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Abstract—Predicting performance-related behavior of the un-
derlying network structure becomes more and more indispens-
able in terms of the aspired application outcome quality. However,
the reliable forecast of QoS metrics like packet transfer delay
in wireless network systems is still a challenging task. Even
though existing approaches are technically capable of determin-
ing such network properties under certain assumptions, they
mostly abstract away from primal aspects that inherently have
an essential impact on temporal network performance dynamics.
Also, they usually require auxiliary resources to be implemented
and deployed along with the actual network components. In the
course of developing a lightweight measurement-based alternative
for the self-inspection and prediction of volatile performance
characteristics in environments of any kind, we selectively in-
vestigate the duration of message delivery and packet loss rate
against various parameters peculiar to common radio network
technologies like Wireless Sensor Networks (WSNs). Our hands-on
experiments reveal the relations between the oftentimes underes-
timated medium access delay and a variety of main influencing
factors including packet size, backoff period, and number of
neighbor nodes contending for the communication medium. A
closed formulation of selected weighted drivers facilitates the
average-case prediction of inter-node packet transfer delays for
arbitrary configurations of given network parameters even on
resource-scarce WSN devices. We validate our prediction method
against basic multi-hop networking scenarios. Yield field test
results proof the basic feasibility and high precision of our
approach to network property estimation in virtue of self-
governed local measurements and regression-based calculations
paving the way for a prospective self-management of network
properties based upon autonomous distributed coordination.

Index Terms—Wireless Sensor Networks, Experimentation,
Performance, Prediction, Measurements, Regression Analysis

I. INTRODUCTION

Latest achievements in semi-conductor technology and
micro-electro-mechanical systems (MEMS) have facilitated an
increasing demand for low-cost sensor devices that are minia-
turized in shape but efficient in operation. Further advances in
the development of wireless communication techniques and
network equipment have made WSNs emerge as the seminal
service platform for realizing various valuable applications
of today and the ambitious vision of Ambient Intelligence
(AI) of tomorrow [1], [2]. At this stage, their small size and
long life-span make WSN nodes suitable for many application

domains where dense sensing close to physical phenomena as
well as large-scale collection and exchange of data is needed.
Typically human-administered workaday applications include
biodiversity monitoring, emergency treatment support, facility
management, medical diagnostics and home automation [3],
[4]. In turn, the future design of AI envisions administration-
free deployments of even smaller, poly-functional and possibly
also heterogeneous devices gathering, processing and exchang-
ing information from different sources of the environment in
order to exert influence on physical processes in a further
step. The involved ability of autonomous interaction with
ambient phenomena rather than with humans in the first place
is believed to be the crucial step towards pervasive environ-
mental control. However, in the long term, the implicated
features are not conceivable without a common notion of
autonomy in regard to a self-governed management of not only
explicitly adjustable technical parameters but also implicitly
controllable functional properties as encountered in actual
hardware/software network deployments. At the same time, the
reliable and precise estimation of performance metrics without
human intervention constitutes a crucial feature of aspired
applications installed in, especially but not limited to, highly
dynamic environments, e.g., traffic control in over-crowded
urban areas, rescue operations in unstable disaster zones, let
alone indoor surroundings with divers mutually affecting home
and facility instruments established for automation purposes.
From the point of view of various research endeavors, it is
obviously challenging to bring these stringent requirements
in line with present-day equipment that essentially requires
manual superintendence in order to fulfill any task at all
due to lacking learning and adaptation mechanisms [5], [6].
However, just as much as the concept of pervasive computing
embodied by ad hoc WSNs has enthused academia as well as
the industry, the notion of autonomic computing has witnessed
great attention in regard to the self-management of complex
computer systems [7], [8]. Autonomic networking that builds
upon the same principles within the context of the networking
domain in order to tackle the increasing complexity of ever-
growing distributed (wireless) network systems, has always
played an important role to the same degree [9], [10]. Whereas
measurement-based estimation of metrics bears good prospects
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Fig. 1: Performance Self-Management Task Cycle

in general [11], [12], its consideration within the context of
autonomic self-management constitutes an even more promis-
ing approach. However, the estimation of performance metrics
in multi-hop networks like WSNs is not a straight-forward
task even for approved methodologies [13], [14]. Furthermore,
many works inherently rely on the inclusion of auxiliary com-
puting resources to tackle the implied issues of management
due to their common intricacy. However, we believe naturally
autonomous systems, as WSNs are aspired to become, shall
only rely on their own resources to fulfill their tasks all by
themselves. Only this way renders them useful for any kind
of dynamic situations where additional computing resources
are just not available or integrable. That is why we follow the
approach to enable any given WSN to make use of what it
is being provided with, the enabling investigations of which
are the essential part our long-term research endeavors and to
some extent also part of this work.

On this note, the remainder of this work is organized as
follows. In Section II we introduce our approach to the self-
management of performance properties including the needed
terminology as the basis for our investigations. Section III
deals with details on our experimentation methodology for the
evaluation of network parameter impacts on major network
properties including a subsequent result analysis. As part of
Section IV, we discuss the proposed performance prediction
technique, review its general quality and also validate the
results yield before against a multi-hop scenario. Concluding
remarks and prospects on future works are eventually provided
in Section V.

II. PERFORMANCE SELF-MANAGEMENT IN WSNS -
PARAMETERS, PROPERTIES AND METRICS

In general, the costs and benefits of autonomic networking
not only depend on the circumstances the corresponding
hardware is subject to but also on the correct handling of
network (protocol) parameters and the appropriate interpre-
tation of encountered performance characteristics. Since this
inherently requires an efficient management of available and
controllable resources, it suggests itself to introduce a com-
prehensive self-ability concept we recognize as Performance
Self-Management (PSM).

In contrast, however also in complement, to other works that
primarily approach network autonomy by trying to establish
overlay-like infrastructures that are either attached to or even
pervade the network of interest, we take the approach of
investigating principle methods that enable node-local self-
abilities, as we call them, from the node-local perspective first.
Nonetheless, we also share the view that during a transitional
period it will be required to provide the network entities with
feedback and functional support until all those methods fuse in
a collaborative manner rendering such networks operable on
a fully autonomic basis. That is why, we basically distinguish
intrinsic from extrinsic PSM in that we separate WSNs where
most of the basic features are self-governed, yet still require
assistance from other entities for maintenance reasons, e.g.,
human administrator during run-time operation, and WSNs
that keep-up the desired performance aspects on their own
from the start of the network application deployment until the
end of its life-time.

In this spirit, we coin the term of Intrinsic/Extrinsic Per-
formance Self-Management (I/EPSM) so as to define the
scope of our research directions within the context of wireless
networked systems like WSNs. To this end, we also identify
a set of sub-routines that need to be implemented on any
I/EPSM-enabled node as part of that concept. These modular
self-abilities include measurement, modeling, assessment and
adaptation. The so-called I/EPSM Task Cycle unites the four
cornerstones of our approach the accomplishment of which
is based upon two fundamental principles that saturate two
recurring phases as illustrated in Figure 1 and outlined in the
following.

Inspection Phase: The measurement task includes the
inquiry of relevant parameter values along with the capture
of performance-related statistics for the network properties
of interest as indicated by the requirements of the running
application (Control Principle). The subsequent modeling task
implies the identification of the best-fitting model type for
each of the network properties in question as well as the
instantiation of these models with the appropriate parameter
values as determined beforehand (Analysis Principle).

Tuning Phase: The evaluation of the current performance
quality against given application requirements and, as the case
may be, the identification of those parameter constellations
that need to and, essentially, that can be changed so as to
adhere to imposed network property demands is part of the
assessment task (Analysis Principle). At last, the agreed and
optional adaption of the selected modifiable parameters at the
corresponding entities is accomplished in view of the reini-
tialization and subsequent iteration of the overall mechanism
(Control Principle).

With regard to the frequency of the task cycle procedure,
conceivable solutions include time-based, entity-controlled and
event-triggered approaches that will depend on the network
system application and the aspired performance sustainment
quality. Moreover, since the accomplishment of at least a sub-
set of all these modular tasks imposes a higher computational
as well as communicative burden on selected nodes involved



in execution, load-balancing mechanisms shall be applied for
energy saving purposes as part of future considerations.

For the sake of transparent traceability of the upcoming
details in the subsequent sections, a clear terminology of the
objects of investigation is to be introduced next.

A. Terminology

In the context of I/EPSM, our terminology incorporates
the general distinction between two variable quantity types,
network parameters and network properties, both of which
become manifest in metrics, i.e., schemes of quantifiable mea-
sures for the characterization of given physical phenomena.
However, whereas network parameters include any accessible
settings that need to be directly or indirectly adjustable when
acting as drivers for network property control, network prop-
erties, on their part, involve any attributes the values of which
defy direct access and are obtainable merely by means of mea-
surements and/or computations based on statistical/analytical
inference in conjunction with concrete parameter values.

We further differentiate the viewpoint on parameters and
properties from a centrical and a peripheral perspective. Cen-
trical parameters refer to intra-node/node-local variables the
values of which can be determined and tuned without any
interaction with other entities (e.g., power amplifier level,
packet size, backoff period, ...) while peripheral parameters
encompass inter-node/network-wide system variables usually
accessible and modifiable only by virtue of collaboration (e.g.,
number of active nodes in cluster, network topology, number of
neighbor connections, ...). Analogously, centrical properties
pertain to measurable or computable attributes that relate to
the status of a single network node (e.g., medium access
delay, in-system backlog, traffic arrival rate, ...) in contrast
to peripheral properties which are concerned with attributes
going beyond a single network entity up to network-wide
conditions (e.g., end-to-end delay, cluster packet loss rate,
network backlog, ...).

In some cases, otherwise regulable network parameters can
be accessed but are immutable due to, e.g., management
policies or might also need to be measured and somehow
deduced from captured phenomena, respectively (e.g., channel
frequency, node position, distance to neighbors, ...). However,
as long as they remain uncontrollable to the involved network
entity/entities, they are not considered drivers for any prop-
erties. Nonetheless, they may serve as invariable predictors
for property value determination in the same manner as other
measurable or calculable properties themselves can transitively
do. Eventually, the causal relationship between given network
attributes shall be subject to the inference of a suitable abstract
intuition of real circumstances bound within a calculable
construct, henceforth referred to as performance model.

As part of this work, we turn our attention to a representative
selection of one peripheral and two centrical parameters to in-
vestigate their relation to two fundamental network properties
as detailed in the following.

B. Network Properties under Investigation

In the work at hand we focus on two of the most prominent
and also descriptive network properties capable of revealing
the perception of what is known to affect the timeliness and
disposability of data.

As per general convention the End-to-End Delay (E2ED)
in packet-switched communication networks encompasses the
entire time duration between the start of the sending process
at the origin of the data of interest, commonly denoted as the
source node, and the end of reception at the ultimate target
referred to as the destination node [15], [16]. In between, sev-
eral delay components, traditionally known as the processing,
queuing, transmission, and propagation delay, can be identified
dividing the E2ED into several time segments that deserve a
more detailed contemplation in support of our forthcoming
examinations.

• Processing delay: time to check received, treat back-
logged and prepare to-send packet of interest primarily
depending on amount of data to be processed

• Queuing delay: time packet is blocked from reaching
destined communication port depending on current sys-
tem/network load and data buffer size in the first place

• Transmission delay: time required to deliver entire packet
onto communication medium particularly depending on
size of data to be sent

• Propagation delay: time packet needs to traverse distance
towards destination exclusively depending on signal prop-
agation speed within given communication medium

While propagation delay is actually negligible in short-distance
Personal Area Networks (PANs) like WSNs due to its marginal
and usually constant impact on the overall time lag compared
to the other delay components, queuing delay might become
the largest driver for E2ED in store-and-forward networks that
rely on data buffers. Yet, WSNs were originally not meant to
emulate the behavior of networks with dedicated devices, such
as highly buffered routers in IP-based nets, in order to solve
fundamental networking issues like forwarding. They were in-
tended make avail themselves of enabling concepts, e.g., data-
centric collaboration, deployment redundancy and in-network
processing rather than relying on single-node resources for
such purposes [17]. According to this, a typical WSN node
is endued with a tiny transceiver buffer of only one packet
per link direction [18]. Having said that, the illusive absence
of queuing delay for small-buffered devices, ought not to be
underrated especially when it comes to the packet loss and its
implications on E2ED. In fact, a piece of data that does not
reach its destination due to, e.g., network congestion might
induce further delay by retransmissions as required by loss-
intolerant network applications, not to mention the auxiliary
timeout latencies introduced by the very usage of ACK-based
reliable data transfer mechanisms [19].

With regard to the other two delay components, they are
often assumed to be deterministically predictable solely by the
knowledge of the hardware details, e.g., transmission speed
of the radio transceiver, clock frequency of the microcon-



troller and the amount of data to be handled. However, this
does not hold true for any functionality that is based on
probabilistic procedures like the access arbitration in random-
based shared-medium schemes as defined, e.g., in the IEEE
802.15.4 Medium Access Control (MAC) protocol for low-rate
WPANs [20]. And, since the implicated delay for accessing
the medium is usually regarded as part of the queuing delay,
it is neglected in turn when abstracting away from queuing
effects in buffer-scarce WSNs. Yet, regardless of which of the
above components it is actually attributed to, it constitutes
a remarkable influencing factor that necessitates a thorough
elaboration and further clear terminological separation.

• Packet Processing Delay (PPD): time for in-system
preparation and passing of packet data through any
layer of communication-related functionality from (when
receiving) and towards (when sending) medium access
controlling system module

• Medium Access Delay (MAD): time spent on carrier
sensing in conjunction with medium arbitration up to
event of accessible idle medium based on underlying
medium access mechanism

• Packet Transmission Delay (PTD): time required to
modulate entire packet onto communication medium up
to the last bit of data

• Packet Sending Delay (PSD): time to accomplish entire
sending process, i.e., sum of PPD, MAD and PTD

In a sense, our terminology constitutes a more detailed ex-
traction of the traditional division of delay components for
practical reasons in view of the upcoming experimentation
without loss of generality. That is to say, it allows to consider
the otherwise peripheral notion of E2ED also from a centrical
view of a single network entity. Indeed, a source node is
prospectively supposed to predict the E2ED of a data packet to
a single-hop destination as the sum of its locally determinable
PSD and the PPD as encountered at the destination node. For
the multi-hop destination case, the source node further adds
the sum of the corresponding PPD and PSD for any other
intermediate node the data packet needs to traverse. After
all, only node-local knowledge about the constitution of its
surroundings including inquired or deduced parameters and
properties shall suffice to enable attribute prediction.

The Packet Loss Rate (PLR), on the other hand, is yet
another well-established network property that offers valuable
clues to the current state of the peripheral as well as centrical
view on performance. In a way, it can give significant feedback
to network entities about the implications of current parameter
settings on other network properties that it correlates with.

On this note, we define the PLR to be the number of packets
that are not received at the destination node in relation to
the number of packets issued at the sending source node.
As a matter of fact, packet loss is hard to detect in network
systems that renounce reliable data transfer mechanisms as
commonly encountered in many broadcast-based WSN ap-
plication scenarios. However, since the event of loss might
be the consequence of a variety of reasons, e.g., system

failure, channel interference, duty cycling, that are implicitly
interrelated to that metric, other properties or parameters might
be consulted to deduce the PLR from the point of nodal view.

C. Network Parameters of the Evaluation Platform

Considering all major network parameters that are common
to all wireless network technologies similar to the exemplary
platform we evaluate in this work, we opt for one peripheral
and two centrical parameters as the objects of investigation due
to their most promising influence on the network properties
mentioned above.

First and foremost, the total number of nodes constitutes
an intuitive influencing factor for any kind of functionality,
especially in case of WSNs that define their basic principles
upon their numerical redundancy. However, since we are only
interested in aspects from the centrical view of a single node,
for the time being, we draw our attention to the neighbors in
the vicinity of the node of interest that mutually contend for
medium access the quantity of which shall be denoted as the
Number of Contenders (NC) from now on.

Secondly, the length of the data packets, henceforth the
Packet Size (PS), containing application-specific payload as
well as protocol-related management information that needs
to be transferred from the source to the destination node is
taken into account.

At last, we identify a centrical parameter with highest
impact on the medium access behavior and, collaterally, also
on the overall inter-node transport process, which is referred
to as the Backoff Period (BP ).

III. EXPERIMENTATION ON SELF-MEASUREMENTS -
A CENTRICAL/NODE-LOCAL APPROACH

As part of the control principle within the inspection-phase
of the I/EPSM task cycle, network nodes participating in
network activity are supposed to capture any parameter values
that are considered important with respect to their impact on
certain network properties. To this end, we are particularly
interested in all the performance-related information that can
be obtained during regular network operation, i.e., collected
or derived when sending, receiving or processing data in the
context of orderly application execution (e.g., RSSI, medium
access delay, traffic input, missing ACKs, ...) without the need
for auxiliary energy consuming network communication.

According to this centrical/node-local approach, the subse-
quent experimentation deals with the basic feasibility of node-
local measurements of network properties and adjustments of
network parameters implemented on real-world WSN nodes
leaning solely on out-of-the-box features as provided by the
associated software/hardware platform. In this regard, we
explore the dependency of PSD and PLR on three adjustable
network parameters including BP , PS and NC as specified
in the previous section. Besides, in order to accommodate
most WSN scenarios and also the situation of so-called “event
showers” that are typical for many WSN applications, we
designed our testbed environment and evaluation procedure
correspondingly as detailed below.



A. Environmental Setup and Methodology

The evaluation platform used throughout the experiments
is the notorious MICAz/TinyOS solution, one of the most
commonly referenced WSN node implementations featuring
high versatility in plenty of adjustable parameters and latest
protocol mechanisms for the investigation of WSN applica-
tions. MICAz motes feature an 8 MHz microprocessor, 4 kB
of RAM, 128 kB of code memory, and an IEEE 802.15.4-
compliant transceiver for radio communication of 128 Byte
packets with 250 kbit/s of maximum transmission rate [21].
As the standard operating system, TinyOS 2.1.2 based on the
NesC programming language is applied for running the motes
[22].

TinyOS implements a set of link-level primitives as speci-
fied by B-MAC including optional use of link-level ACKs, a
duty cycling mode, and a basic CSMA mechanism without
RTS/CTS that includes adjustable parameters for MAC. In
the context of PSD measurements, these parameters play a
fundamental role as delay-relevant factors. As per its carrier-
sensing mode, after a first waiting time (initial backoff) each
packet transmission attempt of a mote stipulates a prior Clear
Channel Assessment (CCA) for channel state testing based
on an averaged noise sampling mechanism [23]. If the CCA
encounters a busy channel, the sending node backs off for
a certain amount of time (congestion backoff). This backoff
delay dB is randomly drawn from an interval spanned by
means of two parameters, the so-called minimum backoff
Bmin and the backoff period Bp, as given in Eq. 1 below.

dB = (rmod (z ·Bp)) +Bmin (1)

where r is a 16 bit random value, z = 31 is the initial
backoff factor on first transmission attempt and z = 7 is
the congestion backoff factor utilized if the channel is sensed
busy during any transmission attempt. In the latter case, dB
is drawn repeatedly until the medium is sensed idle again the
overall lead time of which is recognized as MAD (see Section
2.2). On average, the smaller congestion backoff factor gives
transmission reattempts higher priority over initial sending
trials for fairness reasons. After dB slot times of deferment,
where tslot = 2·tsymbol = 32 µs, the node is ready to send. By
default Bmin = Bper = 10 with Bmin regarded as platform-
specific covering all hardware-related in-system guard spaces
and turnaround times and, thus, needs to remain constant
for proper transceiver operation. Furthermore, its constant
value has far less influence on MAD in contrast to Bper as
initial experiments had shown. In terms of adjustable packet
sizes, TinyOS implements IEEE 802.15.4-compliant protocol
headers and footers accounting to 13 Byte by default which
allows for additional payload lengths of up to 115 Byte, all in
all referred to as PS (see Section 2.2) in the following [24].

Due to possible activity of co-existing technologies, e.g.,
WLAN operating within the same frequency band, node
transceivers are set to a channel providing for least collision
potential [25]. The power amplifier is set to the highest level
for sufficient transmission range and uninterrupted connectiv-

General Node Configuration

Parameter Setting

Bmin 10 (320 µs)

PAL 31 (0 dBm)

Channel 26 (2.48 GHz)

ACKs 0 (disabled)

Duty Cycle 1 (always on)

Experiment Run Configuration

Parameter Setting

BP [1,20] by 1

PS [Byte] [20,120] by 5

NC {1,2,4,8}

Samples [packets] 1000

Event rate [1/s] 10

Fig. 2: General and experimental configuration settings

ity of involved motes that are randomly arranged in a star-
shaped topology with a radius of less than 1 m allowing
for line-of-sight communication. For highly reliable and accu-
rate delay measurements, an explicit TinyOS hardware timer
abstraction named Alarm with µs precision and 32 bit of
width is applied (as per timing precision evaluation of TinyOS
timer abstraction settings in [26]). Besides, link-level ACKs
are deactivated avoiding retransmissions of non-acknowledged
frames for the sake of unambiguous measurement interpre-
tation. All relevant configuration settings are summarized in
Figure 2 (left).

The experimental testbed setup includes several MICAz
motes, a gateway/programming board along with a Linux-
based machine serving as Evaluation System Node (ESN). One
mote being attached to the gateway, henceforth Run Controller
Node (RCN), is in charge of test run coordination and relaying
of results to the ESN via its serial connection interface. All
other motes including the Node of Interest (NOI) are endued
with experiment run-specific execution settings and act as
parts of a sample homogeneous WSN providing the RCN with
feedback on gathered results. To this end, the RCN polls the
NOI every now and then between experimental runs, collects
measurement data and passes it to the ESN (see Figure 3).

During experiment run series, the RCN triggers the sending
process of active motes by consecutively broadcasting control
packets towards the network. This emulates an event shower
situation, i.e., a kind of worst-case scenario for regional WSN
operation, which implies concurrent action of topographically
close entities. In that, we optimize our setup to isolate the
actual cause for the phenomenon of packet loss being pure
medium access collisions of involved nodes. Therefore, the
broadcasts are guarded by 100 ms of inter-trigger lag to avoid
node event overlaps. Hence, observations are unbiased which
we support by a high number of samples helping to obtain fine-
grained results for univocal analysis. In addition, the RCN acts
as the receiving destination node in order to infer the PLR. For
this purpose, the RCN keeps track of the number of received
packets originated by the NOI. The measurement of the PSD,
on its part, is conducted on the NOI during the sending process
triggered by RCN control packets. Its value is included in the
subsequent packet towards the RCN. The captured PSD covers
the time duration from the initiation of the packet delivery
process via the default TinyOS sending interface up to the



point when the event of successful modulation of the last
packet bit is signaled by lower-layer TinyOS components.

Fig. 3: Experimental testbed setup and network topology

Throughout all experimental runs, the three selected net-
work parameters are systematically permuted over the speci-
fied range of values (confer Figure 2). Therefore, the backoff
period Bp and packet size PS are programmatically adjusted
whereas the number of contending nodes NC is controlled
by turning them on/off manually. In order to obtain unam-
biguous information particularly on the number of lost data
packets with high granularity, we set the number of triggered
sending events to 1000 for each parameter constellation per
experimental run.

B. Influence of BP , PS and NC on Average Delay

As already indicated in Section II, the settings of the
network parameters is assumed to have a significant impact
on the performance properties under investigation. In order
to proceed systematically, all influencing factors are regarded
separately. To this end, Figures 4 and 5 include a subset of all
experiment results for representative parameter constellations.

Figure 4 (a) reveals the developing of mean delays against
an increasing backoff period also in view of four contender
configurations while the packet length is minimized to 20 Byte.
As can be clearly seen, the PSD increases gradually with
all settings of the backoff period. Although it also shows a
virtual dependency on the number of neighbors, the confidence
intervals for 0.05 significance level overlap especially for
higher backoff period values, signifying its statistical indis-
tinguishability when it comes to the standard error of the
computed mean from the real population mean. This is due to
the increasing standard deviation of the samples lying between
776 µs and 5729 µs for no neighbors and between 1324 µs
and 6044 µs for 7 neighbors, respectively, as far as backoff
periods between 1 and 20 slots are concerned. This also
emphasizes the high probabilistic impact, albeit ascertainable
as almost linear, of the backoff period parameter on the overall
delay. A more convincing statistical relevance of the number
of contenders becomes evident not before the packet size
is increased as exemplified for PS = 70 Byte in Figure
4 (b), where, additionally, a slightly wider spreading of the
confidence intervals and also a definite elevation of the PSD
can be observed. The latter trend, which obviously suggest
a sensitivity of the PSD to the packet length, is captured in
Figure 4 (c). In terms of the default backoff period setting of
10 slots and incrementation of the packet length by 5 Byte

over the available range of values, the average PSD increases
apparently in a linear manner as can be concluded visually
from the diagram. Again, a severe statistical relevance of the
number of contenders for the mean PSD, at least for the first
two proximate instances of the traversed value range, cannot
be assumed before a packet size of 50 Byte is reached.

For the sake of completeness, it shall be noted that through-
out all experimental runs, we observed the devolution of the
PPD (see Section 2.2) as well. It turned out that the PPD
is exclusively dependent on the packet size PS as expected.
However, in order to shed light on its portion of the overall
time readings in isolation, we conducted disjoint measurement
runs freezing the random number to r = 100 for BP = 10
within the backoff process, i.e., observing a constant MAD
of 3520 µs for an initial backoff value of z = 31 as applied
on first transmission attempt in case of only one sender. In
this way, we numerically divided the PSD into its individual
components, i.e., PPD, MAD, PTD, the relationship of which
becomes evident in Figures 4 (a)-(c). Whereas the PTD can
be assumed to be consistently dependent on the transceiver
transmission speed, the measurements of the PPD yield a
median standard deviation of about 11 µs proving its constancy
in view of any parameter constellation. In summary, we can act
on the assumption of a linearly proportional interconnection
between the packet size PS and not only the PTD but also the
PPD the latter of which can be attributed to the preparation and
in-system transfer of packet data between the microcontroller
main memory and the radio transceiver transmission buffer
[26].

C. Influence of BP , PS and NC on Packet Loss

In contrast to the results on the PSD, the impact of the
tested network parameters exhibits a partly different behavior
with respect to the PLR. Intuitively, a wider range of the
backoff delay interval implies a lesser chance of packet
collisions in case more than one sender is actively probing for
medium access. In effect, our field tests show a proportionally
increasing PLR for an increased number of channel contenders
NC as depicted by Figure 5 which is persistently true for
all parameter constellations. While a single sending node
witnesses a PLR of approx. 0.1 % on the average due to system
internal inaccuracies, 2, 4 and 8 contending senders can be
subject to fluctuating PLRs of up to 92.8 % clearly depending
on the backoff period and, at the first glance, also on the
packet size when comparing Figures 5 (a) and (b). However,
the impact on PLR shows divergent coherence in general
when contrasting backoff period BP against packet size PS

for decoupled parameter iterations. While the captured PLR
obviously increases with a gradual decay of BP in Figure 5 (a)
and (b), there is almost no indication for a simply proportional
relation between the PLR and PS as shown in Figure 5 (c).
The only noticeable observation remains the steady decline of
the PLR from the highest packet size down to 45 Byte which
thereupon reverts to a sudden remarkable increase followed
by a nearly constant relaxation. This phenomenon appears to
be connected to the general presence of channel contenders



(a) Packet Size PS = 20 Byte (b) Packet Size PS = 70 Byte (c) Backoff Period BP = 10

Fig. 4: Influence of backoff period, packet size, and number of contenders on packet transmission, processing, and sending delay

and might be accredited to an unbalanced random number
generation process with an unfavorable sequence of choices
out of the value space. Nonetheless, from a statistical point of
view, PS appears to play a marginal role with regard to the
PLR when considered in isolation. For this reason, we could
limit our considerations to the adjustment of the backoff period
which proved to be a valuable driver not only for the PSD
but also the PLR. But, increasing PLR slope fluctuations as
observed for all backoff period iteration series in combination
with different packet sizes hypothesizes a potentially explicit
correlation of those two network parameters that requires
further contemplation. Other than that, the relatively small
sample size for obtaining the PLR might also add to the
encountered discrepancy, not to mention its implications on
the precision of PLR predictions. In any case, there is clear
evidence for a negative correlation of the PSD and the PLR
which has to be taken into account when searching for the most
appropriate parameter constellation including BP . Contrary,
the increase in number of contending nodes NC results not
only in an increased PLR but also in a higher mean PSD. In
general, a higher PLR also adds to the E2ED in that it usually
implies increased need for retransmissions and, thus, higher
delays encountered at loss-intolerant applications which rely
on the end-to-end protocol argument.

Summing up, the selected variety of presented experiment
results reveals a couple of valuable insights into the char-
acteristics of a concrete WSN node platform with regard to
the I/EPSM approach. Based on these, prospective network
entities shall be enabled to derive performance prediction
models for the considered network properties next.

IV. PREDICTING PERFORMANCE PROPERTIES IN WSNS -
A LIGHTWEIGHT YET POWERFUL METHOD

As part of the analysis principle of the I/EPSM approach,
the determination of an appropriate performance model type
along with its concrete instantiation based on available mea-
surement results constitute the fundamental enabling pro-
cedure for meaningful estimation of performance property

values. A subsequent appraisal of enabled predictions against
application requirements, in turn, will allow for an appro-
priate adaptation of selected network parameters for meeting
imposed performance-related demands in a terminal step of
the I/EPSM task cycle, the treatment of which, however, goes
beyond the contents of this work. Also, any other modeling
methodologies for value prediction based on, e.g., Network
Calculus or Artificial Neural Nets might come into question as
the foundation for the analysis principle further sophisticating
the I/EPSM approach in terms of its flexibility. Yet, we focus
on a lightweight yet powerful method as the most promising
and demonstrably viable approach, even from the intrinsic
point of view, for now as detailed in the following.

A. Regression Modeling and Analysis

One of the most common statistical methods for predicting
random variables used by analysts is based on regression mod-
eling [27]. A variety of regression techniques such as (curve)
linear, non-parametric, mixed effects, a.o., exist to fit given
observations of presumably related data into a corresponding
model [28]. Usually, in order to identify and verify the right
modeling technique as part of the modeling task within the
I/EPSM task cycle, statistical tests are to be implemented on
the corresponding network entities in charge. However, in view
of our experimental outcome from Section III, simple and
multiple linear regression emerge as most suitable for finding
the performance model instance Ψi of choice that relates
the network properties from tuple 〈Υt〉 = 〈PSD,PLR〉,
each considered as predicted response y, to the nonstochastic
network parameters x from set Φ = {BP , PS , NC}, that act
as predicting explanatory variables according to Eq.(2) with
m ∈ {1, 2, 3}.

yΥt
= r0 +

(
m∑
i=1

ri · xi

)
+ ε , xi ∈ Φ r

i⋃
k=1

xk−1 (2)

where x0 = ∅, t = {0, 1}, ri are regression coefficients, and
ε denotes the residual error term.



(a) Packet Size PS = 20 Byte (b) Packet Size PS = 70 Byte (c) Backoff Period BP = 10

Fig. 5: Influence of backoff period, packet size, and number of contenders on packet loss rate

In the course of singling out the best fitting model variant Ψi

for any of the 7 distinct parameter constellations per element
of Υ, we consider our entire set of measurement results. Since
we accomplished 492 experimental observation runs in total
covering more than 29 % of all possible combinations within
the defined value range bounds for all 3 network parameters
while capturing up to 1000 samples per run, we can rely on
488 up to 490 degrees of freedom for the statistical estimation
of regression coefficients provided that the model errors are
independent and subject to a Gaussian distribution with zero
mean and constant standard deviation.

In the first place, we derive a simple linear regression model
to relate the properties in Υ to any individual network param-
eter from Φ in a linear fashion. Subsequently, both network
properties are considered in view of all possible combinations
of those parameters by virtue of a multiple linear regression
model each. In order to find the mean predicted response
with as little variability as possible, we apply the least-squares
criterion procedure minimizing the sum of squared errors in
view of the observed mean response yj as per Eq. 3 for all
n observations. The result summary is tabulated in Figure 6
(left).

Expectedly, the results show that any of the network pa-
rameters has a distinct influence on any of both properties
to a certain extent as can be told by the corresponding
Coefficient of Determination (Ω). In fact, Ω discloses how
much of the variation of the response variable is explained by
the regression as the measure of choice when comparing the
predictability relevance of fitted regression values of different
models [28]. On this note, Ψ1 based on just the backoff
period appears to have highest single explanatory rate of
about 62.53 % on the PSD in contrast to the number of
contenders NC that seems to play just an inferior role with
only 9 % as already anticipated in Section III. Nevertheless,
its combination with the other two parameters within model
variant Ψ7 is assumed to most precisely explain the PSD on
the average by 97.56 %, i.e., it can predict its mean value
more reliably than all the other models do. On the other hand,

Ψ3 turns out to have by far the highest explanatory value
of 65.82 % regarding the PLR while the pure influence of
the packet size PS seems minuscule in accordance with our
experimental evaluation. Again, the combination of all three
network parameters in Ψ7 results in the most optimistic model
instance, albeit, not significantly more than Ψ5 which is based
on just two of these.

min

 n∑
j=1

(
yj − yΥt ,j

)2 | 1

n

n∑
l=1

εl = 0

 (3)

B. Performance Model Validation in Multi-Hop Scenarios

From an analytical perspective, a best practice for choosing
the right model is to compare the statistical relevance of re-
gression for all constellations of available predictor variables.
However, whereas the implementation of deducing regression
coefficients along with Ω is rather straightforward, their further
validation implies more involved operations including, a.o.,
distribution generation, normality proofing, and result trans-
formation. Whereas some of these may remain delegated to
an external network entity subject to EPSM, we focus on
an approved subset of viable validation candidates for further
integration into IPSM-driven node implementations.

In this context, examining the Confidence Intervals (CIs)
for the regression coefficients of a model offers valuable clues
to the variability of these estimates. Concurrently, testing CIs
also reveals if the regression explains a significant part of the
variation of the response variable. In case the CI does not
include zero, the coefficient of the variable is said to be non-
zero and thus the regression is statistically significant and vice
versa. Whereas this holds true for even a 0.05 significance
level for any single predictor variable tested against PSD as
in isolation so in combination, this assumption cannot be
generally anticipated for PLR estimation, particularly in case
of multiple response drivers as present within model option
Ψ4. This is due to potential multicollinearity effects of the
predictor variables that counterintuitively might reduce the



Model PSD | PLR Coefficient of Determination Non-Zero
Confidence Intervals Zero

Parameter
CorrelationΨi ~ ΩPSDi

[%] ΩPLRi
[%] PSD PLR

1 BP 62.53 16.07 3 3 -

2 PS 26.03 0.41 3 7 -

3 NC 9.00 65.82 3 3 -

4 BP + PS 88.56 16.48 33 37 3

5 BP + NC 71.53 81.88 33 33 3

6 PS + NC 35.03 66.22 33 33 3

7 BP + PS + NC 97.56 82.29 333 333 3

Fig. 6: Statistical significance indicators of linear regression models for PSD and PLR prediction at 95 % confidence level (left) and
comparison of model prediction quality for E2ED in multi-hop scenarios under defaults BP = 10, PS = 70 Byte, and NC = 1 (right)

statistical accuracy of the applied regression method. However,
the sighted incongruity regarding the packet size parameter
merely reflects its irrelevance in view of PLR prediction as
already foreshadowed in the previous section. Apart from that,
all network parameters pass the corresponding zero correlation
test and clearly exhibit an additive cohesion throughout all
model alternatives, both of which indicate their uncorrelated
pertinence for response prediction (confer Figure 6 (left)).

In the course of a proof of concept for the analysis principle
wihtin the IPSM inspection phase, we also implemented the
linear regression method on a real WSN mote. The results
confirm that the alleged resource limitations do not hamper
the feasibility and precision of the very modeling and pre-
diction technique at all. However, the implementation of a
dynamic storage management necessary to handle the vast
amount of sample data effectively within the pretty slow
flash storage, offering a mean access time of about 4ms per
observation, challenged the hardware in terms of 25% leftover
main memory during execution. A moving average function
implemented to consider only the last captured value into a
continuously updated mean PSD for every network parameter
setting constellation fromΦ, turned out to be significantly
close to the mean over the entire measurement set. In this
manner, just a subset of values of (‖Φ‖+ 2) ·4Byte for each
compound observation with µs precision for PSD was stored
to conduct the sequence of calculations needed for regression
model instantiation[28].

Since further considerations might imply more complex and
partly divergent decisions depending on the used modeling
technique that go beyond simple numerical operations as state
before, we dedicate our regard to a pragmatic comparison of
enhanced prediction results to measured E2ED values for some
basic multi-hop WSN scenarios as follows.

Based on the original experiment setup, we organized hop-
variant network topologies of tandem-like shape and measured
the E2ED (where PLR would work analogously) between the
source and the destination node for default parameter settings
as per Figure 6 (right). Apart from the PSD as estimated by a
subset of most promising model instances selected based on

Ω, we amplify our models by including the PPD, which is
assumed to additionally incur at every receiving node r, and
by postulating an additive coherence between the E2ED and
the number of hops h according to

y
Υ1,E

= h ·
(
y

Υ1
+

1

2
PPDr

)
(4)

Indeed, yield results show an almost perfect forecast of
the E2ED for up to 10 hops using enhanced model Ψ7E as
indicated by overlapping CIs for 95 % confidence level. Other
model candidates, in turn, seem to mismatch the E2ED to
a large extent. Interestingly, the prediction based on Ψ1E is
equal to that based on Ψ4E , albeit, with a lower certainty, even
though PS is unconsidered in Ψ1E and ΩPSD1

< ΩPSD4
. This

example points out the importance of diversity in consulting
statistical measures when comparing prediction quality. Nev-
ertheless, a general trend towards overestimation of the E2ED
by any model can be observed that seems to sums up with
the increase in number of hops. This either suggests a missing
influence factor or just a misconception of the considered ones.
In fact, in our case, the PPD as part of the sending process
verifiably differs from the PPD during reception by about the
half as prior node-local measurements revealed. Again, this
result illustrates that a performance model can only be as good
as the knowledge about the integral parts its prediction is based
upon. That is why, prospective self-managed network entities
are meant to collect or conclude as many details about their
constituent parts as possible adhering to the I/EPSM control
principle.

Summing up, whereas model type selection and definite
model validation remain out of scope for resource-constrained
devices for now, we verified the investigated modeling tech-
nique to be what a WSN node is able to apply for meaningful
performance model derivation in virtue of its given capabili-
ties. This is in line with our original aim to keep computational
costs and complexity as rational as possible rendering the
methodology what is considered lightweight and eligible for
the I/EPSM concept.



V. CONCLUSION AND FUTURE WORK

This work dealt with an introductory investigation of
a measurement-based approach to self-management of
performance-related network properties based upon a com-
mon methodology for stochastic value prediction. We have
conducted extensive measurements to determine the influ-
ence of three selected network parameters on two funda-
mental network properties. A concise overview of applied
technology, experimental design, and theoretical background
introduced the basis for our drawn conclusions. Our main
results confirmed previous assumptions of a linear relationship
between packet sending delay and backoff period, packet
size, as well as number of contending nodes for diverse
networking scenarios. Further findings on packet loss rate
and its relation to the parameters in question have been
obtained, e.g., proneness to fluctuations for certain influence
factor variations. Furthermore, we derived several regression
models based on empirical data enabling property forecast for
arbitrary parametrical settings even on a resource-scarce WSN
mote. A subsequent model validation followed by a practical
verification of yield speculations on performance behavior in
basic multi-hop networks finally revealed the high precision of
an augmented performance model in view of end-to-end delay
prediction. All in all, we have demonstrated viable methods
for the aspired measurement and modeling tasks based on
principles as part of our comprehensive I/EPSM approach that
bears good prospects due to its flexibility in further integration
of analysis methods along with load-balanced collaboration
techniques in future concretions. In this context, we aim at
considering lightweight procedures with as little demands on
computational resources as possible by using network inherent
information that can be drawn from regular network node
operation and communication behavior.

As part of future work, we intend to explore further WSN
peculiarities as influencing factors, e.g., duty cycling and data-
aggregation, and also test the quality of prediction for network
properties other than the ones considered herein. Also, various
other networking scenarios shall be subject to complementary
future investigations. In order to cover more involved network
topologies and parameter interactions, simulations constitute
the basis for obtaining comparative results for larger-scale
networks. Finally, in view of our long-term research endeavors,
the implementation of sophisticated routines for model vali-
dation purposes along with the integration of other property
prediction techniques on a unified infrastructure for network
autonomy are also up to future work.
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