mathbb{R}^+ \mid \gamma_{r,b} \left(0 \right) = 0, \ \forall d > 0 : \ \gamma_{r,b}(d) = b + r \cdot d \}, \ r, b \geq 0 \end{array}$
 - $-\beta_{R,T} \in \mathcal{F}_{\mathrm{RL}} \text{ rate latency service curves:}$ $\mathcal{F}_{\mathrm{RL}} = \left\{ \beta_{R,T} : \mathbb{R}^+ \to \mathbb{R}^+ \mid \beta_{R,T} \left(d \right) = R \cdot \left[d T \right]^+ \right\}, T \ge 0, R > 0$ with $R \cdot \left[d T \right]^+ = \left[R \cdot \left(d T \right) \right]^+ = \max\{0, R \cdot \left(d T \right)\}$
 - b: burst
 - -T: latency
 - -r, R: rate (arrival, service)
 - B: backlog bound
 - D: delay bound
- semantic quantifiers for arrival curves α and its variables (e.g., burst b):
 - $-f_n$: arrival curve of flow f_n
 - $[f_n, \ldots, f_m]$: aggregate of arrival curves of flow f_n, \ldots, f_m
 - $-x(f_n)$: arrival curve of all crossflows of flow f_n (needs local quantification)
 - $-\bar{x}(f_n)$: arrival curve of newly joining crossflows of flow f_n (needs local quantification)
 - ': output bound (needs local quantification to id service curve)
 - no quantifier given: sum of all arrivals (needs local quantification)
- semantic quantifiers for service curves β and its valables (e.g., latency T):
 - l.o. f_n : left-over for flow f_n (needs local restriction)
 - * SFA l.o. f_n : SFA left-over for flow f_n (needs local restriction)
 - * PMOO l.o. f_n : PMOO left-over for flow f_n (needs local restriction)
 - no quantifier given: unaltered variable (needs local quantification)
- local quantifiers:
 - $-s_i$: at server s_i
 - $-\langle s_i, s_j \rangle$: on sub-path (see semantic quantifier) between s_i and s_j :
 - * α : data arrivals on link from s_i to s_j , i.e., there must be a direct link
 - * β : convolved service curve on the path from s_i to s_j (both included)
 - e2e: end-to-end (only in conjunction with β as well as it's rate R and latency T)
 - $P(f_n)$: on the path of flow f_n

Operators

- $(\min, +)$ -convolution: \otimes
- (min, +)-deconvolution: \oslash
- $\bullet\,$ non-decreasing, non-negative subtraction: \ominus
- $\bullet\,$ pointwise addition: +
- pointwise subtraction: –
- non-negative results: $\left[\cdot\right]^+ = \max\left\{0, \cdot\right\}$

Examples

