
An Empirical Study of Tightest Network Calculus
Analyses for Networks with Multicast Flows

Bruno Cattelan∗§, Steffen Bondorf†‖, Alberto E. Schaeffer-Filho‡

∗TU Kaiserslautern, Dept. of Computer Science, DISCO | Distributed Computer Systems Lab, Kaiserslautern, Germany
†Ruhr University Bochum, Faculty of Mathematics, Center of Computer Science, Bochum, Germany
‡Federal University of Rio Grande do Sul (UFRGS), Institute of Informatics, Porto Alegre, Brazil

Abstract—The Network Calculus (NC) analysis is concerned
with deriving an upper bound on the end-to-end delay of data
flows. For tighter bounds, the analysis needs to incorporate
features of the network model in the best way possible. This
has proven to be a non-trivial task, resulting in what seemed
to be a succession of improved NC capabilities. However, it was
discovered that neither of the two most prominent analyses in
the literature is always best. Deriving the tightest delay bound
thus became an expensive search for the most beneficial tradeoff
between drawbacks of alternative NC analyses. In networks with
multicast flows this problem is amplified, yet, while causes for
this situation are known, there is no empirical investigation on
the ratio between different analyses obtaining the tightest bound.
In this paper, we provide an empirical study of the distribution
of delay bounds derived with NC analyses that can be used to
bound delays in networks with multicast flows. We do so by
evaluating differently sized avionics-like networks.

I. INTRODUCTION

Modern network standards like Avionics Full-duplex Ether-
net (AFDX) [1] often allow for concepts like virtual links, i.e.,
data flows that have a single source and multiple destinations.
They can be modeled with the established concept of multicast
communications in IP networks [2], in short multicasting. The
avionics domain imposes strict certification requirements on
their networks. Foremost, the upper bounds on the end-to-
end delay of data communication must be formally verified.
Network Calculus (NC) is a mathematical framework capable
of deriving such bounds. NC as a methodology is under active
research and multiple improvements have been made regarding
its modeling power [3], the tightness of derived bounds [4],
computational efficiency [5], or multiple of these aspects [6].
Network Calculus was recently extended to analyze networks
with multicast flows [7, 8]. This extension inherited an existing
drawback of NC: there is a multitude of possibilities to instan-
tiate the NC analysis framework, however, the one leading
to tightest bounds is unknown a priori. This problem stems
from the insight that none of the two most prominent analyses
is strictly best: neither the server-by-server analysis SFA [9]

§This work was partially supported by the Carl-Zeiss Foundation while in
the DISCO Lab at TU Kaiserslautern and it was partially carried out at the
Federal University of Rio Grande do Sul (UFRGS).
‖This work was partially carried out during the tenure of a Carl-Zeiss

Foundation fellowship in the DISCO Lab at TU Kaiserslautern, partially
during the tenure of an ERCIM ‘Alain Bensoussan’ Fellowship Programme
at NTNU Trondheim, Norway, and partially in the Faculty of Mathematics’
Center of Computer Science at Ruhr University Bochum.

nor the end-to-end analysis PMOO [10]. This even led to an
entirely novel, optimization-based NC analysis branch [4, 11]
that, in turn, is not yet capable of analyzing multicast flows.
The available NC framework extension for analyzing multi-
casting only exists for the classical algebraic NC [9]. Not
only does it inherit the above SFA-vs-PMOO dilemma, it also
amplifies it: besides the need to decide a priori, there are
three additional, mutually incompatible analysis proceedings
to instantiate (UT, EIB, MFF). The initial work on this topic
[7] could already show two aspects of interest: 1) the most
trivial multicasting extension of NC is inferior to the other
alternatives and 2) NC for multicasting achieves bounds at
least as tight as non-NC analyses methodologies that were
newly developed to overcome this previous lack of a multicast
analysis [12, 13, 14]. The follow-up work in NC [8] includes
an evaluation on an avionics-like network that illustrates the
situation between the remaining two ones. The shown results
confirm that neither of the two major new NC multicasting
analyses can be assumed invariantly better, but the paper does
not address this observation. Overall, the task to find the
tightest delay bound becomes considerably more involved.

In this paper, we present a notably more comprehensive
numerical evaluation of AFDX-like networks. Our aim is to
provide insight into the deviation of delay bounds as derived
with one of the four most advanced alternative instantia-
tions of the NC framework for multicasting networks. Our
empirical results confirm that neither of the two major new
NC multicasting analyses can be assumed invariantly better,
but we shed insights into the delay bound distributions. To
the best of our knowledge, the closest work to ours is an
experimental assessment of timing verification techniques for
AFDX that predates the NC multicasting extensions [15]. With
our new investigation, we shed light onto the potential loss of
tightness when choosing a suboptimal NC analysis. This seems
particularly important as NC multicasting is currently adopted
in the AFDX and factory automation research community that
previously developed competing approaches [16]. Moreover,
there is continued effort to improve the already existing search
for the best unicast analysis: after investigating the exhaustive
search [6], machine learning has been proposed to replace
this expensive approach with recommendations [17, 18]. Any
machine-learning approach requires a training set, i.e., network
models and delay bounds, to learn from. The tools and results



we present in this paper can provide the foundation for poten-
tial future work on a deep learning-assisted NC multicasting
analysis. Having these tools at hand, we are also the first to
give trends regarding the sensitivity of the analyses to changes
in size of the underlying avionics-like topology.

The paper is organized as follows: First, Section II points to
NC background theory. Our empirical evaluation follows suit,
with Section III detailing the experimental design and Sec-
tion IV giving the results. Section V concludes the paper.

II. NETWORK CALCULUS BACKGROUND

For brevity, we restrict our presentation of the background
to providing pointers to relevant literature. A comprehensive
treatment of the algebraic network calculus (NC) basics is
presented in [9], the later work in [19, 6, 20] develops the state-
of-the art analysis techniques for feed-forward networks of
work-preserving schedulers under no assumptions on the mul-
tiplexing of unicast flows. Note that the feed-forward property
must hold for the server graph, i.e., the network of queueing
locations of network devices (so-called servers). Details on
network modeling are presented in [21, 22]. Unicast flows
cross a sequence of servers, a so-called tandem. Currently, the
analysis of tandems can make use of either the Separate Flow
Analysis SFA (i.e., Pay Bursts Only Once PBOO property
and order of crossed servers) or the Pay Multiplexing Only
Once PMOO property [10] but not both simultaneously [4].
Unfortunately, neither is strictly better than the other. Finally,
the advanced multicast flow analyses we evaluate in this paper
were added to NC in [7, 8]. They are, in fact, analysis
frameworks that require instantiation with a tandem analysis –
either SFA or PMOO. The frameworks are:

• Unicast Transformation (UT): each multicast flow is
transformed to a set of unicast flows.

• Explicit Intermediate Bounds (EIB): multicast flows are
cut at their forking locations, an explicitly derived
bound on the flow’s data characterizes the subflows (cut
location-to-sink pairs) taking the subsequent paths.

• Multicast Feed-Forward (MFF): the existing NC feed-
forward analysis provides information on the parts of a
multicast flow under analysis. It is used to abstract to the
unicast subflow (subtandem of entire path) of interest for
the current analysis step.

III. NUMERICAL EVALUATION SETUP

In this section, we provide the experimental design we de-
veloped for our numerical evaluation. We aim at full coverage
of the details to allow for repeatability and reproducibility.

A. Implementing NC Multicasting Analyses

Our tool of choice for NC analyses is the open-source
NetworkCalculus.org DNC Tool1. It already provides imple-
mentations for arbitrary multiplexing SFA and PMOO analyses
in unicast feed-forward networks (matching our assumption
that we do not have knowledge about multiplexing behaviour).

1See networkcalculus.org/dnc, formerly known as Disco Network Calcula-
tor [23] and as DiscoDNC [24].

For UT and EIB, we implemented the network transformation
steps that precede the actual analysis with the existing DNC
implementations [7]. MFF is fundamentally different in that
it does not have a preceding, static network transformation
step. It is tightly integrated into the feed-forward analysis
(the backtracking) depicted in [23] in pseudo-code. This is
the basis for our implementation that makes analysis-internal
information accessible for the MFF analysis.

B. Avionics-like Topology Generation

For our experiments we used an AFDX generator, which
creates topologies similar to the one presented in [15]. The
first AFDX experiment used a small topology, with 10 End-
Systems (ESs) and 6 switches. Each switch can connect from
1 to 4 switches and to between 1 and 3 ESs, creating up
to seven servers per switch (at the output port locations).
Since AFDX is based on Ethernet technology, we modeled all
service curves as rate latency curves, with rate 100e6 (i.e., 100
Mbps) and 0 latency. Each Virtual Link (VL, i.e. the multicast
flows in AFDX terminology) has 4 sinks, with the Bandwidth
Allocation Gap (BAG, a minimum inter-arrival time for a
flow’s data) being randomly selected and varying from 1 to
128 milliseconds (in powers of 2). We varied the maximum
frame size from 500 to 1200 bytes.

Due to the limited size of the AFDX-like networks used
in this experiment, as well as the limits used for the other
variables, we opted to create different sizes (or load scenarios)
by increasing the number of VLs per topology. In order to
verify how the algorithms behaved to differently occupied
networks, we chose 10, 40 and 80 VLs each. The VL paths
were chosen randomly, as well as the source-sink pairs. This
can cause some networks to be invalid when the long-term
rate of incoming data at a server exceeds its capacity. Then,
the worst-case delay cannot be bounded.

The second experiment for AFDX networks is supposed to
resemble an Airbus A350-like topology. We created networks
similar to the one described in [25], which is one of the few
sources available for dimensioning more realistic networks
than the one in the scaling experiments. However, due to the
complexity of the analyses and resulting computation times
we had to use a reduced number of VLs – this is the first
experience we can share regarding the currently available NC
tools and multicasting. For this experiment, we used 650
VLs per network, with BAG values ranging from 2 to 128
milliseconds (in powers of 2), and max frames values from
300 to 500 bytes. Each VL also had from 1 to 12 sinks.

C. Evaluation Equipment

The experiments described in this section were executed on
a Supermicro X7DVL rack server, with dual-Intel Xeon E5420
CPUs and 12GB RAM. Note, however, that the DNC tool is
single-threaded at the time of writing.

IV. NUMERICAL EVALUATION RESULTS

In our numerical experiments, we aim at comparing the
three different NC framework extensions. UT, the trivial



0%

10%

20%

30%

40%

50%

60%

70%

0.000 0.002 0.004 0.006

Delay [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

MFF− SFA
MFF− PMOO

(a) MFF, 10 flows networks.

0%

10%

20%

30%

40%

50%

60%

70%

0.00 0.02 0.04 0.06

Delay [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

MFF− SFA
MFF− PMOO

(b) MFF, 40 flows networks.

0%

10%

20%

30%

40%

50%

60%

70%

0.00 0.05 0.10

Delay [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

MFF− SFA
MFF− PMOO

(c) MFF, 80 flows networks.

0%

10%

20%

30%

40%

50%

60%

70%

0.000 0.002 0.004 0.006

Delay [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

EIB− SFA
EIB− PMOO

(d) EIB, 10 flows networks.

0%

10%

20%

30%

40%

50%

60%

70%

0.00 0.02 0.04 0.06

Delay [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

EIB− SFA
EIB− PMOO

(e) EIB, 40 flows networks.

0%

10%

20%

30%

40%

50%

60%

70%

0.00 0.05 0.10

Delay [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

EIB− SFA
EIB− PMOO

(f) EIB, 80 flows networks.

Figure 1: Delay bound distribution of MFF (a to c) and EIB (d to f) analyses in the small AFDX sample networks.

extension, suffers from duplication of flows and thus it is not
a competitive contender. For this reason, we reduce the set of
thoroughly investigated analyses to EIB and MFF. However,
we also provide a benchmark of their respective improvement
over UT. In the first set of AFDX numerical results, we
intend to identify fundamental trends, not outliers. Therefore,
we created 1000 valid networks for each size and will show
aggregated results.

A. Avionics-like networks

EIB and MFF: PMOO vs. SFA

The experimental results clearly show that the MFF analysis
is in general superior to the EIB analysis, and that the UT is
inferior to both of them. For MFF and EIB, this is shown in
Figure 1a to 1f. We focus on the spread of delay bounds,
visualized by the interval in which each histogram has its
bins. For MFF, the maximum bin value is of 0.004 seconds
delay, whereas for EIB it is 0.006 seconds. As the number of
flows increase, we see that the maximum bin value for MFF
increases more slowly than for EIB. This means that the MFF
analysis scales better than EIB on the number of flows and
thus server utilization. At this point, we make no distinction
between PMOO or SFA, because these trends apply to both
versions of the analyses.

In Figure 1a to Figure 1c, we show the results for the
MFF analysis for the small AFDX topology. Each histogram
considers all subflows from the 1000 generated networks, and
each subflow is analyzed under PMOO and SFA. The aim is
to give a general idea of the average distribution of delays
bounded by each analysis. Figure 1a shows the distribution
for the networks with only 10 flows, Figure 1b shows the
distribution for 40 flows, and Figure 1c shows the distribution
for 80 flows. The first important point to observe in these
histograms is the difference between the PMOO version (in
blue) and the SFA version (in red). For all three network
sizes, we have the PMOO concentrated in the left portion of
the histograms. This shows that the PMOO instantiations of

the analysis is, in general, yielding smaller (i.e., tighter) delay
bounds than SFA, which spreads bins ranging from the lesser
values of the histograms to the larger ones. This holds for all
three sets of experiments shown in Figure 1a to 1c.

Figures 1d to 1f show the results for the EIB analysis for
the same small AFDX topologies. As with the previous results,
Figure 1d gives the delay distribution bounded by the analysis
for all networks with 10 flows, Figure 1e the delays bounded
for all networks with 40 flows, and Figure 1f the delays for the
networks with 80 flows. Similar to the MFF results, we point
the reader to the left portion of the histograms. The PMOO
portion (in light blue) has much larger bins in the left portion
of the histograms than SFA (in light red), meaning that the
delays bounded by it are tighter.

However, by looking at the maximal and minimal values of
the histogram bins, we can see a large difference between MFF
and EIB. The maximum value present in the MFF histogram
of Figure 1a is 0.004 seconds, whereas in EIB Figure 1d is
0.006 seconds. This means that the EIB analysis for the same
networks as MFF has computed larger delays, caused by the
analysis adding more pessimism (by the cuts, see Section II)
when deriving its results.

When looking only at the PMOO values, a similar behaviour
can be seen. For the MFF Figure 1a, the larger bins of PMOO
are around 0.001 seconds. On the other hand, for the EIB
Figure 1d, the larger bins of PMOO are over 0.003 seconds.
This is also present in the histograms of the networks with 40
flows and 80 flows.

EIB-PMOO and MFF-PMOO: Improvement over UT

With the overly pessimistic behaviour of UT in mind, we
use the UT results of each subflow and computed the relative
difference from the results of MFF and EIB. Since for MFF
and EIB the PMOO versions yield the tightest bounds, we
compute this difference using the values bounded by their
version of the analysis. This relative difference illustrates how
much the new analyses improved with respect to the more



0%

3%

6%

9%

12%

15%

≤ 0% 25% 50% 75% 100%

Relat ive Difference

S
h

a
r
e
 o

f 
S

u
b

fl
o
w

s

(a) MFF-PMOO, 10 flows networks.

0%

3%

6%

9%

12%

15%

≤ 0% 25% 50% 75% 100%

Relat ive Difference

S
h

a
r
e
 o

f 
S

u
b

fl
o
w

s

(b) MFF-PMOO, 40 flows networks.

0%

3%

6%

9%

12%

15%

≤ 0% 25% 50% 75% 100%

Relat ive Difference

S
h

a
r
e
 o

f 
S

u
b

fl
o
w

s

(c) MFF-PMOO, 80 flows networks.

0%

3%

6%

9%

12%

15%

≤ 0% 25% 50% 75% 100%

Relat ive Difference

S
h

a
r
e
 o

f 
S

u
b

fl
o
w

s

(d) EIB-PMOO, 10 flows networks.

0%

3%

6%

9%

12%

15%

≤ 0% 25% 50% 75% 100%

Relat ive Difference
S

h
a
r
e
 o

f 
S

u
b

fl
o
w

s

(e) EIB-PMOO, 40 flows networks.

0%

3%

6%

9%

12%

15%

≤ 0% 25% 50% 75% 100%

Relat ive Difference

S
h

a
r
e
 o

f 
S

u
b

fl
o
w

s

(f) EIB-PMOO, 80 flows networks.

Figure 2: Relative Difference of MFF (a to c) and EIB (d to f) analyses to UT int the small AFDX sample networks.

traditional UT analysis. The relative difference of MFF to UT
is shown in Figures 2a to 2c, whereas the relative difference
of EIB to UT is shown in Figures 2d to 2f. Results where
MFF and EIB outperform UT are represented by values in
the rightmost portion of these relative difference histograms.
However, it is possible for UT to equally perform or even
outperform the EIB analysis. This happens when the benefits
of the PMOO analysis outweigh the flow duplication costs
of UT, since EIB suffers from its explicit intermediate bounds
that limit the property to sub-paths of the analyzed flow. Values
in the leftmost bin of the histograms illustrate this scenario.

In Figures 2a to 2c we show the relative difference of MFF
with respect to UT. It is worth noting that for all network sizes
the leftmost bin, which represents results that were equal or in
which UT outperformed MFF, is empty – our implementation
passed its sanity check, that UT cannot outperform MFF.
Moreover, in Figure 2a the relative difference ranges around
65%. As the number of flows increases, the distribution of
bins tends more and more to the right, up to the point in
Figure 2c where they all range from over 50% to 100%. This
value of 100% can be attributed to the extreme pessimism
shown by some bounds given by UT. In fact, when looking at
the raw data, the largest delay given by UT for those networks
is 30 seconds. This is an extremely pessimistic bound. The
MFF analysis, for the same flow, yield a delay bound of only
0.01 seconds. Because of such a large difference between the
results, we see a large 100% bin for the networks of size 80
flows. This is, again, explained by the flow duplication of UT,
since each flow adds more utilization to the network when
compared to the other analysis, i.e., UT does not scale with
the number of flows.

The relative difference histograms from EIB to UT are
shown in Figure 2d to Figure 2f. When looking at these his-
tograms, we see a similar behaviour to the MFF histograms. As
the number of flows in the network increases, the distribution
tends to be concentrated in the rightmost bins, showing that

EIB also scales better than UT. However, in the histogram of
Figure 2d, we see that the first bin is not empty, with 3%
of all flows being in there. This means that, for the given
network size, UT outperformed EIB in some cases. Since this
is the network with the least flows, UT’s pessimistic resource
demand duplication does not affect it as severely. Moreover,
UT can fully benefit from the PMOO property, whereas EIB
is forced to work with less servers due to its inherent break
of multicast flows into smaller unicast ones. However, for the
network with 40 flows in Figure 2e this first bin is much less
pronounced, and in Figure 2f it is barely visible, showing that
indeed EIB scales better than UT.

Table I: SFA outperforming PMOO, small AFDX, subflow %.

Algorithm 10 Flows 40 Flows 80 Flows
UT 8.7% 28.1% 46.8%
EIB 15.1% 23.4% 25.9%
MFF 5.2% 2.3% 3.9%

In Table I we present the percentage of subflows
(source/sink pair) for each topology and each analysis where
the delay bound given by SFA is lower than by PMOO. These
are cases in which the PMOO-degrading settings addressed in
the previous discussion are most likely to be present. Looking
at the table, we see that as the number of flows is increased, the
number of subflows affected by this behaviour increases for
UT and EIB. On the other hand, for MFF the percentage ranges
from 5% to 2%, showing no scaling to the utilization of the
network. Although UT and MFF have the same PMOO worst-
case, UT also suffers from its pessimistic server utilization,
which is very relevant in this small topology, as shown by all
data collected and presented. As a result, we see that after a
given number of flows, analyses such as UT can have a large
number of subflows in which SFA outperforms PMOO. In such
networks, it might be more useful to use a SFA version of
these analyses. This also has implications to unicast analyses
in general. If we ignore the semantic of the multicast flows



in a UT transformed network, it is in fact a unicast network.
Therefore, as we increase the number of flows in this type of
highly utilized network, it seems that SFA might in fact be
more suitable than PMOO – the motivation for the exhaustive
search in the TMA analysis [6].

B. A350-like networks

As UT is clearly inferior to the other analyses, we only
executed EIB and MFF in this experiment. This allows for the
study of networks with much higher server utilization, since
they were often invalidated by the over-pessimism of UT and
its unbounded delays.

The histograms of Figure 3 show that for this topology MFF
again outperforms EIB. The difference, however, is much more
pronounced, with EIB deriving considerably more pessimistic
bounds. In the histogram of Figure 3b, the maximum value
of the largest bins are over 1000 seconds, whereas the values
in the MFF histogram of Figure 3a are much less pessimistic.
This is a similar behaviour to the one seen in the UT analysis.
We believe that this happens because these networks have a
much higher server utilization than the previous experiments,
making the cutting in EIB’s network transformation affect the
analysis.

Table II: SFA outperforming PMOO, large AFDX network.

Algorithm Subflows [%] Algorithm Subflows [%]
EIB 63.3% MFF 78.6%

A difference from the previous experiment is that, in this
case, the SFA versions of both analyses outperformed the
PMOO versions in the majority of subflows, as shown in
Table II, i.e., the end-to-end semantic of PMOO is less
advantageous compared to having knowledge about servers
in isolation (like their order). As mentioned before, this is
related to the possible difference in server utilization in the
network. The PMOO must assume the same worst-case resid-
ual service for all flows, whereas the SFA can account for such
differences. This shows that for these specific cases, the SFA
version might in fact be better suitable. Moreover, in this case
the percentage of subflows suffering from this PMOO worst-
case was higher for MFF. This can also be explained by the
MFF analysis sharing the same PMOO-impacting scenarios.

C. EIB vs. MFF

Out of all the subflows tested in this experiment, only 4 of
them had the delay bounds computed by EIB being smaller
than MFF. On the other hand, we can report the tendency
that EIB is the faster analysis to execute. We attribute this
to the fundamentally different design of EIB as compared to
MFF: it is more efficient to convert the network model before
the analysis is run than adaptively select and ignore subflows
during the analysis (see Section II). A thorough investigation
of the analysis execution times is out of scope of this paper.
Instead, and given this general trend, we want to focus on
the question of how much tightness is lost in case a non-
optimal analysis is chosen a priori. E.g., if a factor like analysis

0%

10%

20%

1e− 02 1e+ 00 1e+ 02 1e+ 04

Delay(log10) [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

MFF− SFA
MFF− PMOO

(a) MFF analysis.

0%

10%

20%

1e− 02 1e+ 00 1e+ 02 1e+ 04

Delay(log10) [s]

S
h

a
re

 o
f 

S
u

b
fl

o
w

s

Analysis

EIB− SFA
EIB− PMOO

(b) EIB analysis.

Figure 3: Delay bound distribution in the large AFDX network.

run time is the driving force behind the decision and an EIB
analysis is executed instead of an MFF analysis. As we have
seen, the PMOO-instantiations are generally preferable. In
order to reduce the complexity of the evaluation, we focus on
EIB-PMOO and MFF-PMOO. The respective -SFA variants
are combined into mcastSFA that we define as the minimum
of EIB-SFA and MFF-SFA.

0%

25%

50%

75%

100%

0.000 0.001 0.002 0.003 0.004

Delay [s]

C
u

m
u

la
ti

v
e 

P
ro

b
a

b
il

it
y

Analysis

MFF− PMOO
EIB− PMOO
mcastSFA

(a) 10 flows networks.

0%

25%

50%

75%

100%

0.000 0.025 0.050 0.075 0.100 0.125

Delay [s]

C
u

m
u

la
ti

v
e 

P
ro

b
a
b

il
it

y

Analysis

MFF− PMOO
EIB− PMOO
mcastSFA

(b) 80 flows networks.

Figure 4: Delay bounds (ECDF) in the small AFDX networks.



0%

25%

50%

75%

100%

1e− 02 1e+ 00 1e+ 02 1e+ 04

Delay(log10) [s]

C
u

m
u

la
ti

v
e 

P
ro

b
a
b

il
it

y

Analysis

MFF− PMOO
EIB− PMOO
mcastSFA

Figure 5: Delay bounds (ECDF) in the large AFDX network.

Figure 4 shows the delay bound ECDF for our set of small
avionics-like networks. MFF-PMOO is clearly outperforming
the other alternatives. Its curve rises to 100% faster, i.e., its
delay bounds are in a smaller range. This is true for both sizes,
but more pronounced in the smallest network. Moreover, note
that the SFA-variants outperform EIB-PMOO, and that the
gap increases with the network size. This trend continues as
evident by increasing the size to the A350-like topology shown
in Figure 5. It even leads to the fact that the mcastSFA curve
is slightly left of the MFF-PMOO one – another confirmation
of our previous assessment. This shows that the MFF-PMOO
analysis is not strictly better than the others, yet, in particular
in smaller networks it yields much tighter bounds in the vast
majority of cases.

V. CONCLUSION

In this paper, we present a comprehensive numerical study
of Network Calculus (NC) analyses for multicasting – a bench-
marking that is necessary as neither of the major alternatives
can be assumed invariantly superior to the others. Despite this
being known, what remained without a thorough numerical
investigation until now is how to best instantiate the NC
framework to obtain an analysis that, in turn, derives the
tightest possible bound on the worst-case end-to-end delay of
a flow. This decision has to be taken a priori, and with the
results in this paper we provide ample guidance on this issue.

We aim at providing a reproducible study in multiple dimen-
sions: software implementation, experimental setup, numerical
results. Besides a comparative depiction of an unprecedentedly
large set of experiments (multiple avionics-like network design
with 1000 individual network instantiations each), we are also
able to give concise interpretation of the reasons behind our
observations. Thus, we are able to provide a clear view on the
actual importance of analyses’ properties for the eventually
derived delay bound. Additionally, we show fundamental
trends when the network size and utilization increases.

In short, based on our comprehensive study, we can con-
clude that the multicasting analysis MFF (Multicast Feed-
Forward) yields the tightest bounds. Moreover, we can rec-
ommend to instantiate it with NC’s PMOO (Pay Multiplexing
Only Once) analysis. However, if the network under investi-
gation has high server utilizations and if computing resources
are not restricted to running a single analysis only, then

we recommend to execute a MFF-SFA (i.e. MFF with the
Separated Flow Analysis) in addition.

REFERENCES
[1] Aeronautical Radio, Incorporated (ARINC), “Avionics Full-Duplex

Switched Ethernet (AFDX),” Specification 664 Part 7, Tech. Rep., 2009.
[2] S. Deering, “Host extensions for IP multicasting,” Internet RFC 1112,

Tech. Rep., Aug. 1989.
[3] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Worst-case end-to-end delay

analysis of an avionics AFDX network,” in Proc. of DATE, 2010.
[4] J. B. Schmitt, F. A. Zdarsky, and M. Fidler, “Delay bounds under arbi-

trary multiplexing: When network calculus leaves you in the lurch. . . ,”
in Proc. of IEEE INFOCOM, 2008.

[5] A. Scheffler, M. Fögen, and S. Bondorf, “The deterministic network
calculus analysis: Reliability insights and performance improvements,”
in Proc. of IEEE CAMAD, 2018.

[6] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of
deterministic network calculus – design and evaluation of an accurate
and fast analysis,” Proc. of the ACM on Measurement and Analysis of
Computing Systems (POMACS), vol. 1, no. 1, pp. 16:1–16:34, 2017.

[7] S. Bondorf and F. Geyer, “Generalizing network calculus analysis to
derive performance guarantees for multicast flows,” in Proc. of EAI
ValueTools, 2016.

[8] ——, Deterministic Network Calculus Analysis of Multicast Flows, ser.
EAI/Springer Innovations in Communication and Computing. Springer
International Publishing, 2019.

[9] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[10] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving performance
bounds in feed-forward networks by paying multiplexing only once,” in
Proc. of GI/ITG MMB, 2008.

[11] A. Bouillard, L. Jouhet, and É. Thierry, “Tight performance bounds in
the worst-case analysis of feed-forward networks,” in Proc. of IEEE
INFOCOM, 2010.

[12] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Applying and optimizing
trajectory approach for performance evaluation of AFDX avionics net-
work,” in Proc. of IEEE ETFA, 2009.

[13] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard, “A forward end-to-
end delays analysis for packet switched networks,” in Proc. of RTNS,
2014.

[14] G. Kemayo, N. Benammar, F. Ridouard, H. Bauer, and P. Richard,
“Improving AFDX end-to-end delays analysis,” in Proc. of IEEE ETFA,
2015.

[15] M. Boyer, N. Navet, and M. Fumey, “Experimental assessment of timing
verification techniques for AFDX,” in Proc. of ERTSS, 2012.

[16] D. Petit, J.-P. Georges, T. Divoux, B. Regnier, and P. Miramont, “An
admission control method to provide higher sampling rates over space
launchers networks,” in Proc. of IFAC TA, 2019.

[17] F. Geyer and S. Bondorf, “DeepTMA: Predicting effective contention
models for network calculus using graph neural networks,” in Proc. of
IEEE INFOCOM, 2019.

[18] ——, “On the robustness of deep learning-predicted contention models
for network calculus,” 2019, arxiv:1911.10522.

[19] S. Bondorf and J. B. Schmitt, “Improving cross-traffic bounds in feed-
forward networks – there is a job for everyone,” in Proc. of GI/ITG
MMB & DFT, 2016.

[20] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Catching corner cases in
network calculus – flow segregation can improve accuracy,” in Proc. of
GI/ITG MMB, 2018.

[21] B. Cattelan and S. Bondorf, “Iterative design space exploration for
networks requiring performance guarantees,” in Proc. of IEEE/AIAA
DASC, 2017.

[22] H. Yang, L. Cheng, and X. Ma, “Analyzing worst-case delay perfor-
mance of IEC 61850-9-2 process bus networks using measurements and
network calculus,” in Proc. of ACM e-Energy, 2017.

[23] J. B. Schmitt and F. A. Zdarsky, “The DISCO network calculator – a
toolbox for worst case analysis,” in Proc. of ICST ValueTools, 2006.

[24] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a comprehensive
tool for deterministic network calculus,” in Proc. of EAI ValueTools,
2014.

[25] O. Hotescu, K. Jaffrès-Runser, J.-L. Scharbarg, and C. Fraboul, “To-
wards quality of service provision with avionics full duplex switching,”
in Proc. of ECRTS Work-in-Progress Session, 2017.


