
Calculating Accurate End-to-End Delay Bounds –

You Better Know Your Cross-Traffic

Steffen Bondorf
Distributed Computer Systems (DISCO) Lab

University of Kaiserslautern, Germany
bondorf@cs.uni-kl.de

Jens B. Schmitt
Distributed Computer Systems (DISCO) Lab

University of Kaiserslautern, Germany
jschmitt@cs.uni-kl.de

ABSTRACT
Bounds on the end-to-end delay of data flows play a cru-
cial role in di↵erent areas, ranging from certification of hard
real-time communication capabilities to quality of experi-
ence assurance for end users. Deterministic Network Calcu-
lus (DNC) allows to derive worst-case delay bounds; for in-
stance, DNC is applied by the avionics industry to formally
verify aircraft networks against strict delay requirements.
Calculating tight end-to-end delays, however, was proven to
be NP-hard. As a result, analyses focus on deriving fairly ac-
curate bounds with feasible e↵ort. Previous work constantly
improved on capturing flow scheduling and cross-tra�c mul-
tiplexing e↵ects on the analyzed flow’s path. In contrast, we
present an enhanced analysis of the cross-tra�c itself to de-
crease the bound on its worst-case data arrivals that interfere
with the analyzed flow. This improvement is beneficial for
both of e↵ects, scheduling and multiplexing. By replacing
the currently used procedure to bound cross-tra�c arrivals
with our new method, we can improve network calculus ac-
curacy considerably – we demonstrate improvements that
reduce the worst-case delay bound by more than factor 6.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

Keywords
Cross-tra�c arrivals, delay bounds, network calculus

1. INTRODUCTION
Deterministic network calculus (DNC) is increasingly used

to analyze networks designed from scratch for delay sensi-
tive employment. Examples can especially be found in the
avionics domain where the analysis of AFDX (Avionics Full-
Duplex Switched Ethernet) networks has continuously seen
attention, e.g., [10, 6, 11]; current Airbus aircraft’s AFDX

backbone was certified using the algebraic techniques pro-
vided by DNC. Calculating a flow’s tight end-to-end delay
in larger networks, however, requires great e↵ort to capture
the worst-case flow scheduling and cross-tra�c multiplex-
ing throughout the entire network. Therefore, the majority
of network calculus literature provides algebraic analyses to
derive upper bounds on a flow’s end-to-end delay. These
analyses proceed in two steps:

1. First, the analysis abstracts from the feed-forward net-
work to the analyzed flow’s tandem of servers. This
step is enabled by bounding the arrivals of cross-tra�c
at the locations of interference. The next step need not
consider the part of the network traversed by cross-
flows nor the interference pattern they are subject to.

2. A tandem analysis on the analyzed flow’s path consti-
tutes the second step. The flow’s end-to-end service
curve is derived and the delay bound computed.

So far, DNC analysis following this procedure have seen im-
provements in order to achieve more accurate bounds. They
mainly focussed on capturing the e↵ects on the analyzed
flow’s path in the left-over service curve closely [13, 18, 17].

For networks of arbitrary multiplexing servers, i.e., any
potential reordering of flows is captured, the work presented
in [5] constitutes an exception to this overall approach: It
transforms the network calculus description of the entire
feed-forward network into a set of linear programs (LPs) to
optimize – each LP describes one potential scenario of inter-
ference between flows. Optimizing all LPs results in the tight
delay bound, however, the amount of linear programs and
thus the computational complexity grows possibly (super-)
exponentially with the network size. The authors prove that
their approach to obtain tight bounds is in fact NP-hard.

In this paper, we continue to contribute to the accuracy of
algebraically derived network calculus delay bounds. This
approach has proven computationally feasible even for large
network sizes [3] and open-source tool support is available
[2]. In contrast to previous work, however, we focus on the
first step and derive a method for better bounds on the ar-
rival of cross-tra�c – a property known to be of vital signifi-
cance in embedded real-time communication systems in the
vehicular domain [20]. Thus, our approach to tighten the
end-to-end delay bounds in feed-forward networks comple-
ments the existing improvements located in the second step
of the common algebraic analysis procedure.

Outline. The paper is structured as follows: In Section 2
we provide the background on algebraic network calculus –

from the system description establishing worst-case seman-
tics to the analyses bounding the delay a flow su↵ers when
crossing a feed-forward network. In Section 3, we contribute
our new cross-tra�c arrival bounding method and prove its
superiority over the existing procedure. Section 4 evaluates
the impact of our improvement on the delay bounds in dif-
ferent Erdős-Rényi networks as well as an AFDX topology
and Section 5 concludes the paper.

2. NETWORK CALCULUS BACKGROUND

2.1 The System Description
Network calculus was built around a simple system de-

scription [9] consisting of two parts:

Data Arrivals and Forwarding Service
Flows are characterized by functions cumulatively counting
their data. They belong to the set F0 of non-negative, wide-
sense increasing functions:

F0 =
�
f : R! R+

1 | f (0) = 0, 8s t : f (s)f (t)

,

R+
1 := [0,+1) [{+1} .

We are particularly interested in the functions A(t) and
A

0(t) cumulatively counting a flow’s data put into a server
s and put out from s, both up until time t. These functions
allow for a straight-forward derivation of flow delays.

Definition 1. (Flow Delay) Assume a flow with input A

crosses a server s and results in the output A0. The (virtual)
delay for a data unit arriving at time t is

D(t) = inf
�
⌧ � 0 | A(t) A

0(t+ ⌧)

.

Note that the order of data within the flow needs to be
retained for the (virtual) delay calculation [16].
Network calculus operates in the interval time domain,

i.e., its functions of F0 bound the maximum data arrivals of
a flow during any duration of length d.

Definition 2. (Arrival Curve) Given a flow with input A,
a function ↵ 2 F0 is an arrival curve for A i↵

8t 8d 0 d t : A(t)�A(t� d) ↵(d).

AFDX networks reserve resources for a maximum packet
size b periodically sent with a minimum inter-arrival time t

�

such that flows have a maximum data arrival rate of r = b

t

�

in the fluid model of F0. This shape of arrival curve is
commonly referred to as token bucket and belongs to the
class FTB ✓ F0:

FTB = {�
r,b

| �
r,b

(0)= 0, 8d > 0 : �
r,b

(d)= b+ r · d}.

Scheduling and bu↵ering leading to the output function
A

0(t) depend on a server’s forwarding service. It is lower
bounded in interval time as well.

Definition 3. (Service Curve) If the service provided by a
server s for a given input A results in an output A0, then s

o↵ers a service curve � 2 F0 i↵

8t : A0(t) � inf
0dt

{A(t� d) + �(d)}.

For instance, service o↵ered by ethernet connections can be
described by rate-latency curves FRL ✓ F0:

FRL = {�
R,T

|�
R,T

(d) = max{0, R · (d� T)} .

�

�

... ...

�

�

... ...

�

�

... ...

(a) Network Graph.

�

�

...

�

�

...

�

�

...

(b) Server Graph.

Figure 1: A graph of network devices with output bu↵ering
(a) and its server graph connecting the devices’ queues (b).

A number of servers fulfill a stricter definition of service
curves that guarantees a higher output during periods of
queued data, the so-called backlogged periods of a server.

Definition 4. (Strict Service Curve) Let � 2 F0. Server
s o↵ers a strict service curve � to a flow i↵, during any
backlogged period of duration d, the output of the flow is at
least equal to �(d).

The Network
In general, networks are modeled as graphs where a node
represents a network device like a router or a switch. Devices
can have multiple inputs and multiple outputs to connect to
other devices (Figure 1a). This network model does not
fit well with network calculus’ server model for queueing
analysis. DNC therefore analyzes so-called server graphs.
Assuming that a network device’s input bu↵er is served at
line speed, queueing e↵ects manifest at the output bu↵ers.
These are modeled by the graph’s servers (see Figure 1b).
AFDX equipment employs output bu↵ering [8]. In wireless
sensor networks, nodes usually possess a single transmitter.
Thus, one sensor node corresponds to one server and the
transmission range defines the server graph’s links [1, 3].

2.2 Algebraic Network Calculus
Network calculus was cast in a (min,+)-algebraic frame-

work in [13, 7]. We will first depict the basic operations and
then present their combination for flow analysis.

(min,+)-Operations
The following operations allow to manipulate arrival and
service curve while retaining their worst-case semantic.

Definition 5. ((min,+)-Operations) The (min,+)-aggrega-
tion, -convolution and -deconvolution of two functions f, g 2
F0 are defined as

aggregation: (f + g)(t) = f(t) + g(t),

convolution: (f ⌦ g)(t) = inf
0st

{f(t� s) + g(s)},

deconvolution: (f ↵ g)(t) = sup
u�0

{f(t+ u)� g(u)}.

The system description’s service curve definition then trans-
lates to A

0 � A⌦�, the arrival curve definition to A⌦↵ � A,
and performance characteristics can be bounded with the
deconvolution ↵↵ �:

Theorem 1. (Performance Bounds) Consider a server s

that o↵ers a service curve �. Assume a flow f with arrival

Quantifier Definition

foi Flow of interest
F Aggregate of flows

{f
n

, ..., f

m

} Flow aggregate containing flows f
n

, ..., f

m

F (s) Set of flows at server s

Fsrc (s) Set of flows originating at server s

x(f), x (F) Cross-tra�c of flow f , aggregate F
hs

x

, . . . , s

y

i Tandem of consecutive servers s
x

to s

y

↵

f , ↵F Arrival curve of flow f , set of flows F
↵

f

s

, ↵F
s

Arrival bound at server s

�

s

Service curve of server s

�

l.o.f , �l.o.F Left-over service curve

Table 1: Network Calculus Notation.

curve ↵ traverses the server. Then we obtain the following
performance bounds for f :

delay: 8t 2 R+ : D (t) inf {d � 0 |(↵↵ �) (�d) 0} ,
output: 8d 2 R+ : ↵

0(d)= (↵↵ �) (d),

where the delay bound holds independent of t and ↵

0 is an
arrival curve for A

0.

Analyzing an entire flow with cross-tra�c on its path is en-
abled by the following theorems. Table 1 depicts the nota-
tion required to analyze a sequence (tandem) of servers.

Theorem 2. (Concatenation of Servers) Consider a sin-
gle flow f crossing a tandem of servers s1, . . . , sn where each
s

i

o↵ers a service curve �

s

i

. The overall service curve for f

is their concatenation by convolution

�

s1 ⌦ . . .⌦ �

s

n

=
O

n

i=1
�

s

i

Theorem 3. (Left-Over Service Curve) Consider a server
s that o↵ers a strict service curve �

s

. Let s be crossed by two
flow aggregates F0 and F1 with aggregate arrival curves ↵

F0

and ↵

F1 , respectively. Then F1’s worst-case residual resource
share under arbitrary multiplexing at s, i.e., its left-over ser-
vice curve at s, is

�

l.o.F1
s

= �

s

 ↵

F0

with (� ↵) (d) := sup {0 u d | (� � ↵) (u)} denoting
the non-decreasing upper closure of (� � ↵) (d).

Network Calculus Analysis
A network calculus analysis computes the delay bound for
a specific flow (flow of interest, foi). From a conceptual
point of view, two analysis steps can be distinguished [2,
3]. First, cross-tra�c arrivals are bounded with Theorem 1,
the output bound, such that the worst-case shape of cross-
flows is known at the location of interference with the foi.
This step reduces the network model required to derive the
flow of interest’s delay from the entire one to just a tan-
dem of servers traversed by it. The foi’s end-to-end delay
bound in the feed-forward network can now be calculated
with a less complex tandem analysis. This constitutes the
second step of a DNC network analysis. It has seen much
treatment in the literature in order to improve the ability to
capture flow scheduling and cross-tra�c multiplexing e↵ects
and thus provide more accurate delay bounds:

SFA (PBOO) [13]. Algebraic DNC tandem analyses result
in a left-over service curve used for delay bound derivation
with Theorem 1. Currently, there are two alternatives to
compute the left-over service curve of a tandem: The Sepa-
rate Flow Analysis (SFA) and the Pay Multiplexing Only
Once (PMOO) analysis. The SFA is a straight-forward,
hop-by-hop application of Theorems 3 and 2: First subtract
cross-tra�c arrivals and then concatenate the left-over ser-
vice curves. Deriving the delay bound with a single, end-to-
end left-over service curve will consider the flow of interest’s
burst term only once. This e↵ect is therefore called Pay
Bursts Only Once (PBOO). However, for cross-flows present
at multiple consecutive hops, their bursts appear multiple
times in the PBOO left-over service curve derivation.

PMOO [18]. The PMOO analysis provides an alternative
containing each burst term only once. Its left-over service
curve derivation reverses the operations, i.e., it convolves
the tandem of servers before subtracting cross-tra�c. Due
to this end-to-end approach for all flows on the analyzed tan-
dem, the PMOO analysis was considered superior to SFA.
Yet, [17] shows that the SFA can arbitrarily outperform a
PMOO tandem analysis. Both algebraic analyses thus com-
plement each other.

[17] also provides a left-over service curve derivation that
outperforms both algebraic ones. It transforms the network
calculus system description to an optimization problem; de-
parting from the algebraic methodology. Based on this in-
sight, an optimization-based tight approach for delays in
feed-forward was proposed in [5], however, it is NP hard and
a computationally e�cient solution for tight feed-forward
analysis is currently not known. Therefore, we aim to im-
prove the accuracy of algebraic network calculus.

3. ARRIVAL BOUNDING
In this section, we focus on the first step of feed-forward

network analysis with network calculus: Bounding cross-
tra�c arrivals. First, we provide the existing procedure.
Then, we contribute our new method and prove its superi-
ority when abstracting the feed-forward network to the an-
alyzed flow’s tandem of servers.

3.1 Segregated Cross-flow Bounding
Network calculus analysis previously focused on improved

end-to-end semantics in the second step in order to tighten
the delay bound. The state-of-the-art “generic way to com-
pute performance bounds” in feed-forward networks is in line
with this approach. It derives the cross-tra�c arrival bound
“for each flow at each system” [4], i.e., cross-flows are segre-
gated from each other such that every cross-flow can be ana-
lyzed with a maximal end-to-end (i.e., source-to-interference
location) semantic. The arrival bounding procedure of [4] is
a straight-forward application of basic network calculus re-
sults that define the separate flow analysis (SFA): Flow seg-
regation (Theorem 3), output bound derivation (Theorem
1), and output bound aggregation (Definition 5). Figures
2a and 2b provide a graphical illustration of these steps.

3.2 Aggregate Arrival Bounding
We propose to recursively apply Theorem 1, output bound,

to (not segregated) cross-tra�c aggregates – moving along
the topology, starting from the location of interference with
the flow of interest and stopping at the sources of cross-flows.

s02s01

s0

s1foi

�xf1 �xf2

(a) Sample server graph.

s0

s02s01

s1foi

�l.o.xf1

�s01,s0� �l.o.xf2

�s02,s0�

s1foi

�l.o.xf1

�s01,s0� �l.o.xf2

�s02,s0�

�xf1 �xf2

� �

+

(b) Segregated flow arrival bounding.

s0

s02s01

s1foi

�l.o.xf1
s01

�l.o.xf2
s02

�l.o.{xf1,xf2}
s0

s1foi

+

�l.o.xf2
s02

�xf2

�
�l.o.xf1

s01

�xf1

�

��l.o.{xf1,xf2}
s0

(c) Aggregate cross-tra�c arrival bounding.

Figure 2: Decomposition of a server graph (a) for cross-tra�c arrival bounding: (b) depicts the alternative to segregate the
cross-flows [4] and (c) illustrates our new approach that maximizes cross-tra�c aggregation during the arrival bounding.

This method calculates the arrival bound with the objective
to maximize aggregation of flows, in fact deviating from the
end-to-end analysis of cross-flows. Thus, the aggregate ar-
rival bounding method defines a di↵erent decomposition of
the server graph into left-over service curves than the state-
of-the-art procedure from [4]. Figure 2c and the following
algorithm depict our approach.

algorithm 1. (Aggregate Arrival Bounding) The foi’s
cross-tra�c arrival bound at server s is derived as follows.
Starting from s, paths of cross-flows are backtracked via links;
each link l connects a source server l

src and a destination
l

dest. The function dest(s) returns the set of links whose
destination is s, x (foi, l) returns the cross-flows of foi on l

and for a set of links L we define x (foi,L) =
T

l2L x (foi, l).
We get x (x (foi, l)) = F (lsrc) \x (foi, l). Note, that flow sets

might be restricted by location, e.g., ↵
x(foi)
s

x

= ↵

x(foi)\F (s
x

)
s

x

.

↵

x(foi)
s

=
X

l12dest(s)

⇣
↵

x(foi,l1)
l

src
1

↵ �

l.o.x(foi,l1)
l

src
1

⌘
+ ↵

Fsrc(s)\x(foi)

=
X

l12dest(s)

⇣
↵

x(foi,l1)
l

src
1

↵
⇣
�

l

src
1
 ↵

x(x(foi,l1))
l

src
1

⌘⌘
+↵

Fsrc(s)\x(foi)

=
X

l12dest(s)

((
X

l22dest(lsrc1)

⇣
↵

x(foi,{l2,l1})
l

src
2

↵ �

l.o.x(foi,{l2,l1})
l

src
2

⌘
+↵

Fsrc(l
src
1)\x(foi,l1))

↵
⇣
�

l

src
1
 ↵

x(x(foi,l1))
l

src
1

⌘
)

+↵

Fsrc(s)\x(foi)

=
X

l12dest(s)

((
X

l22dest(lsrc1)

⇣
↵

x(foi,{l2,l1})
l

src
2

↵ �

l.o.x(foi,{l2,l1})
l

src
2

⌘
+↵

Fsrc(l
src
1)\x(foi,,l1))

↵ (�
l

src
1
 X

l22dest(lsrc1)

⇣
↵

x(x(foi,{l2,l1}))
l

src
2

↵ �

l.o.x(x(foi,{l2,l1}))
l

src
2

⌘
))

+↵

Fsrc(s)\x(foi)

The recursion of Algorithm 1 is exemplarily unfolded to il-
lustrate the backtracking of interference in a feed-forward
network. Initially, the foi’s cross-tra�c ↵

x(foi)
s

is split into
the sum of flow arrivals from incoming links and those orig-
inating at s itself, ↵Fsrc(s)\x(foi). Next, the left-over service

curves at the sources of incoming links are derived in or-
der to separate the foi’s cross-tra�c to bound x(foi, l1) from
its cross-tra�c x(x(foi, l1)), i.e., there are two directions to
further backtrack flows by unfolding the term. Step 3 is to-
wards the sources of x(foi, l1) and step 4 towards x(x(foi, l1))
– the latter recursively starts an independent worst-case
cross-tra�c arrival bounding for x(x(foi, l1)). Both steps
require to track the flow paths for proper left-over service
computation in a feed-forward network. The backtracking
will eventually terminate at the flow’s sources.

Next, we prove that our aggregate arrival bounding method
outperforms the segregated cross-flow procedure.

Theorem 4. (Accuracy of Aggregate Arrival Bounding)
The aggregate arrival bounding method derives more accu-
rate bounds than the segregated flow arrival bounding proce-
dure for ↵ 2 FTB and � 2 FRL.

Proof. Without loss of generality (detailed explanation
follows after the proof), we prove this statement by showing
that there are no beneficial e↵ects of bounding long tandems
(Figure 2b) that are more advantageous than bounding both
flows aggregately on shorter tandems (Figure 2c).

First, we derive the segregated cross-flow arrival bounds
at s1, i.e., ↵

xf

n

s1
, n 2 {1, 2}, and aggregate the results to

↵

{xf1,xf2}
s1 = ↵

xf1
s1

+ ↵

xf2
s1

.

↵

xf

n

s1
= ↵

xf

n

s0n
↵ �

l.o.xf
n

hs0n,s0i

= ↵

xf

n

s0n
↵
⇣
�

s0n ⌦
⇣
�

s0 ↵

xf

n

s0

⌘⌘
= ↵

xf

n

s0n
↵
⇣
�

s0n ⌦
⇣
�

s0
⇣
↵

xf

n

s0n
↵ �

l.o.xf
n

s0n

⌘⌘⌘
= ↵

xf

n

s0n
↵
⇣
�

s0n ⌦
⇣
�

s0
⇣
↵

xf

n

s0n
↵ �

s0n

⌘⌘⌘
where n denotes the opposite cross-flow’s index, i.e., 1 = 2
and 2 = 1. Therefore,

↵

{xf1,xf2}
s0

= ↵

xf1
s01
↵
⇣
�

s01 ⌦
⇣
�

s0
⇣
↵

xf2
s02
↵ �

s02

⌘⌘⌘
+ ↵

xf2
s02
↵
⇣
�

s02 ⌦
⇣
�

s0
⇣
↵

xf1
s01
↵ �

s01

⌘⌘⌘
(1)

Next, we derive the aggregate cross-tra�c arrival bound
↵

{xf1,xf2}
s0 according to Algorithm 1.

↵

{xf1,xf2}
s0

=
⇣
↵

xf1
s0

+ ↵

xf2
s0

⌘
↵ �

l.o.{xf1,xf2}
s0

=
⇣⇣

↵

xf1
s01
↵ �

s01

⌘
+
⇣
↵

xf2
s02
↵ �

s02

⌘⌘
↵ �

s0 (2)

Last, we show that the former arrival bound cannot be
smaller than the latter one, i.e., (2) (1) always holds.
According to [3], Lemma 12, we can distribute the decon-
volution of token-bucket arrivals with a rate-latency service
curve over the aggregation. For (2), this means:⇣⇣

↵

xf1
s01
↵ �

s01

⌘
+
⇣
↵

xf2
s02
↵ �

s02

⌘⌘
↵ �

s0

=
⇣
↵

xf1
s01
↵ �

s01

⌘
↵ �

s0 +
⇣
↵

xf2
s02
↵ �

s02

⌘
↵ �

s0

and (2) (1) translates to⇣
↵

xf1
s01
↵ �

s01

⌘
↵ �

s0 +
⇣
↵

xf2
s02
↵ �

s02

⌘
↵ �

s0

 ↵

xf1
s01
↵
⇣
�

s01 ⌦
⇣
�

s0
⇣
↵

xf2
s02
↵ �

s02

⌘⌘⌘
+↵

xf2
s02
↵
⇣
�

s02 ⌦
⇣
�

s0
⇣
↵

xf1
s01
↵ �

s01

⌘⌘⌘
.

We now compare each segregated cross-flow’s impact on the
final arrival bound. This gives us two sub-terms:⇣

↵

xf

n

s0n
↵ �

s0n

⌘
↵ �

s0

 ↵

xf

n

s0n
↵
⇣
�

s0n ⌦
⇣
�

s0
⇣
↵

xf

n

s0n
↵ �

s0n

⌘⌘⌘
Next, we can apply the composition rule for ↵ ([13], The-
orem 3.1.12) and use ⌦’s commutativity to reformulate the
terms to

↵

xf

n

s0n
↵ �

s0n ↵ �

s0

 ↵

xf

n

s0n
↵ �

s0n ↵
⇣
�

s0
⇣
↵

xf

n

s0n
↵ �

s0n

⌘⌘
.

These equations reveal that the crucial di↵erence between
both arrival bounding alternatives is the respective (left-
over) service curve at server s0. Only this single system ser-
vice curve defines the di↵erence between both arrival bounds;
end-to-end e↵ects cancel out entirely.

Finally, due to all curves being from F0, we know that

�

s0 � �

s0
⇣
↵

xf

n

s0n
↵ �

s0n

⌘
,

i.e., the aggregate arrival boundings service curve is larger,
and for 8�

s

x

,�

s

y

2 FRL and 8↵ 2 FTB in particular, we
know from [3] that

�

s

x

� �

s

y

) (↵↵ �

s

x

)
�
↵↵ �

s

y

�
,

i.e., a larger service curve leads to a smaller output bound.
Therefore, aggregate cross-tra�c arrival bounding outper-

forms segregated cross-flow arrival bounding.

Note, that equality between both arrival bounding alterna-
tives only holds for the trivial cases where the service �

s0 is
infinitely large, i.e., �+1,0, or ↵

xf

n

s0n
(↵xf

n) is zero.

Last, let us clarify why the seemingly simple scenario of
Figure 2a allows for our contribution’s generality. Any more
involved server graph can be decomposed into a combination
of variants of the graph shown in Figure 2a while retaining
Theorem 4’s validity:

Intermediate tandems instead of single servers
s0, s01, or s02 can be assumed to consist of multiple servers
in tandem that were convolved into single servers for analysis
(see Theorem 2). Then, the above proof as well as Algorithm
1 virtually move across the server graph tandem-by-tandem
instead of hop-by-hop.

Cross-traffic of cross-traffic
Aggregate arrival bounding compromises on the source-to-
interference view of segregated cross-flow arrival bounding.
Tandems are restricted to sequences of servers shared by all
flows in the respective cross-tra�c aggregate. If an aggre-
gate had its own cross-tra�c (see x(x(foi, l1)) above), an-
other left-over service curve derivation and thus an arrival
bounding (of x(x(foi, l1))) would be needed. This derivation
operates with its own worst-case assumptions for x(x(foi, l1)).
In the best case for segregated arrival bounding, when it
is able to derive the same ↵

x(x(foi,l1)) as aggregate arrival
bounding, Theorem 4’s proof remains unchanged. In any
other case, it even operates on worse left-over service curves.

Further cross-traffic with the same interference pattern
Assume another cross-flow (aggregate) xf3 merges with the
existing cross-tra�c {xf1, xf2} at server s0, entering from
a di↵erent server (or convolved tandem of left-over service
curves) s03. Then, equations containing the segregated flows’
impact on arrival bounds are expanded with xf3’s influence

↵

xf1
s01
↵ �

s01 ↵ �

s0

� ↵

xf1
s01
↵ �

s01 ↵
⇣
�

s0
⇣
↵

xf2
s02
↵ �

s02 + ↵

xf3
s03
↵ �

s03

⌘⌘
,

↵

xf2
s02
↵ �

s02 ↵ �

s0

� ↵

xf2
s02
↵ �

s02 ↵
⇣
�

s0
⇣
↵

xf1
s01
↵ �

s01 + ↵

xf3
s03
↵ �

s03

⌘⌘
and a similar equation for xf3’s impact on the aggregate
arrival bound is added

↵

xf3
s03
↵ �

s03 ↵ �

s0

� ↵

xf3
s03
↵ �

s03 ↵
⇣
�

s0
⇣
↵

xf1
s01
↵ �

s01 + ↵

xf2
s02
↵ �

s02

⌘⌘
.

Neither adaptation impacts the proof’s core statement; s0
still constitutes the crucial bottleneck server where aggrega-
tion outperforms segregation.

Further cross-flows with different interference patterns
Assume s0, s01, and s02 actually consisted of tandems of
servers and there were further cross-flows of the foi, i.e.,
in x(foi), merging somewhere on these tandems. That is,
the server graph consists of a bigger, more complex feed-
forward network than depicted in Figure 2a. In this case,
the above reasoning would have to be repeated recursively
for every backtracking required – similar to cross-tra�c of
cross-tra�c. Therefore, each recursion level has its own bot-
tleneck server where aggregation outperforms segregation
and the e↵ect causing aggregation’s superiority is amplified.

3.3 Exhaustive Aggregate Arrival Bounding
Algorithm 1 defines a hop-by-hop method where left-over

service curves of individual servers are derived, similar to
the segregated arrival bounding procedure, yet, for cross-
tra�c aggregates. While this exploits the PBOO-e↵ect of
SFA, additional gains from the PMOO-e↵ect can only be
achieved if the left-over service curve is derived for tandems
of multiple consecutive hops, i.e., in a tandem-by-tandem
procedure. In this section, we extend our aggregate arrival
bounding to gain from both, the PBOO and the PMOO
e↵ect, in a single, exhaustive method.

The prerequisite for tandem analysis during aggregate ar-
rival bounding is that aggregated flows cross multiple con-
secutive hops. For instance, let s0 in Figure 2a be a system

of two servers s
x

and s

y

, both crossed by xf1 and xf2 in this
order (cf. Intermediate tandems instead of single servers).
Then, we can transform Algorithm 1’s proceeding to

↵

{xf1,xf2}
s1

= ↵

{xf1,xf2}
s

x

↵ �

l.o.{xf1,xf2}
s

x

↵ �

l.o.{xf1,xf2}
s

y

= ↵↵
⇣
�

l.o.{xf1,xf2}
s

x

⌦ �

l.o.{xf1,xf2}
s

y

⌘
= ↵↵ �

PBOO l.o.{xf1,xf2}
hs

x

,s

y

i ,

where �

PBOO l.o. denotes the hop-by-hop left-over service
curve on a tandem of servers. In order to exploit the PMOO-
e↵ect, we replace �

PBOO l.o. with its PMOO analysis coun-
terpart �PMOO l.o..
From [17] we know that neither of the two algebraic alter-

natives to derive the left-over service curve strictly outper-
forms the other one in any server graph and flow entangle-
ment. Moreover, their results depend on actual parameters
of service curves and cross-tra�c arrival bounds. Whereas
the service curves are known, the arrival bounds need to be
computed first. When decomposing the server graph into
left-over service derivations, the superior �

l.o. is thus still
unknown. For this reason, we propose to apply both alterna-
tive derivations in parallel on each level of the recursion and
finally check every combination for its result in order to find
the best delay bound. We call this method the exhaustive
aggregate arrival bounding. It is illustrated in Algorithm 2.
The exhaustive aggregate arrival bounding algorithm de-

picts the DiscoDNC v2 implementation [2]. Lowercase let-

Algorithm 2: Exhaustive arrival bound computation.

Input : Set of flows F to bound at server s
Output: Set of arrival bounds AF

s

1 ArrivalBoundsAtServer(Server s, Flow set F)
2 foreach Link l 2 s.getInLinks() do
3 F

l

= F \ F (l);

4 AF
l

= ArrivalBoundsOnLink(l, F
l

);

5 AF
inlinks.put(l, AF

l

);
6 end

7 AF
s

= getABCombinations(AF
inlinks);

8 foreach ↵ 2 AF
s

do
9 ↵ += Fsrc(s) \ F;

10 end

11 return AF
s

;

12 ArrivalBoundsOnLink(Link l, Flow set F)
13 Tshared = getSharedPathTo(F, l.getSource());
14 foreach Server s 2 Tshared do

15 Fx(F)
s

= F (s) \ F;
16 Ax(F)

Tshared
.put(s, ArrivalBoundsAtServer(Fx(F)

s

));

17 end

18 Bl.o.F
Tshared

= LeftOverBetas(Tshared, Ax(F)
Tshared

);

19 source = Tshared.getSource();

20 AF
source

= ArrivalBoundsAtServer(source, F);

21 foreach � 2 Bl.o.F
Tshared

do

22 AF
l

.addAll(AF
source

↵ �);
23 end

24 return AF
l

;

ters denote variables, blackboard bold letters denote sets of
variables, and the algorithm proceeds as follows:

The objective is similar to Algorithm 1 and so is the entry
point – a set of flows F to bound and a server s to bound
their arrivals at. Like in Algorithm 1, we first iterate over
the inlinks of s (lines 2 to 6) and then add the arrivals of
flows originating at s (lines 8 to 10). A di↵erence to Algo-
rithm 1 can be found in line 7: The exhaustive aggregate
arrival bounding returns at least two bounds per inlink, a
PBOO and a PMOO one. The exact amount depends on
the tandems in the recursion. Therefore, all combinations
of di↵erent arrival bounds for all inlinks are valid bounds.

Inlinks define the locations where recursive cross-tra�c
bounding may be required or where an analyzed cross-flow
aggregate may be forced to be split into sub-aggregates (e.g.,
inlinks of s0 in Figure 2 or the summation over inlinks when
unfolding the term in Algorithm 1). In both cases PBOO
and PMOO arrival bounds need to be derived next. The
e↵ort involved thus grows with the number of links this hap-
pens, yet, an e�cient implementation that convolves alter-
native arrival bounds into a single one that is also cached for
reuse keeps the overhead marginal and allows for evaluations
of the size shown in Section 4. For every inlink, the arrival
bound is computed by first searching for the longest tandem
flows traverse aggregately (Tshared, line 13), then recursively
deriving the cross-tra�c arrivals for this tandem (lines 14
to 17), as well as applying the PBOO and PMOO left-over
service curve derivation (line 18) and computing the flow
aggregate’s output from Tshared (lines 19 to 24).

4. EVALUATION
In this section, we evaluate the impact of our exhaus-

tive aggregate cross-tra�c arrival bounding method on the
worst-case end-to-end delay bound occurring in networks
with larger server graphs than the one depicted in Figure
2a. We call this worst case the network delay bound as it
is globally valid for all flows in the analyzed network. Our
evaluation extensively quantifies Section 3.2’s last remark:
Amplification of aggregate bounding’s superiority when the
number of bottlenecks as well as their utilization increases.

Network Calculus Evaluation
First, let us explain the best practice to analyze arbitrary
networks with network calculus: As shown in Section 2.1,
we start from a network graph representing the topology,
e.g., generated by an existing topology generator. We then
derive its according server graph and assign service curves to
servers. In this paper, we set all service curves � to the rate
function �100Mbps,0 to resemble 100Mbps Ethernet links. A
network calculus analysis as depicted in Section 2.2 requires
flows to not have cyclic dependencies. By applying turn
prohibition [19], the server graph becomes feed-forward and
thus free of cyclic dependencies between flows1. Flows nat-
urally connect a pair of network devices, yet, for analysis
they need to be routed through the turn-prohibited server
graph. According to our objective to derive the network
delay bounds with increasing bottleneck utilization, we ran-
domly choose each flow’s source and sink device, route on the
shortest path in the server graph and assign unit sized arrival
curves ↵ = �1Mbps,1Mb. The amount of flows is continuously
increased until reaching the network’s capacity limit. Each

1Alternatively, a fixed-point analysis can be carried out [12].

0
10

20
30

40

Bottleneck utilization [%]

N
et

wo
rk

 d
el

ay
 b

ou
nd

 [s
]

1
1.

5
2

2.
5

3

−x
−

 Im
pr

ov
em

en
t f

ac
to

r

Cross−flow segregation
Cross−traffic aggregation
Delay bound improvement

50 55 60 65 70 75 80 85 90 95

(a) Flat, n = 32.

0
2

4
6

8
10

Bottleneck utilization [%]

N
et

wo
rk

 d
el

ay
 b

ou
nd

 [s
]

1
1.

1
1.

2
1.

3
1.

4

−x
−

 Im
pr

ov
em

en
t f

ac
to

r

Cross−flow segregation
Cross−traffic aggregation
Delay bound improvement

50 55 60 65 70 75 80 85 90 95

(b) Flat, n = 64.

0
20

40
60

Bottleneck utilization [%]

N
et

wo
rk

 d
el

ay
 b

ou
nd

 [s
]

1
2

3
4

5
6

7

−x
−

 Im
pr

ov
em

en
t f

ac
to

r

Cross−flow segregation
Cross−traffic aggregation
Delay bound improvement

50 55 60 65 70 75 80 85 90 95

(c) Hierarchical, n = 32.

0
5

10
15

20

Bottleneck utilization [%]

N
et

wo
rk

 d
el

ay
 b

ou
nd

 [s
]

1
1.

2
1.

6
2

−x
−

 Im
pr

ov
em

en
t f

ac
to

r

Cross−flow segregation
Cross−traffic aggregation
Delay bound improvement

50 55 60 65 70 75 80 85 90 95

(d) Hierarchical, n = 64.

Figure 3: Network delay bounds for flat and hierarchical Erdős-Rényi networks with n 2 {32, 64} devices.

flow configuration is analyzed with both algebraic network
calculus analyses, SFA and PMOO, to obtain every flow’s
best delay bound – with either arrival bound alternative of
Section 3. Finally, result plots depict the derived network
delay bounds for bottleneck utilizations between 50% and
100%, i.e., between half the maximum amount of flows the
network can route with delay guarantees and the maximum
itself. Our result plots additionally contain the achieved im-
provement factor D(segregated PBOO)

D(exhaust. aggregate)
suggested by [5].

Numerical Experiments
In our numerical experiments, we use the aSHIIP topol-
ogy generator [21] to randomly create Erdős-Rényi network
graphs following the G (n, p)-model with p = 0.1. We eval-
uate the impact of improved arrival bounding in flat and
hierarchical network topologies with 32 and 64 devices re-
sulting in 114 and 414 servers (flat), respectively, and 73 as
well as 394 servers (hierarchical).

In flat networks, our exhaustive aggregate arrival bound-
ing achieves a considerable delay bound improvement in
the small example (see Figure 3a, dashed brown line with
crosses, right y-axis). Even when the network sees a small
bottleneck utilization of 50%, we achieve improvements of
factor 1.23, which already reduces the delay bound by about
18%. With growing utilization and fast growing delay bounds,
the factor increases to 2.88. Increasing the network size, flow
density decreases such that unfortunate entanglements cre-
ating severe bottlenecks become less likely. Therefore, the
amount of bottlenecks as well as the impact of the exhaus-
tive aggregate arrival bounding decreases. Nonetheless, the
improvement remains considerable, especially when the bot-
tleneck utilization limit is approached (factor 1.354, delay
bound reduction of 26%, Figure 3b).

Hierarchical networks possess a set of predefined bottle-
neck links – those links connecting the levels of the hierarchy.
The aSHIIP generator generates a relatively static amount

of levels, 5 to 6 in our experiments. Randomly routed flows
are thus more likely to cross levels in the small network
where we can observe considerable gains at low utilizations
as well as a higher maximum (factor 6.55, �84%, Figure 3c)
than in the large network (factor 1.875, �46%, Figure 3d).
In both cases, the predefined bottlenecks of the hierarchi-
cal topology lead to a higher impact of exhaustive aggregate
arrival bounding than in the flat network topologies.

Our experiments reveal the following trends:

• The improved arrival bounding method presented in
this paper allows to compute more accurate network
delay bounds, independent of the bottleneck utiliza-
tion. The highest gains are achieved when the network
reaches its capacity limit.

• The cross-tra�c arrival bounding method itself does
not a↵ect the network delay bound’s asymptotic growth
pattern when utilization is increased. However, the
growth rate is slowed down considerably and in cases
of a large bottleneck utilization, our aggregate arrival
bounding can achieve network delay bounds that are
multiple times more accurate than the existing ones.

AFDX Case Study
Last, we evaluate the industrial AFDX (Avionics Full-Duplex
Switched Ethernet) network topology. We create the net-
work graph according to the scheme provided in [6]: It con-
sists of 16 switches at the core and 125 end-systems con-
nected with 100Mbps Ethernet links in order to simulate
the network deployed in the Airbus A380.

According to the current AFDX specification, flows are
routed within so-called virtual links (VLs). Each VL con-
nects a single source end-system to multiple sink end-systems
with fixed resource reservation on the path between these
systems. In the view of the network calculus analysis, VLs
correspond to multicast flows that reserve large resource

Bottleneck utilization [%]

N
et

wo
rk

 d
el

ay
 b

ou
nd

 [s
]

0

60

12
0

1
1.

5
2

2.
5

3
3.

5

−x
−

 Im
pr

ov
em

en
t f

ac
to

r

Cross−flow segregation
Cross−traffic aggregation
Delay bound improvement

50 55 60 65 70 75 80 85 90 95

Figure 4: Network delay bounds in the AFDX topology.

shares. An examination of the problems due to VLs’ coarse
granularity can be found in [15]. Moreover, network calculus
does not provide a specialized analysis for multicast commu-
nication. The analysis treats each multicast flow as a set of
independent unicast flows; one for every source-sink pair of
connected network devices. For these reasons, we retain our
evaluation approach and restrict to the immutable part of
AFDX: The deployed networks’ common topology design.

The AFDX topology can benefit much from our method
– Figure 4 illustrates the gap between old and new network
delay bound. Starting at an improvement factor of 1.1, it
grows fast until reaching the bottleneck capacity limit and
factor 3.36. Each of the 250 links to and from an end-system
gets congested easily, similar to the few bottlenecks connect-
ing di↵erent levels in the hierarchical Erdős-Rényi networks.
Moreover, AFDX’s flat core is very small and thus prone
to the dynamic bottleneck emergence already observed in
the flat Erdős-Rényi networks. Therefore, the results are
particularly pronounced in the AFDX topology: Although
the analyzed network is larger than the 64-devices networks
above, analysis results are most similar to the flat Erdős-
Rényi network with 32 network devices. The network delay
bound as well as the improvement both grow exponentially
with the bottleneck utilization; aggregate cross-tra�c ar-
rival bounding reduces the network delay bound computed
by the cross-flow the segregation procedure by 70%.

5. CONCLUSION
In this paper, we present a new method to bound cross-

tra�c arrivals. It maximizes flow aggregation, yet, compro-
mises on the length of tandems to analyze – the previous key
objective of DNC analysis. Nonetheless, we prove that, with
token-bucket arrivals and rate-latency service, our method
outperforms the previous procedure – even by considerable
margins as our evaluation results show.

While we focus on the analysis of general feed-forward
networks, we also restricted our presentation by only cov-
ering arbitrary multiplexing servers. Nonetheless, the ag-
gregate arrival bounding can also be applied to FIFO mul-
tiplexing servers. To be precise, the PBOO and PMOO
left-over service curve derivations can be replaced with, e.g.,
the least upper delay bound method that derives left-over
service curves for tandems of FIFO multiplexing servers [14].

6. REFERENCES
[1] S. Bondorf and J. B. Schmitt. Statistical Response

Time Bounds in Randomly Deployed Wireless Sensor
Networks. In Proc. IEEE LCN, 2010.

[2] S. Bondorf and J. B. Schmitt. The DiscoDNC v2 – A

Comprehensive Tool for Deterministic Network
Calculus. In Proc. ValueTools, 2014.

[3] S. Bondorf and J. B. Schmitt. Boosting Sensor
Network Calculus by Thoroughly Bounding
Cross-Tra�c. In Proc. IEEE INFOCOM, 2015.

[4] A. Bouillard. Algorithms and E�ciency of Network
Calculus. Habilitation thesis, ENS, 2014.

[5] A. Bouillard, L. Jouhet, and E. Thierry. Tight
Performance Bounds in the Worst-Case Analysis of
Feed-Forward Networks. In Proc. INFOCOM, 2010.

[6] M. Boyer, N. Navet, and M. Fumey. Experimental
Assessment of Timing Verification Techniques for
AFDX. In Proc. ERTS, 2012.

[7] C.-S. Chang. Performance Guarantees in
Communication Networks. Springer, 2000.

[8] R. F. Coelho, G. Fohler, and J.-L. Scharbarg.
Worst-Case Backlog for AFDX Network with
n-Priorities. In Proc. RTN Workshop, 2014.

[9] R. L. Cruz. A Calculus for Network Delay, Part I:
Network Elements in Isolation. IEEE Transactions on
Information Theory, 1991.

[10] F. Frances, C. Fraboul, and J. Grieu. Using Network
Calculus to Optimize AFDX Network. In ERTS, 2006.

[11] T. Hamza, J.-L. Scharbarg, and C. Fraboul. Priority
Assignment on an Avionics Switched Ethernet
Network (QoS AFDX). In Proc. IEEE WFCS, 2014.

[12] B. Jonsson, S. Perathoner, L. Thiele, and W. Yi.
Cyclic Dependencies in Modular Performance
Analysis. In Proc. ACM EMSOFT, 2008.

[13] J.-Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet. Springer, 2001.

[14] L. Lenzini, E. Mingozzi, and G. Stea. End-to-end
Delay Bounds in FIFO-multiplexing Tandems. In
Proc. ValueTools, 2007.

[15] R. Mancuso, A. V. Louis, and M. Caccamo. Using
Tra�c Phase Shifting to Improve AFDX Link
Utilization. In Proc. ACM EMSOFT, 2015.

[16] J. B. Schmitt, N. Gollan, S. Bondorf, and
I. Martinovic. Pay Bursts Only Once Holds for (Some)
non-FIFO Systems. In Proc. IEEE INFOCOM, 2011.

[17] J. B. Schmitt, F. A. Zdarsky, and M. Fidler. Delay
Bounds under Arbitrary Multiplexing: When Network
Calculus Leaves You in the Lurch ... In Proc. IEEE
INFOCOM, 2008.

[18] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic.
Improving Performance Bounds in Feed-Forward
Networks by Paying Multiplexing Only Once. In Proc.
GI/ITG MMB, 2008.

[19] D. Starobinski, M. Karpovsky, and L. A. Zakrevski.
Application of Network Calculus to General
Topologies Using Turn-Prohibition. IEEE/ACM
Transactions on Networking, 2003.

[20] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt,
D. Herrscher, and A. Wolisz. Beware of the Hidden!
How Cross-tra�c A↵ects Quality Assurances of
Competing Real-time Ethernet Standards for In-Car
Communication. In Proc. IEEE LCN, 2015.

[21] J. Tomasik and M.-A. Weisser. Internet Topology on
AS-level: Model, Generation Methods and Tool. In
Proc. IEEE IPCCC, 2010.

