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Abstract—In many application domains such as the automotive
and the avionics sector, networks need to fulfill different non-
functional requirements. Among them is the strict demand to
provide predictable and deterministic worst-case communication
performance. Without formal verification of this property, an
entire system embedding the network may not be certified and
thus not be operated. A methodology for formal verification
of communication performance is the Deterministic Network
Calculus (DNC). DNC is under active development to better
model real systems and to reduce pessimism required to pro-
vide verifiably correct bounds on communication delays. This
previous work is mostly of theoretical nature. In our paper,
we aim at providing a testbed design to benchmark bounds
against measurements. Our design is composed of off-the-shelf
components that we accompany with a custom software stack for
taking measurements (network configuration and time stamping)
as well as deriving delay bounds with DNC (system modeling and
analysis). We also provide lessons-learned as well as first results
that compare delay measurements and DNC-derived bounds.

I. INTRODUCTION

Provably correct upper bounds on the transmission delay
of time-sensitive data are required by a multitude of modern
systems, for example in any x-by-wire application in the
avionics industry [1]. For their networking backbone, the
avionics sector started early to develop a standard based on
the wide-spread IEEE Ethernet, the so-called Avionics Full-
Duplex Ethernet (AFDX) [2]. In this process, Deterministic
Network Calculus (DNC) was identified as the tool to provide
the upper delay bounds required for certification [3]. This
application of DNC has seen quite some attention, e.g., in
order to improve the design of networks with delay bounds
in mind [4, 5, 6, 7]. Independent of any application domain,
DNC has seen many improvements. Most notably for our
work, DNC can derive tight delay bounds [8, 9]. I.e., under
the assumptions captured in the network model, there is a
DNC analysis that can derive best bounds such that no smaller
result can be a valid bound, too. On the more practical side,
there has also been considerable progress in tool support [10],
computational effort [11], the tradeoff between computational
effort and tightness [12] (the quality measure for delay bounds,
also called “accuracy” in its interpretation of a non-binary
property), as well as the related aspect of scaling to growing
models [12, 13].
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Our work on a testbed is motivated by the observation
that literature on the comparison between DNC-derived delay
bounds and delay measurements is very scarce. An example
to this stream of work can be found in the “Sensor Network
Calculus”, a variant of DNC for (wireless) sensor networks.
Research in this area resulted in a medium access protocol
based on DNC. Its implementation and experimental assess-
ment revealed that DNC bounds can be very accurate [14].
However, this work employs DNC to design the network
behavior that can therefore be modeled and analyzed perfectly
with DNC. Efforts like AFDX and IEEE TSN, on the other
hand, start as a standardization of behavior that needs to
be modeled and analyzed with the capabilities of DNC in
a subsequent step. When this cannot be achieved perfectly
with DNC, it is to be expected that the modeling step as well
as the analysis step both need to add pessimism in order to
verifiably derive valid upper delay bounds. This, of course,
leads to untightness (inaccuracy). A theoretical investigation
on this subject can be found in [15].

Our paper aims to complement these efforts with a compar-
ison between measurements and delay bounds in an Ethernet-
based network. To achieve this goal, we have built a testbed
for delay measurements. The first insight, leading to the first
design decision, is that some current avionics networks seem to
be relatively small [16, 17]. This makes it feasible to emulate
them to an appropriate extent, and we opted for borrowing
design concepts from AFDX. The decision also allows us to
tap into the rich literature on modeling AFDX concepts in
DNC, foremost [18]. However, we want to emphasize that we
only provide a sample configuration in this paper. It is possible
to extend and adapt our basic design to emulate other domains
such as electrical substation networks [19, 20, 21].

Moreover, we set the objective to create a testbed design
that resembles the core AFDX network architecture by using
off-the-shelf Ethernet components instead of expensive AFDX
switches or clock-synchronized network interfaces [19]. For
reference, other Ethernet-based solutions have already been
evaluated for their potential to replace AFDX in the avionics
sector [22, 23]. This decision might add to the untightness of
our delay bounds as we need to work with a model that was
simplified by pessimistic assumptions. But it also prevents us
from the inherent complexity in configuration of sophisticated
hardware – e.g., priority classes at AFDX switches’ output



ports. Instead, we revert to the assumption of a single shared
queue and FIFO multiplexing, a modeling assumption that, in
turn, can be analyzed perfectly with DNC [9].

We run our testbed with a custom software stack that
automates the crucial steps towards derivation and comparison
of delay measurements and bounds:

1) configuration of systems, in particular data flows, routes;
2) conducting a simulation run, including the collection of

packets’ time stamps and the computation of end-to-end
delay observations (measurements);

3) DNC-modeling of the testbed setup and computation of
delay bounds;

4) centralized data collection and visualization of the results.

Comparing both results, the theoretical upper bounds and
the measurements allows to investigate how conservative these
bounds are under our model assumptions and simplifications –
we show that it is worthwhile to further develop [9] to
incorporate more system characteristics into the analysis.
These insights from our testbed can potentially help in further
optimizing the design [4, 5, 6, 7], too. Last, we also present
our lessons learned from building and using our testbed.

The remainder of the paper is organized as follows: Sec-
tion II provides the background theory on network charac-
teristics in avionics and on DNC for deriving delay bounds.
Section III presents our testbed design, mapping the above
concepts to hardware, their configuration and their DNC
model. This section also presents our software stack that is
used to derive the numerical results shown in Section IV. Sec-
tion V concludes the paper with an outlook on improvements
and lessons learned.

II. BACKGROUND

A. Avionics Networks

Avionic Full Duplex Ethernet (AFDX) is a network stan-
dard [2] developed by Airbus and employed also by other air-
craft manufacturers. The main characteristic of these networks
is their adaptation of standard Ethernet for real-time systems.
Therefore, they require formal certification. Deterministic Net-
work Calculus has been used for such certification, as in the
example of the Airbus’ A380 backbone [3] .

The actual network topologies in aircraft are, however,
company secrets and we need to rely on a limited amount
of literature for insights on them [16, 17]. In general, these
topologies are composed of an edge and a core. Systems that
generate and send data are located at the edge – these systems
are called End-Systems (ESs) – and they are connected to
each other through a dense core of switches. They generate
data flows that can sometimes be multicast. These are de-
nominated Virtual Links (VLs). Each VL is described by two
values: Bandwidth Allocation Gap (BAG), and the Max Frame
size (MaxFrame). The BAG describes the minimum interval
between transmissions, values are in powers of two and can
range from 1ms to 128ms. MaxFrame defines the maximal
size of a packet.

Traffic sources
Raspberry Pi PCs:

Standard Laptop
Control and Monitor:

Traffic source configuration
Secondary networking interface:

(a) Testbed Design.

(b) Assembled Testbed.

Figure 1: Testbed design. Planned device composition and the
assembled testbed.

B. Deterministic Network Calculus

A comprehensive background on DNC can be found in [24,
25]. The two crucial concepts for resource description are:

• Arrival Curve. A non-negative, monotonically increasing
function upper bounding the amount of data that a flow
can send into the network over a period of time.

• Service Curve. A non-negative, monotonically increasing
function that lower bounds the forwarding service that a
server offers to the aggregate of flows crossing it.

A network is represented as a so-called server graph in
DNC. I.e., an unidirectional graph of servers forwarding data.
The arrival curves of flows are only known at their ingress
locations. Moreover, the paths of flows are assumed to be
static, as are the multiplexing locations. At these locations, we
assume FIFO multiplexing, followed by FIFO service. Given
the FIFO assumptions, we will employ the tight FIFO analysis
for computation of tight bounds [9].



III. TESTBED DESIGN AND SETUP

In this section, we present the design, implementation, con-
figuration and modeling of our testbed. It is shown in Figure 1,
from an early design sketch to its eventual assembly.

A. The Network

Figure 2 shows the DNC models of our testbed. Figure 2a
depicts the so-called device graph, a model that is essentially
the same as the design of Figure 1a (switches are numbered
top to bottom as shown in Figure 1). It is the precursor of the
server graph introduced in Section II-B. For the conversion [7],
output ports of the modeled Ethernet switches are assumed to
be the only locations of potential queueing to consider (i.e., we
assume input ports operate at least at line speed). Therefore,
they are converted to servers. (Outgoing) Links in the server
graph represent turns over devices, from the current output
port to a subsequent one. Therefore, links are unidirectional
and servers can have multiples input and output links.

For the sample network configuration under investigation,
we show the server graph in Figure 2b. After the conversion,
it is considerably more complex than the small network graph.
Despite the small device graph, it is already larger than the
networks found in exemplary evaluations in the literature on
avionics networks [26, 7]. On the other hand, it seems not as
large as potentially realistic avionics networks [16, 17].

B. Raspberry Pi Cluster: The End-Systems

The cluster has 32 Raspberry Pis (RPis) Model 3B+ con-
nected through 4 switches (HP Aruba 2930F). The disposition
of the devices mimics the topology of AFDX networks.
That is, End-Systems (ESs, the RPis) are connected to each
other through a heavily connected center of switches. The
distributions of the devices is shown in Figure 2a. The RPis
boot Raspian, which runs the ptp daemon (ptpd) such that their
clocks are synchronized with the Precision Time Protocol. It
also decides on a master (whoever has the best internal clock
according to the PTP standard) and synchronizes all other
devices based on it. In this way, we can use the timestamps
given by the system in order to compute the delays of the
packets and avoid the cost of in-network measurements [27].

To control the RPi devices at the edge, we use the message
passing interface (MPI). Both MPI and ptpd use the WiFi
interfaces of the RPis, leaving the Ethernet interfaces free of
this traffic. I.e., data traffic required to configure and control
the devices does not impact the performance measurements
taken on the wired Ethernet network.

To control the RPi devices according to our selection of
parts of the ADFX standard, there was no existing off-the-shelf
solution available. Therefore, we developed a set of software
from scratch. First, a Python script controls each ES. This
program takes as input a configuration file, which describes the
VLs (virtual link connections between RPis) in each ES. This
design choice means that all ESs have the same configuration
file, but only the pertinent information for each device is used.

ES1 to 6

Switch1 Switch2

Switch3 Switch4

ES7 to 16

ES17 to 26 ES27 to 32

(a) Device Graph.
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(b) Server Graph (data flows not shown).

Figure 2: Testbed modeling. DNC device graph for the testbed
design of Figure 1 and its conversion to a DNC server graph.

For the packet creation and capture, we employed the Scapy
library1.

The controller also aimed at a soft synchronization between
the ESs, for which MPI was used. That is, all programs start
their execution at approximately the same time. This was
necessary due to the necessity of custom packets creation
at each ES. Depending on the BAG values and the number
of VLs the time necessary to create them could vary, and
therefore a MPI barrier was implemented so that all programs
would be ready when the experiment started. These custom
packets are used to identify individual packets at different
machines.

Secondly, we implemented a random configuration gen-
erator that creates the file used by the above program. It
follows a similar pattern as the AFDX generator shown in [18].
It receives as input minimal and maximal values for the
number of VLs per ESs and the size of the packets generated.
Additionally, it is also given a list of possible BAG values (see

1www.scapy.net



Section II-A). This list also gives the probabilities of each
BAG value to be used in a given VL. The position in the
list is the determining factor, with probability p being defined
as p = index+1

finalTotalV alue where finalTotalV alue is the final
value from the addition of all index+ 1. This design aims at
avoiding some ESs to be overly stressed due to the relatively
weak performance offered by RPi devices.

There is also a Java program extending the DNC software
tool [10]2. In order to model the network as a server graph,
it reads the configuration file created in the previous program
and it convert the VLs into DNC flows.

C. Component Configuration

For bounding the delays, we required an optimization soft-
ware. We employed IBM CPLEX and an experimental addition
to the DNC software tool that uses the CPLEX Java API. The
optimization’s result constitutes the best-known delay bound
that can be computed with DNC for FIFO networks, consider-
ing the modeling assumptions. The code is an implementation
of the work presented in [9]. However, a drawback is that
the background theory only works with unicast flows whereas
VLs may be multicast. The unicast transformation that we used
can convert the network in a way that guarantees validity of
worst-cast bounds [28].

Since two different types of devices were used, we modeled
two different service curves. Similar devices share the same
service curve.

RPis: The Ethernet port of the RPis is limited to 300Mbps.
Therefore, the rate of its service curve is set to this value.
Regarding other sources of latency, we can report that it needs
to be estimated, since its datasheet [29] does not specify them.
It does, however, say that the Ethernet is connected through
an USB 2.0 interface. According to its specification [30], two
latencies are possible. For a full/slow speed bus we have
1ms, and for high speed 125µs. Since some RPis were in
fact overloaded, and this is a worst case analysis, the latency
assumed was 1ms.

Switches: The Aruba switches from HP have Gigabit Ether-
net ports, and therefore their service curve rate was of 1Gbps.
Following the documentation provided by HP, the latency of
the switch is in fact related to the link rates and packet sizes.
Since we work always with the worst-case, we used the largest
latency that could happen: This was of 16.2µs.

The arrival curves are modeled as follows: The rate is given
by maxFrame

BAG , and the burst is the maxFrame value itself.
It means that each VL is upper bounded by the maximal size
of the packets sent at predetermined intervals. Since this is a
well behaved system, the burst is simply one maximal packet
size, maxFrame.

D. Simulation Workflow

1 - Configuration Phase: The Java code is used to create
a configuration file. This file describes the VLs; their source,
destination, BAG and packet size. This file (and other modifi-
cations to the Python code) is sent to each RPis, so that they all

2An open-source software hosted at: https://github.com/NetCal/dnc

have the same configuration. A simple Shell script is used for
the file transfers. After it, the RPis have all the information
necessary to start the execution, and so a command is sent
through MPI. This starts the next phase.

2 - Preparation Phase: First, the controller uses MPI in
order to start the execution of the ESs scripts. Each ES then
reads the configuration file and filters out the relevant part
based on its own IP address. Based on this, each ES will create
a separate software thread. This thread creates a list of packets,
which will be used in the next phase. This is done in order
to achieve the necessary inter arrival times (BAG) required,
while also having custom packets. That is, instead of creating
packets "on the fly" they are created in this initial step. The
weak hardware of the RPis does not allow the necessary speed
otherwise. Each packet will have its own IP ID and port source.
This allows us to compute the delay of any packet sent, since
they are all unique. However, it also increases the runtime of
the experiment, and the memory requirements of the scripts.
Once the ES has finished creating the lists, new threads are
created (but not executed yet). These threads will handle the
actual data sending in the next step. Once they are created,
the ESs reach a MPI barrier, and wait for the other ESs to
finish creating their own lists. We do not intend to perfectly
synchronize each ES (inheriting the potential but small offset
from the PTP protocol), but instead to have some control on
when the experiment actually starts, since the list creation can
take some time, and there is a great variability depending on
how many VLs an ES has, or their BAGs. Another thread is
also created (but not executed immediately either) that handles
the packet capture in the next phase.

3 - Execution Phase: Once all ESs reach the MPI barrier,
all threads are started. The experiment is executed for as long
as it was configured to (we have to add limits on how long
it can execute due to the memory limitations of the RPis). As
packets are captured, they are written into a temporary file.
The pertinent information is the time of capture, the IP header
identifier, the source port, the size of the packet and the IP
addresses (source and destination). There is also a flag called
"sent" – a safety mechanism to save resources. This flag is set
by the ES as it captures the packets. If it identifies the packets
as having itself as source, it means that it sent the packet.
Otherwise, is a captured packet from another ES.

4 - Data Extraction and Visualization: Once the experiment
is completed, a Shell script is used to collect the data from
the temporary files in each RPi to a central computer (in this
case, the laptop on top of the server rack in Figure 1a). Another
Java program is then executed. It uses the configuration file
of step 1, and takes care of the entire DNC analysis (from
modeling to execution). The aggregate file and the output
from the previous program are both fed into a R script, which
computes the delays of each packet, and displays the largest
delay experienced in each VL. This script also creates the
visualizations presented next.
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(a) Example VL 1: from 29 to 2.
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(b) Example VL 2: from 6 to 31.

Figure 3: Delay bound and measurements over time for virtual links from ES 29 to 2 and from 6 to 31.

IV. EVALUATION RESULTS

For an example run of the testbed, configured as shown in
Figures 1 and 2, we show the results.

The first result presented is a barplot that depicts all VLs
between the ESs on the very edge of the network (see
Figure 4). I.e., the end-systems connected to Switch 1 and
Switch 4, as shown in Figure 2a. The ID of the flows is on
the x-axis. VLs are labeled as XtoY , where X is the source
ES and Y is the destination ES.
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Figure 4: Delay bounds (entire bars) and maximum measure-
ment during the test run (fraction of bars) for all virtual links.

The bars show the delays for the respective VL. As the
theoretical result is an upper bound on the worst-case end-to-
end delay, it must be always larger than the biggest measured
delay. Therefore, the bars are bicolors; blue depicting the the-
oretical DNC bound, and the gray part showing the maximum
measured delay. It can be seen that the theoretical bound is
not close to the measurement - it cannot be guaranteed that we
saw the actual worst-case system behavior while measuring.
In particular, as our PTP time synchronization is not perfect,
we might not see the worst-case simultaneous arrival of bursts
that easily. Yet, this might not explain the entire gap. The
tight FIFO analysis we use has inherent modeling restrictions.

We already mentioned the unicast flows, but it also operates
on a fluid model that over-approximates packetized traffic
that would be better modeled with staircase functions [31].
Moreover, the shaping nature of a link, e.g., only a single
packet can be sent at once and thus the burstiness propagation
should be restricted by the link [3, 19], is lacking. Last, the link
exact speed is used as a lower bound on the data transmission
rate, i.e., in a service curve. It is also a maximum rate that can
be modeled by a maximum service curve not yet part of the
analysis of [9]. We hope the currently observed gap between
measurements and bounds sparks research in this directions.

The second visualization alternative for our results is ded-
icated to individual VLs over the simulation time. End-to-
end transmission delays tend to vary over time, an aspect not
visible on the barplot. Therefore, the second plot alternative
has the experiment time on the x-axis (Figures 3a and 3b). The
time-invariant DNC delay is also included in the plot. We can
observe a single measurement, that defines the experienced
maximum delay each (this distance is shown in seconds).
Moreover, this measurement happens at different times of the
simulation run, showing that different flows experience their
worst case at distinct times. Last, it is possible to see the effect
of the BAG values when comparing the two plots. Figure 3a
has a smaller BAG value, and therefore the number of packets
per second is much larger than in Figure 3b.

V. CONCLUSION

In this paper, we presented the design of a COTS testbed
built from off-the-shelf components. It is designed to emulate
a small avionics-style network. We achieve this by creating a
custom software stack that provides an easy way to configure
the network with parameters known from AFDX, as well as
an automated workflow to measure delays, model the network,
bound delays with DNC, and visualize results.

Due to the pessimistic nature of DNC, some gap between
measurements and the formal bounds will exist. The worst case
modeling always assume the worst possible system trajectory
plus some pessimism as a security margin. Such a trajectory,
however, is usually a rare sight in systems. For example, in the



DNC for sensor networks, it was found that the system needs
to become very unsynchronized to see a small gap between
measurements and bounds [14]. This cannot be enforced in our
avionics-emulating testbed. We still expect the DNC analysis
to have room for improvements (see Section IV) and we hope
our results have sparked interest in that research.

Pitfalls and Lessons Learned

We conclude the paper with insights into the problems we
encountered in this hands-on work.

a) Effort of the theoretical analysis: For this small ex-
ample (32 ESs), the optimization-based DNC analysis (using
IBM CPLEX) imposed execution times of more than 1 hour
wall-clock time, with over 5GB memory usage. The machine
used was a Lenovo Thinkpad E495 laptop, with 12Gb ram and
Ryzen 7 processor. Alternatively, it is possible to execute an
algebraic DNC FIFO analysis [32] or a hybrid one [33]. We
expect the analysis times to become considerably smaller but
this is paid for by increased bounds.

b) Effort of running the testbed: Effects of memory
limitations and computational power of the RPi 3B+ devices
have already been mentioned above.

Another problem that remains in the rather well-
synchronized testbed is that the computational effort at RPis
synchronizes, too. This lead to a power surges that cannot
always be handled well by our COTS testbed design where
we used a small number of wall outlets and extension cords.
During surges, individual RPi devices were temporarily op-
erated with electrical voltages below the specified safe range.
This corrupted SD cards with the Linux operating system (po-
tentially during an experiment) and enforced a time-consuming
new installation. This problem can only be solved by a more
expensive, dedicated power supply unit for RPi clusters.

Moreover, the memory limitation also put a limit on the
total time of the simulation run – and thus lead to an overall
low confidence for bad system trajectories to be seen, which
could cause measured delays close to the worst-case. In order
to avoid this, a focus on only one flow (instead of all flows
at once) could be implemented. In this way, only the packets
for that flow of interest would be stored, which can greatly
improve the number of custom packets for one execution. This
might also counteract the power supply problem.
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