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Abstract Network calculus (NC) offers a framework for worst-case anal-
ysis of queueing networks. It enables to derive deterministic bounds on
flow delay and server backlog. The continuous evolution of NC led to
a set of different analyses. In fact, it even resulted in two entirely dif-
ferent branches of the methodology. Both start with a common network
description based on bounding functions on flow arrivals and forward-
ing service. Anything that follows, i.e., the actual analysis leading to a
worst-case performance bound, vastly differs. For long, there was only
the algebraic NC, the formalism created as a system theory for commu-
nication networks. It matured and eventually seemed to have reached
its limits regarding the accuracy of bounds. The problems preventing
it from attaining tight bounds in feed-forward networks were overcome
with optimization-based analysis. However, this approach was proven
NP-hard without an efficient analysis algorithm known for it. Therefore,
it was proposed to confine to a less complex optimization-based analy-
sis instead. Like algebraic NC analyses, it derives tight bounds for some
networks and valid bounds with varying accuracy for other networks. In
this paper, we investigate the consequences of this tradeoff and identify
a new and crucial analysis principle that allows us to compare both NC
branches more comprehensively than simply ranking delay bounds.
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1 Introduction

Network calculus (NC) is a methodology for the worst-case analysis of queue-
ing systems. It provides different analysis procedures to derive deterministic
bounds on buffer requirements and flow delays. Thus, it can be employed in the
verification of real-time systems. In fact, algebraic network calculus has seen ap-
plication in avionics [8,11,12]. E.g., the Airbus A380’s backbone AFDX network
(Avionics Full-Duplex Ethernet) has been certified using network calculus. Addi-
tionally, tool support is available for algebraic network calculus: open-source [2],
commercial [9] as well as an internal tool of a company manufacturing AFDX
switches (Rockwell Collins: ConfGen [13]) and others (Hirschmann Automation



[17], SIEMENS [14]). Moreover, algebraic NC has continuously seen improve-
ments, e.g., w.r.t. the procedure of a feed-forward analysis and the computational
effort [3,4], as well as attainable features [3] and accuracy of results [4,5].

All these developments took place despite the introduction of an entirely dif-
ferent analysis approach based on the NC system description: optimization-based
network calculus. Initially developed by [19] to prove a property of algebraic NC
analysis that can inhibit deriving tight bounds, it was further developed into an
alternative feed-forward analysis, the LP analysis, in [7]. The LP analysis is able
to derive tight bounds, yet, it is also NP-hard with no efficient algorithm known
for it. As this insight obviously prevents network calculus to relocate to opti-
mization, an accurate (not necessarily tight) ULP analysis was proposed based
on the new optimization approach. It is of course not NP-hard, however, neither
was it benchmarked comprehensively against the current algebraic NC analy-
ses. Therefore, the question of switching the fundamental analysis approach of
network calculus has not been answered yet.

In this paper, we derive a new analysis principle for feed-forward networks –
similar to the existing principles – that pinpoints the problem of algebraic NC,
a problem theoretically solved with the LP analysis of [7]. With this principle at
hand, we can provide an in-depth NC analysis evaluation. This treatment of NC
also allows us to reveal the weaknesses of the ULP. We comprehensively compare
it to current algebraic network calculus analyses, foremost the PMOO analysis
and its extensions, and finally provide an evaluation that gives insight on the gap
between both NC branches. Our work helps to better assess the severity of the
shortfall of current algebraic NC and thus tool implementations. Moreover, our
insights provide a guide to future work w.r.t. improving algebraic NC accuracy.

The remainder of this paper is structured as follows: Section 2 presents some
background on NC: The system description common to both branches as well
as the algebraic operations. In Section 3, we examine the two NC branches
regarding their approaches, strengths and weaknesses when analyzing a network.
This allows us to assess accuracy of the currently employed four NC analyses
(SFA, PMOO, LP, and ULP) in Section 4. Section 5 concludes the paper.

2 Network Calculus Background

2.1 The System Description

Data Arrivals and Forwarding Service Flows are characterized by functions
cumulatively counting their data. They belong to the set F0 of non-negative,
wide-sense increasing functions:
F0 = {f : R! R+

1 | f (0) = 0, 8s  t : f (s)f (t)}, R+
1 :

= [0,+1) [ {+1}.

We are particularly interested in the functions A(t) and A

0
(t) cumulatively

counting a flow’s data put into a server s and put out from s, both up until time
t. These functions allow for a straight-forward derivation of flow delays.



Definition 1. (Flow Delay) Assume a flow with input A crosses a server s and
results in the output A

0. The (virtual) delay for a data unit arriving at time t is

D(t) = inf {⌧ � 0 | A(t)  A

0
(t + ⌧)}.

Note, that the order of data within the flow needs to be retained for the
(virtual) delay calculation [18].

Network calculus operates in the interval time domain, i.e., its functions of
F0 bound the maximum data arrivals of a flow during any duration of length d.

Definition 2. (Arrival Curve) Given a flow with input A, a function ↵ 2 F0 is
an arrival curve for A iff

8t 8d 0  d  t : A(t)�A(t� d)  ↵(d).

For example, periodic traffic with a maximum packet size b and a maximum
arrival rate r can be bounded by token-bucket curves F

TB

= {�
r,b

| �
r,b

(0) = 0,

8d > 0 : �

r,b

(d)= b + r · d} ✓ F0.

Scheduling and buffering leading to the output function A

0
(t) depend on a

server’s forwarding service. It is lower bounded in interval time as well.

Definition 3. (Service Curve) If the service provided by a server s for a given
input A results in an output A

0, then s offers a service curve � 2 F0 iff

8t : A

0
(t) � inf

0dt

{A(t� d) + �(d)}.

For instance, service offered by Ethernet connections can be described by
rate-latency curves F

RL

= {�
R,T

|�
R,T

(d) = max{0, R · (d� T )} ✓ F0.

A number of servers fulfill a stricter definition of service curves that guaran-
tees a higher output during periods of queued data (backlogged periods).

Definition 4. (Strict Service Curve) Let � 2 F0. Server s offers a strict service
curve � to a flow iff, during any backlogged period of duration d, the output of
the flow is at least equal to �(d).

2.2 Algebraic Network Calculus
Network calculus was cast in a (min,+)-algebraic framework in [15,10]. We will
first depict the basic operations and then present their combination for flow
analysis.

(min,+)-Operations The following operations allow to manipulate arrival and
service curves while retaining their worst-case semantic.

Definition 5. ((min,+)-Operations) The (min,+)-aggregation, -convolution and
-deconvolution of two functions f, g 2 F0 are defined as

aggregation: (f + g)(t) = f(t) + g(t),

convolution: (f ⌦ g)(t) = inf

0st

{f(t� s) + g(s)},

deconvolution: (f ↵ g)(t) = sup

u�0
{f(t + u)� g(u)}.



Quantifier Definition
foi Flow of interest, the flow under analysis

hs
x

, . . . , s
y

i Tandem of consecutive servers s
x

to s
y

P (f) Path of flow f (a tandem of servers)
↵f ,↵f

s

Arrival curve of flow f , arrival bound at server s

�
s

Service curve of server s

�l.o.f

s

, �l.o.f

hs
x

,...,s

y

i Left-over service curve for f at server s, on tandem hs
x

, . . . , s
y

i

Table 1: Network calculus notation for flows, arrivals and service.

The system description’s service curve definition then translates to A

0 �
A⌦�, the arrival curve definition to A⌦↵ � A, and performance characteristics
can be bounded using the deconvolution ↵↵ �:

Theorem 1. (Performance Bounds) Consider a server s that offers a service
curve �. Assume a flow f with arrival curve ↵ traverses the server. Then we
obtain the following performance bounds for f :

delay bound: 8t 2 R+
: D (t)  inf {d � 0 |(↵↵ �) (�d)  0} ,

output bound: 8d 2 R+
: ↵

0
(d)= (↵↵ �) (d),

where the delay bound holds independent of t and ↵

0 is an arrival curve for A

0.

Analyzing an entire flow with cross-traffic on its path is enabled by the fol-
lowing theorems. Table 1 depicts the notation we use for the network analysis.

Theorem 2. (Concatenation of Servers) Consider a single flow f crossing a
tandem of servers s1, . . . , sn

where each s

i

offers a service curve �

s

i

. The overall
service curve for f is their concatenation by convolution

�

s1 ⌦ . . .⌦ �

s

n

=

O
n

i=1
�

s

i

.

Theorem 3. (Left-Over Service Curve) Consider a server s that offers a strict
service curve � and that serves two input flows, f1 and f2 with arrival curves
↵

f1 and ↵

f2 , respectively. The minimum service f1 is guaranteed to receive is
lower bounded by the so-called left-over service curve

�

l.o.f1
s

= �

s

 ↵

f0
,

with (�  ↵) (d)

:

= sup0ud

{(� � ↵) (u)} denoting the non-decreasing upper
closure of (� � ↵) (d).

3 Network Calculus Feed-Forward Analyses (FFA)

3.1 Algebraic Network Calculus Analysis

An algebraic network calculus FFA computes the end-to-end delay bound for a
specific flow interest (foi). Conceptually, the analysis proceeds in two steps [2,3]:



1. The analysis abstracts from the feed-forward network to the analyzed flow’s
path (tandem of servers). This step is enabled by recursively backtrack-
ing flows, decomposing the network into tandems [2] along their paths and
bounding output arrivals of cross-traffic with Theorem 1, the output bound.
Then, arrival curves that bound the worst-case shape of cross-flows are
known at the location of interference with the foi.

2. The foi’s end-to-end delay bound in the feed-forward network can now be
calculated with a less complex tandem analysis. The flow’s end-to-end service
curve is derived and the delay bound computed.

The second step of the algebraic feed-forward analysis procedure has seen much
treatment in the literature. Effort focused on improving the ability to capture
flow scheduling and cross-traffic multiplexing effects in a tandem analysis. This
effort resulted in two basic principles for left-over service curve derivation of
tandems that improve algebraic NC’s accuracy:

The PBOO-principle and the Separate Flow Analysis [15]: The SFA is
a straight-forward, hop-by-hop application of Theorems 3 and 2: First subtract
cross-traffic arrivals and then concatenate the left-over service curves. Deriving
the delay bound with a single, end-to-end left-over service curve will consider
the flow of interest’s burst term only once. This principle is therefore called
Pay Bursts Only Once (PBOO). However, for cross-flows present at multiple
consecutive hops, bursts impact the derivation multiple times.

The PMOO-principle and -analysis [20]: The PMOO analysis provides an
alternative derivation containing each burst term only once. Its left-over service
curve derivation reverses the operations, i.e., it convolves the tandem of servers
before subtracting cross-traffic. Due to this end-to-end approach for all flows on
the analyzed tandem, the PMOO analysis was considered superior to SFA. Yet,
[19] shows that the SFA can arbitrarily outperform a PMOO tandem analysis.
Both algebraic analyses thus complement each other.

3.2 A New Principle for Feed-Forward Analysis: PSOO

Artifacts of Algebraic FFA In [4], the expression cross-flow segregation was
coined for the situation where a network calculus analysis considers cross-flows
to be mutually interfering in the worst case. It was identified in a procedure for
the FFA step 1 that derives an individual arrival bound for each cross-flow [6].
While this situation could be avoided easily, we found further problems in the
FFA, so-called analysis artifacts, enforcing segregation nonetheless.

Artifact 1: The FFA Procedure During the backtracking in step 1, several tandem
analyses are executed such that the FFA can re-compose tandem-local results.
This imposes a fundamental problem: Each tandem analysis is an independent
instance of SFA or PMOO analysis, operating on its own worst-case assumptions
that retain the overall FFA’s worst-case modeling. The worst case is, in fact, a
segregation of flows. Problems arise if flows share a server, demultiplex and rejoin
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(a) Square network. (b) Algebraic FFA leading to flow segregation.

Figure 1: The square network and the result of the algebraic FFA applied to it if
f1 (↵f1) is the analyzed flow of interest.

again – either each other directly or indirectly via another flow. For an example
see Figure 1: The flows at server s1 (service �

s1) are treated independently of
each other, i.e., they assume worst-case mutual interference that is not attainable
in a real network. This independence is expressed by the segregation of service
�

s1 into �

l.o.f2
s1

and �

l.o.f3
s1

, both with a latency for the respective flow that is
greater than �

s1 ’s latency. Thus, they cannot sum up to the full service �

s1 .

Artifact 2: Interdependence between FFA Steps We also found the need for seg-
regation in tandem networks – although this topology does not allow flows to
demultiplexing, take different paths and rejoin again. This second artifact is
illustrated in the non-nested tandem with cross-traffic arrival bounding in Fig-
ure 2. Applying a PMOO FFA, i.e., using PMOO in the FFA step 2, requires
knowledge about each cross-flow’s arrival bounds individually. This can only be
achieved by segregately executing the FFA step 1 for each cross-flow xf1 and xf2.
This artifact thus leads to two independently computed left-over service curves
�

l.o.xf1
s0

and �

l.o.xf2
s0

that do not add up to �

s0 , i.e., the overly pessimistic analysis
does not consider usage of the entire forwarding resources.

Effect on the Analysis Result The pessimism of independent left-over service
curve derivations inevitable results in less accurate delay bounds. We illustrate
this situation for the tandem network of Figure 2. In the following, we compare
the PMOO delay bound for f1 delay bound with PMOO FFA (left side, Fig. 2b)
against a derivation using the entire service offered by s1 (right side, Fig. 2a):

�

l.o.xf1
s0

+ �

l.o.xf2
s0

< �

s0

)
�
↵

xf1 ↵ �

l.o.xf1
s0

�| {z }
=:

↵

xf1
s1

+

�
↵

xf2 ↵ �

l.o.xf2
s0

�| {z }
=:

↵

xf2
s1

>

�
↵

xf1
+ ↵

xf2
�
↵ �

s0| {z }
=:

↵

[xf1,xf2]
s1

) �

s1  
�
↵

xf1
s1

+ ↵

xf2
s1

�
< �

s1  ↵

[xf1,xf2]
s1

) �

l.o.

segr

foi

hs1,s2i < �

l.o.foi

hs1,s2i

) D

foi

segr

> D

foi



(a) Tandem network. (b) PMOO analysis enforces segregation.

Figure 2: A non-nested tandem and the result of the PMOO FFA applied to it.

As the segregated left-over service curves do not sum up to the original service
curve, they cause larger output bounds for xf1 and xf2. This, in turn, results in a
smaller left-over service curve for the foi at server s1. Therefore, the end-to-end
left-over service curve under flow segregation, �

l.o.

segr

foi

hs1,s2i , is smaller than the one
without flow segregation, �

l.o.foi

hs1,s2i. This results in a larger delay bound.

All of the segregated flows consider each other with isolated, local worst-case
assumptions that retain the global worst case. This leads to an overall situation
assumed by the analysis that cannot be attained in a realistic system. We capture
this problem in a novel principle to be strived for in a feed-forward network
calculus analysis, formulating it similar to PBOO and PMOO (Section 3.1).

The Pay Segregation Only Once (PSOO) principle: If the arrivals of two
flows have to be bounded segregately in the feed-forward analysis and these flows
both cross the same server before interfering with the flow of interest, then they
should not be segregated in a way that imposes worst-case mutual interference
assumptions on both. Segregation of cross-flows should only be paid for once by
the ensemble of the two flows.

For instance, in the algebraic FFA equation, segregated flows should not
have to consider each other fully in their respective arrival bounding. Although
this leads to valid intermediate bounds on arrivals and left-over service, the
according behavior is not attainable by a realistic system and thus the eventual
performance bound cannot be tight.

Mitigation with by Aggregation Having derived these artifacts of algebraic
FFA, we can mitigate them in different ways. On the one hand, it is possible to
prevent their occurrence by routing restrictions. However, adapting the network
to be analyzed may not be justifiable. Thus, we strife for a different mitigation
strategy: flow aggregation. Yet, aggregation is not universally practical in alge-
braic NC. Therefore, we depict the state-of-the-art optimization-based NC that
does not suffer from these artifacts next. Then, we benchmark it against imple-
mentations of our mitigation strategy and evaluate accuracy loss in networks
where we cannot prevent algebraic NC from violating the PSOO principle.



3.3 Optimization-based Network Calculus Analysis and PSOO

An optimization-based FFA was proposed in [7]. It transforms the NC system
description of Section 2.1 into a set of linear programs as follows:

1. Starting from the foi’s sink server, flows and their cross-flows are recursively
backtracked. For every link traversed backwards, the start of backlogged
periods at the connected servers is related. This results in a partial order
where there is no given order relation for servers on parallel paths.

2. Next, the partial order is extended to the set of all compatible total orders.
In contrast to algebraic FFA, the backtracking result is not directly used to
derive performance bounds. The extension enumerates all potential relations
of backlogged periods on parallel paths to attain all potential entanglement
in the network. Total orders of particular interest are those assuming an
equal (start of) backlogged period for flows that later are demultiplexed.
I.e., in Figure 1’s network, the flows f2 and f3 are related with a common
start of the backlogged period at server s1 in order to implement PSOO.

3. Based on the network calculus model, each total order is converted into one
linear program. Strict service curves, arrival curves, non-decreasing func-
tions, non-negativity and the flow constraint derive LP constraints.

4. The set of LPs represents all potential entanglements in the network, not
only worst-case ones. Therefore, all linear programs must be solved in the
final step. The maximum among their solutions is a valid worst-case delay
for the foi.

The LP FFA was, however, shown to be NP-hard due to step 2. Therefore, the
authors propose to confine to a less complex, accurate analysis by skipping the
extension of the partial order. This analysis is known as the unique LP (ULP).
The ULP is, of course, less constrained than any single linear program of the
LP; the constraints are chosen such that it guarantees to derive an upper bound
on delay and backlog.

4 Accuracy Evaluation of Network Calculus Analyses

The LP analysis and the ULP analysis both implement the PBOO and the
PMOO principle. Yet, the ULP skips the LP’s step 2 that is crucial for the PSOO
principle. Therefore, it must operate on worst-case assumptions when bounding
the arrivals of cross-traffic. As arrival bounding is not distinguishable from the
foi analysis during an optimization-based analysis, we aim to gain knowledge
about the attained worst case by evaluations. In contrast to the literature, we
add the PMOO analysis that implements PBOO and PMOO principles but not
PSOO in order to observe the impact of LP’s PSOO implementation on the
accuracy of NC delay bounds.

As there is no comprehensive tool support for the LP or the ULP available,
we need to rely on the tooling provided by the authors of these analyses1. It
1 http://perso.bretagne.ens-cachan.fr/~bouillar/NCbounds/



Figure 3: Tandem network with non-nested cross-traffic arrivals.

allows to analyze arbitrary tandem networks. Additionally, LpSolve lp files for
the square network are available.

In this paper, we benchmark instances of these networks against the advanced
algebraic NC that has been implemented in the DiscoDNC [2] in the meantime.
Additionally, we provide the equations created by different analyses where it
is helpful for illustration of analysis principle violations. We are the first to
contribute PMOO delay bounds to a comparison of the two NC branches.

4.1 The Non-nested Tandem with Overlapping Interference

In [7], the so-called non-nested tandem was analyzed first. It consists of a se-
quence of servers crossed by the flow of interest and overlapping interference of
cross-flows such that there are three flows at every server (see Figure 3). This
is a classic example in network calculus; it was already used when introducing
the PMOO principle and analysis [20]. Two evaluations are carried out: one that
investigates the impact of the tandem’s length and another one varying the uti-
lization for the tandem of length 20. Arrival curves and service curves are taken
from [7]: Both evaluations assign rate-latency service �

R,T

= �10,

1
10

. The eval-
uation with varying utilization u 2 {0.1, . . . , 0.9} assigns token-bucket arrival
curves of ↵ = �

r,b

= �

10u
3 ,1 where 10u

3 is rounded to two decimal digits. The
evaluation of tandem length impact is carried out at a utilization of 0.2, i.e., all
arrivals are shaped to ↵ = �0.67,1.

Separate Flow Analysis (SFA) First, we derive the flow of interest’s end-to-
end left-over service curve (FFA step 2):
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l.o.foi

P (foi) = �
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+ ↵
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+ ↵
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↵

xf
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n
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xf
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(1)

In the equation, we can see that the PMOO property is not fulfilled. We need to
pay for xf

m

arrivals, m 2 {2, . . . n}, at both servers the cross-flow shares with the
foi. Thus, we need to compute the xf

m

arrivals at the respective second server
of interference (FFA step 1; Equation 1: ↵s with server indices). For each server
s

i

, i 2 {2, . . . , n}, we get:

�

s

i

 
�
↵

xf

i
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(2)
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Figure 4: Delay bounds in the non-nested tandem with overlapping interference.

Note, that cross-traffic arrival bounding demands to recursively backtrack cross-
flows of cross-flows at every server, yet, this backtracking never leaves the foi’s
path. The recursion terminates when the sources of flows are reached. See Equa-
tion 2 where ↵s do not have server indices as we know ↵

xf1
s1

= ↵

xf1 , ↵

xf

n+1
s

n

=

↵

xf

n+1 and ↵

xf

m

s

m�1
= ↵

xf

m for m 2 {2, . . . n} from the network description.

Pay Multiplexing Only Once (PMOO) analysis PMOO was specifically
designed to counteract the burstiness increase being considered in the analy-
sis multiple times. I.e, each xf

m

’s burstiness only appears once in its �

l.o.foi

P (foi)-
derivation [20]. The PMOO analysis does not demand the cross-flow arrival
bounding (Equation 2) and thus performs better on this non-nested tandem.

Linear Programming (LP) analysis and comparison The results for the
LP analysis are depicted alongside PMOO and SFA in Figure 4. They all scale
linearly with the length of the tandem (Figures 4a) – the PBOO principle is
responsible for this behavior. The second evaluation shows that all delay bounds
grow super-linearly when increasing the utilization. Yet, the PMOO principle
implemented by the eponymous analysis and the LP analysis leads to much
smaller, better scaling delay bounds compared to the SFA (Figure 4b).

For both parts of this evaluation, the PMOO analysis that was omitted in [7]
performs equal to the LP analysis.

4.2 The Non-nested Tandem with Cross-traffic Arrival Bounding

In this section, we will evaluate a tandem network with arbitrarily many PSOO
violations due to algebraic FFA Artifact 2. To do so, we generalize the network
of Figure 2a by adding a variable number of servers to be traversed by the
two cross-flows (see Figure 5a). Each server constitutes one PSOO violation.
Parameters are chosen according to the previous tandem evaluation: We assign
rate-latency service �

R,T

= �10,

1
10

and token-bucket arrival curves ↵ = �

r,b

.



(a) Tandem network, n PSOO violations. (b) Flow extension counteracts segregation.

Figure 5: Tandem with algebraic FFA Artifact 2 and mitigation by flow extension.

These are either fixed to �2,1 for a network utilization of 60% or kept variable
at �

10u
3 ,1, u 2 {0.1, . . . , 0.9}, where 10u

3 is rounded to two decimal digits.

Separate Flow Analysis (SFA) While SFA can aggregately bound both cross-
flows xf1 and xf2 at server s1, its left-over service curve derivation at s2 requires
segregation in order to only consider xf2 there. [5] presents a new countermeasure
to this artifact called Burst Reduction (BR). It caps xf2’s burstiness at s2 with
the backlog bound aggregately caused by both flows at server s1.

Pay Multiplexing Only Once (PMOO) analysis The PMOO analysis en-
forces PSOO violations in this network, too (see Section 3.2). This can be mit-
igated by a preceding step to the analysis called Flow Extension (FE) [1]. This
step transforms the analyzed network to a different one that is worse form the
foi’s point of view: Interference of cross-flow xf1 is extended to server s2 as de-
picted in Figure 5b. While this reduces the service available to the foi at s2 in
the network, the PMOO FFA does not suffer from Artifact 2 anymore. It can
now handle the cross-flows aggregately and convolve the servers they traverse.
Therefore, it computes a better delay bound in the worse network setting. We
are the first to show FE’s benefits in arbitrary multiplexing networks.

Linear Programming (LP) analysis and comparison Equal to the previ-
ous tandem network, we carry out two evaluations: one that increases the length
of the cross-traffic tandem s�n+1, . . . , s0 and thus the amount of PSOO viola-
tions and another one that increases the maximum utilization in the network.

The scaling with respect to the tandem length is depicted in Figure 6a. We
fixed the network utilization, defined by server s1 crossed by three flows, at 60%.
SFA and PMOO analysis both scale super-linearly with the length of the cross-
traffic tandem, i.e., with the amount of PSOO violations. Burst reduction (BR)
significantly decreases the delay bound of the SFA for long tandems, however, it
is outperformed by PMOO with flow extension (FE). The difference between the
LP analysis and PMOO + FE remains small and steady for all tandem lengths –
it is the penalty of assuming xf1 crossing server s2, too.

For the second evaluation, we fixed the tandem length at 12 servers, i.e., 10
servers with PSOO violations. Again, plain analyses (SFA and PMOO) scale
super-linearly and the deviation from LP delays becomes large with growing



0
1

2
3

4
5

6

Length of the cross−traffic tandem

D
el

ay
 b

ou
nd

1 2 3 4 5 6 7 8 9 10

●
●

●

●

●

●

●

●

●

●

● PMOO
SFA
SFA + BR
PMOO + FE
LP

(a) 60% utilization, increasing tandem size.

20 40 60 80

0
2

4
6

8
10

12

Utilization

D
el

ay
 b

ou
nd

10 20 30 40 50 60 70 80 90

●
●

●

●

●

●

●
● PMOO

SFA
SFA + BR
PMOO + FE
LP

(b) 10 cross-traffic servers, incr. util.

Figure 6: Delays in the non-nested tandem with cross-traffic arrival bounding.

utilization. The two analyses amended with aggregation-based countermeasures
perform considerably better; PMOO + FE derives nearly identical bounds to the
LP analysis. The difference does not remain steady, yet, it does not grow much.
In Figure 6b, PMOO + FE’s triangles stay within LP’s squares, i.e., current
algebraic NC analyses counteract the PSOO violations with small amendments
and their results are highly competitive with the ones derived by optimization.

4.3 The Square Network

Next, we evaluate the square network from [7] (see Figure 1). This network is
evaluated for varying utilizations: service curves remain �

s

i

= �

R,T

= �10,

1
10

, i 2
{1, 2, 3, 4} and arrival curves are adapted to the utilization u 2 {0.1, . . . , 0.9}. As
there are only two flows per server, this setting translates to ↵

f

i

= �

r,b

= �

10u
2 ,1.

Separate Flow Analysis (SFA) We start with the SFA left-over service curve
derivation steps shared by every utilization’s analysis:

�

l.o.f1

hs3,s4i = �

l.o.f1
s3

⌦ �

l.o.f1
s4

=

�
�

s3  ↵

f2
s3

�
⌦
�
�

s4  ↵

f4
s4

�
(3)

with the following cross-traffic arrival boundings:

↵

f2
s3

= ↵

f2 ↵ �

l.o.f2
s1

= ↵

f2 ↵
�
�

s1  ↵

f3
�

(4)
↵

f4
s4

= ↵

f4 ↵ �

l.o.f4
s2

= ↵

f4 ↵
�
�

s2  
�
↵

f3 ↵
�
�

s1  ↵

f2
���

(5)

The cross-traffic arrival boundings show mutual interference assumptions of
Figure 1: It computes �

s1  ↵

f3 and �

s1  ↵

f2 , both will be in the SFA left-over
service curve derivation of Equation 3 – the PSOO principle is not implemented.

This derivation illustrates the different approaches applied by algebraic NC to
model the flow of interest’s worst-case scenario in a feed-forward network. On the
foi’s path (i.e., the foi tandem analysis part of step 2), the left-over service curve
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Figure 7: Delay bounds in the square network.

derivation assumes lowest priority for the flow of interest (cf. Theorem 3). In
the arrival bounding, each flow’s worst-case interference is modeled individually.
Therefore, at server s1, flows f2 and f3 are considered as mutual interference:
�

l.o.f2
s1

=

�
�

s1  ↵

f3
�

and �

l.o.f3
s1

=

�
�

s1  ↵

f2
�
. Note, that we cannot exploit

burst reduction because flows only interfere with each other on single servers.

Pay Multiplexing Only Once (PMOO) analysis The PMOO left-over
service curve [20] is derived as follows:

�

l.o.f1

hs3,s4i = �

R

l.o.f1
hs3,s4i,T

l.o.f1
hs3,s4i

(6)
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l.o.f1

hs3,s4i =
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�
^
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�

(7)
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hs3,s4i = T

s3 + T

s4 +

b

f2
s3

+ b

f4
s4

+ r

f2
s3

· T
s3 + r

f4
s4

· T
s4

R

l.o.f1

hs3,s4i
(8)

The mutual interference modeling persists. It can be seen in the cross-flow burst
terms b

f2
s3

and b

f4
s4

in Equation 8 that equal the one of the according arrival
bounds ↵

f2
s3

and ↵

f4
s4

used in the SFA. Cross-traffic is bounded with Equations 4
and 5, again, as it belongs to FFA step 1. I.e., the PMOO left-over service curve
derivation of Equation 6 will also suffer from the mutual interference problem
depicted in Figure 1 due to Equation 8. In this network, flow extension is not
beneficial as both cross-flows of f1 arrive from different links.

Linear Programming (LP, ULP) analysis and comparison Based on
the derivation of algebraic analysis of the non-nested tandems and the square
network (Equations 1 to 8) as well as the observed properties and delay bounds,
we can predict the relative performance of NC analyses in the square network:

Recall that the LP approach enumerates all potential entanglements of flows
by extending the partial order (defined by consecutive hops of flows) to the set



of all compatible total orders – the benefit is pointed out in Section 3.3, step 2.
The ULP, in contrast, is solely based on the partial order, the extension step
is omitted due to its combinatorial explosion. This results in a smaller set of
ULP constraints, especially the potential entanglements of f2 and f3 at s1 are
not considered anymore. Instead, they are assumed to constitute the respective
flow’s worst case. Based on this insight, it is not surprising that the ULP actually
does not beat the PMOO analysis in the square network (see Figure 7a). In fact,
even the SFA yields the same delays. The reason for SFA’s accuracy is the lack
of multi-hop interference, the effect captured with the PMOO principle does not
manifest in this network.

Our evaluation shows that the ULP models the worst-case interference be-
tween f2 and f3 in the same way as the algebraic analyses do.

The square network also illustrates the case where we cannot mitigate the
PSOO violation in algebraic NC. Thus, we conclude our evaluation by investi-
gating the potential superiority of LP delay bounds over PMOO delay bounds.
Figure 7b depicts three different settings:

– First, we fixed the utilization of server s1 at 100%. For the mutual interfer-
ence assumptions violating the PSOO principle, this leads to the maximum
burstiness increase attainable for flows f2 and f3. As depicted in Section 3,
the burstiness will propagate through the analysis and eventually result in
a loose delay bound. However, the final impact also depends on the utiliza-
tion of servers that forward the flows with overly pessimistic burstiness. We
evaluated utilizations of the remaining servers s2, s3 and s4 ranging from
10% to 90% (see [7]). As expected, we can first observe an amplification of
the PSOO violation’s effect that lets the LP analysis outperform the alge-
braic ones by an increasing margin. Yet, it reaches its maximum of 9.15%
at 80% utilization. After this peak, its impact declines to a level below the
40% network utilization.

– A similar decline can be observed in the second evaluation, taken from [7]
and depicted in Figure 7a, where the rate at s1 varies with the other servers.

– We added another utilization level to the evaluation to confirm this obser-
vation. With a fixed utilization of 10% at s1, the peak is already reached at
a network utilization of 10%.

Thus, our results show that the benefit of implementing the PSOO principle
is bounded as the network utilization becomes more impactful. Compared to
the impact of previous analysis principles, the PSOO did not lead to a vast
decrease of delay bounds. Moreover, implementing it requires huge effort. There
are already eleven linear programs derives from this small square network alone.

4.4 Outlook

Evaluation of Larger, more Involved Networks In this paper, we restricted
our evaluation to tandem networks and the square network. This restriction is
caused by a practical problem of the LP analysis. Besides being NP-hard, the



effort to derive its linear programs them scales super-exponentially with the
network size. The authors of this analysis point out two particular problems [6]:
1. The LPs relate the start of backlogged periods at servers. The amount of

these dates to be related to each other grows exponentially with the network
size. This problem directly impact the second one.

2. Dates are not totally ordered. This problem corresponds to step 2 given in
Section 3.3: extension of a partial order to the set of all compatible total
orders. Even for rather small networks, this step suffers from combinatorial
explosion [16] and known algorithms for linear extensions like the Varol-
Rotem algorithm [21] do not allow for the analysis of larger networks. Com-
putational effort becomes prohibitive.

For these reasons, network calculus lacks comprehensive tool support for the only
analysis implementing the PSOO principle as of today. In tandem networks, flows
cannot take parallel paths and thus there is only one total order. This fact is
exploited by the tool we used for the evaluations in Sections 4.1 and 4.2. For the
square network evaluation of Section 4.3, the authors of the LP analysis provide
the required linear programs. Analyzing larger networks remains an open issue.

Improving the Accuracy of the ULP Analysis The ULP constitutes the
return to accurate, yet, untight bounds in general feed-forward networks. How-
ever, for some special networks it derives tight bounds nonetheless. The special
case holds in tandem networks (see Figure 1) where there is only one order. For
more involved networks, we only know that the ULP has less constraints than
any of the LPs. Improving the ULP’s result can only be achieved by adding
more constraints to it. The addition of constraints found in a total order can,
however, result in a linear program that produces an invalid bound. Identify-
ing constraints that improve the derived bound while guaranteeing to retain its
validity is an open research topic of optimization-based NC.

5 Conclusion

In this paper, we assessed both branches of network calculus, the algebraic and
the optimization-based analysis branch. We aimed at a more comprehensive
comparison of those generally incomparable alternatives to derive delay bounds
from a NC system description. A new principle for feed-forward analysis, the
Pay Segregation Only Once (PSOO), enabled us to derive new insights on both
branches of NC such that we were able to predict the relative results between
analyses. Moreover, we provide evidence that the PSOO principle that is only
implemented by the NP-hard LP analysis does not lead to vastly improved delay
bounds when it is compared to the PMOO analysis of algebraic network calculus.
Thus, there is currently no clear proof for the necessity to relocate network
calculus by abandoning the idea of an algebraic system theory. In current NC,
the LP analysis is rather a tool to benchmark algebraic NC analysis in small
networks and as such it helps to find algebraic NC’s weak spots, e.g., the violation
of the PSOO principle we present and evaluate in this work.
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