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Abstract

Weighted round robin (WRR) is an effective, yet particularly easy-to-implement packet sched-
uler. A slight modification in the implementation of WRR, interleaved weighted round robin,
has been proposed as an enhancement of the initial version and has been recently investigated.
Network calculus is a versatile framework to model and analyze such network schedulers. By
means of this, one can derive theoretical upper bounds on network performance metrics, such
as delay or backlog. In our previous work, we derive performance bounds by showing that both
round-robin variants belong to a class called bandwidth-sharing policy; however, the proofs are
incomplete and thus, we cannot conclude that the round-robin schedulers are bandwidth-sharing
policies (under variable packet sizes). To that end, in the subsequent erratum, we introduce
so-called resource-segregating policies and show the round-robin schedulers to be members of this
class.

We first present our original work, as published in [CNS22], and then the erratum correcting
the previously mentioned shortcoming. In our erratum, we provide slightly worse delay bounds
compared to [CNS22]; yet, across all our experiments, they significantly outperform the state of
the art.
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Abstract

Weighted round robin (WRR) is a simple, efficient packet scheduler providing low latency
and fairness by assigning flow weights that define the number of possible packets to be sent
consecutively. A variant of WRR that mitigates its tendency to increase burstiness, called
interleaved weighted round robin (IWRR), has seen analytical treatment recently [TLB21]; a
network calculus approach was used to obtain the best-possible strict service curve. From a
different perspective, WRR can also be interpreted as an emulation of an idealized fair scheduler
known as generalized processor sharing (GPS). Inspired by profound literature results on the
performance analysis of GPS, we show that both, WRR and IWRR, belong to a larger class
of fair schedulers called bandwidth-sharing policies. We use this insight to derive new strict
service curves for both schedulers that, under the additional assumption of constrained cross-
traffic flows, can significantly improve the state-of-the-art results and lead to smaller delay
bounds.

1 Introduction
For a long time, round-robin schedulers have been found appealing for their simplicity and cor-
responding efficient implementation as well as their inherent fairness [Hah91] (see [Kle64] for an
early reference). Weighted round robin (WRR) is a frequently used scheduling algorithm in packet-
switched networks as well as in real-time processing systems to provide a different resource allocation
among flows (or tasks). In its basic version, sometimes called plain WRR, we (conceptually) have
a queue for each flow at a server and service is provided in rounds; in each round, a flow fi re-
ceives the opportunity to send wi packets consecutively. The term weighted round robin was coined
in [KSC91] in the context of ATM (i.e., a network with constant packet sizes), where also some
modifications, such as interleaving, were suggested. WRR has been considered intensively in the
literature on communication networks: e.g., investigating variants such as multi-class or multi-server
WRR [CM99,XJ04]; or, in applications such as in the IEEE Standard 802.1Q [IEE18], load balanc-
ing of cloud infrastructures [LK13,WC14], or networks on chip (NoC) [QLD09,HKB12]; and found
usage in real-world equipment, e.g., in Ethernet switches [Hew17]. In contrast to another popular
round-robin scheduler, deficit round robin (DRR) [SV95], WRR does not assume that the size of the
head-of-the-line packet is known at each queue. Therefore, it is also used in distributed queueing
scenarios, for instance, as the uplink scheduler in an IEEE Standard 802.16 network [CLME06].

WRR has a tendency to increase the burstiness of flows due to several packets being sent back-
to-back by the same flow per round. To mitigate this, interleaved weighted round robin (IWRR)
introduces cycles within a round to disperse the packet transmissions from the same flow. This
change is simple and the algorithm’s complexity remains favorable (at O(1) work per packet [SV95]),
though, it makes the mathematical performance analysis more challenging. The performance analysis
of IWRR has attracted some recent attention [TLB21], using network calculus.

Network calculus [Cru91a, Cru91b, Cha00, LT01, BBC18] is a versatile deterministic framework
to derive worst-case per-flow performance guarantees. To that end, deterministic constraints on
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Figure 1: State-of-the-art service curves for WRR and our service curve under constrained
cross-traffic.

arrivals and service are assumed. These constraints are abstracted by so-called arrival and service
curves, respectively. While the former allows us to forego any distribution assumptions on inter-
arrival times, the latter comes with the power of scheduling abstraction [CS12]. The so-called leftover
service curve can then directly be used to calculate per-flow performance bounds. Network calculus’s
level of modularization reduces the problem of improving performance bounds to finding a larger
leftover service curve.

Several different leftover service curves for WRR have been provided in the network calculus
literature. In [BBC18, p. 200], three service curves are derived for WRR. The first one exploits
knowledge on possible packet sequences by introducing so-called packet curves [BFG12]. Since we
do not make this assumption, we only focus on the latter two. Let us assume for the moment that the
server provides a constant rate C. The least data per round for the flow of interest fi is qi := wil

min
i

and the most data for a cross-flow fj ̸=i is qj := wj l
max
j ; here lmin

i and lmax
j denote the minimum

and maximum packet size of the respective flow. One leftover service curve is a stair function that
closely models the packet scheduler’s behavior of alternating between full link speed (rate C) and
plateaus (rate 0) within a single round [BD22]; the other leftover service curve has a shifted linear
shape (with some initial latency) with traffic-agnostic residual rate qi

qi+
∑

j ̸=i qj
C that is just below

the stair (illustrated in Figure 1). For IWRR, a leftover service curve for IWRR is derived that
dominates all service curves obtained by the WRR analysis [TLB21].

The aforementioned leftover service curves do not take into account constraints on the cross-
traffic, even though it is a common case to have such constraints in application scenarios where
worst-case performance guarantees are desired. A key observation is that, given such constraints, all
cross-flows will not remain backlogged for longer time intervals. In fact, this observation has already
been used to improve performance bounds for generalized process sharing (GPS), an idealized fair
scheduler that achieves nearly perfect isolation and fairness [GM90]. It appeared in the seminal
work on GPS by Parekh and Gallagher [PG93] exploiting the feasible ordering of flows. Later, this
concept was generalized to feasible partitions [ZTK95], larger classes of arrival curves and service
curves [Cha00, pp. 68], [BL18], [BBC18, pp. 172], and in a recent publication to a larger, practically
more relevant class of fair schedulers, called bandwidth-sharing policies [Bou21]. Weighted round
robin, from a different perspective, can be interpreted as a GPS emulation. As a consequence, we
could benefit from the profound GPS results also in the WRR analysis.

In this work, under the assumption of constrained cross-flows, we provide new strict leftover
service curves for WRR and IWRR using the network calculus framework. Essentially, these are
based on mathematical proofs that WRR and IWRR are bandwidth-sharing policies. The new
service curves can lead to significantly better delay bounds compared to the state of the art. The
reason for the improvement is that the new service curves’ traffic-aware residual rate is larger than
their traffic-agnostic counterpart (see again Figure 1; of course, details follow below).

The rest of the paper is structured as follows: We provide the necessary background on network
calculus in Section 2. In Section 3, we present the state of the art on WRR and IWRR as well
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as a class of fair schedulers called bandwidth-sharing policies. In Section 4, we show that WRR
and IWRR, respectively, are bandwidth-sharing policies and derive new leftover service curves. We
provide numerical evaluations in Section 5. Section 6 concludes the paper.

2 Network Calculus Background
In this section, we present the necessary network calculus definitions and theorems as we use them
throughout this paper.

An arrival process (or input function) A(t) of a flow f cumulatively counts the number of work
units that arrive at a server in the interval [0, t). We define it as an element of F , the set of all
wide-sense increasing functions:

F =
{
f : R+ → R+ ∪ {+∞} | ∀0 ≤ s ≤ t : 0 ≤ f(s) ≤ f(t)

}
.

Moreover, we use the shorthand notation A(s, t) := A(t) − A(s). Similarly, we denote its according
departure process by D(t) ∈ F . We assume a system to be causal, i.e., no data are created at the
system: A(t) ≥ D(t) for all t ≥ 0 and write D(s, t) for D(t) − D(s). Furthermore, we assume all
systems to be lossless.

Definition 1 (Virtual Delay). The virtual delay of data arriving at a server at time t is the time
until this data would be served, assuming FIFO order of service,

d(t) := inf {τ ≥ 0 : A(t) ≤ D(t+ τ)} . (1)

In order to provide worst-case performance guarantees, we need upper bounds on arrivals and
lower bounds on the service, respectively. We start off by defining arrival curves.

Definition 2 (Arrival Curve). Given an increasing function α ∈ F . We say that α is an arrival
curve for an arrival process A if for all 0 ≤ s ≤ t

A(t)−A(s) ≤ α(t− s).

The most important example is the token bucket arrival curve γr,b(t) = b + r · t for t ≥ 0. The
parameter r denotes the rate and b the burst tolerance [LT01, p. 7].

For the service we need to introduce different notions. First, we define service curves as they
are needed to provide performance bounds. Then, we introduce a stronger notion of so-called strict
service curves, that we use for a per-flow analysis in a multi-flow system. Afterwards, we define
variable capacity nodes which are mainly used as a technical assumption.

Definition 3 (Service Curve). Consider an arrival process A traversing a server and its according
departure process D. The server offers a (minimum) service curve β to A if β ∈ F and for all t ≥ 0

D(t) ≥ A⊗ β (t) = inf
0≤s≤t

{A(t− s) + β(s)} .

We define a backlogged period such that D(τ) < A(τ) for all τ ∈ (s, t].

Definition 4 (Strict Service Curve). A server is said to offer a strict service curve β ∈ F to a flow
if, during any backlogged period (s, t],

D(s, t) ≥ β(t− s).

The most important example of service curves we employ is the rate-latency service curve
βR,T (t) := R · [t− T ]+ , where [x]

+ := max{x, 0} denotes the positive part.
We define the function C(s, t) = C(t) − C(s) as the cumulative service process of a server for

0 ≤ s ≤ t.
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Algorithm 1 Weighted Round Robin [BBC18, p. 200]
Input Integer weights w1, . . . , wn

1: while True do ▷ A round starts.
2: for i = 1 to n do
3: k ← 1;
4: while not empty(i) and k ≤ wi do
5: send(head(i));
6: removeHead(i);
7: k ← k + 1;
8: end while
9: end for

10: end while ▷ A round finishes.

Definition 5 (Variable Capacity Node). A server is a variable capacity node (VCN) if it offers
β ∈ F such that for any 0 ≤ s ≤ t

C(s, t) ≥ β(t− s).

Typical examples such as constant-rate servers belong to this class. The assumption of a VCN
is very mild, as it has been proven that it is equivalent to a strict service curve if the asymptotic
growth rate of β is finite [BBC18, pp. 222].

Under these basic concepts, we are able to derive tight performance bounds on the delay:

Theorem 6 (Delay Bound). Assume an arrival process A traversing a server. Further, let the
arrivals be constrained by arrival curve α and let the system offer a service curve β. The virtual
delay d(t) satisfies for all t

d(t) ≤ sup
t≥0
{inf {d ≥ 0 | α(t) ≤ β(t+ d)}} =: h(α, β),

where h(α, β) is the horizontal deviation between α and β.

Tight means that we can create a sample path such that the delay is equal to its delay bound.
Using network calculus, we derive per-flow performance bounds. Throughout the rest of this

paper, if not stated otherwise, our flow of interest has the index i ∈ {1, . . . , n} =: N and we call the
remaining n− 1 flows cross-traffic.

3 State-of-the-Art on (I)WRR and
Opening a Door for Improvement

In this section, we first explain the basic mechanics behind weighted round robin (WRR) and its
interleaving variant, IWRR. Next, we present the state-of-the-art for the network calculus analysis
of both, WRR and IWRR. At the end of this section, we introduce a general class of fair schedulers
called bandwidth-sharing policies and explain how we can leverage from this abstraction.

3.1 Basics on (I)WRR
We start off with plain WRR: Conceptually, the packets of a flow fi are queued in its own dedicated
queue. A flow receives one service opportunity in each round (see Algorithm 1). Each flow is
assigned a weight wi that sets the maximum number of packets that can be served in a single round.
Note that, since flow fi sends all wi packets consecutively, this may result in a considerable output
burstiness for flows with higher weights. The packet sizes are not fixed making the performance
analysis of networks with variable packet sizes significantly more challenging.

Mathematically, we assume a service guarantee for the aggregate of all flows in form of a strict
service curve or a work-conserving server which is typical in the literature [PG93,BBC18,TLB21].
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Algorithm 2 Interleaved Weighted Round Robin [TLB21]
Input Integer weights w1, . . . , wn

1: wmax ← max {w1, . . . , wn}
2: while True do ▷ A round starts.
3: for C = 1 to wmax do ▷ A cycle starts.
4: for i = 1 to n do
5: if not empty(i) and C ≤ wi then
6: send(head(i));
7: removeHead(i);
8: end if
9: end for

10: end for ▷ A cycle finishes.
11: end while ▷ A round finishes.

Obtaining a per-flow service guarantee enables us to provide respective per-flow performance guar-
antees.

The second WRR variant we consider, interleaved weighted round robin (IWRR) (see Algo-
rithm 2), mitigates plain WRR’s typical burstiness by supplementing the rounds with cycles, while
maintaining the same complexity. Instead of receiving service for a burst of wi packets in a round,
flow fi can only send one packet per cycle like any other flow which has not yet exhausted its weight
allocation in the current round. After wi rounds flow fi has to wait until other flows fj with wj > wi

finish off the round.

3.2 Network calculus analysis of (I)WRR
It was shown in the literature that if β is assumed to be a constant-rate server using WRR, then
rate-latency leftover service curves βR,T can be derived. Several publications determined the rate
term R and latency term T under WRR, such as [QLD09,GDR11,SLSF18] (for a detailed discussion,
see [TLB21]). Yet, rate-latency service curves do not yield tight results for WRR since each packet
is only served with the traffic-agnostic residual rate [TLB21]. Taking into account that a packet
is transmitted at full link speed leads to a more precise model and consequently better service
guarantees. Such a leftover service curve, which is obviously not a rate-latency function anymore, is
elegantly derived in [BBC18] for WRR (the improvement is depicted in Figure 1). We only state the
two leftover service curves that do not require specific knowledge about possible packet sequences
(so-called packet curves).

Theorem 7 (Strict Leftover Service Curves for WRR). Assume n flows arriving at a server per-
forming weighted round robin (WRR) with weights w1, . . . , wn. Let this server offer a strict service
curve β to these n flows. We define qi := wil

min
i and Qi :=

∑
j ̸=i wj l

max
j .

1. Then,
βi(t) := γ′i

(
[β(t)−Qi]

+
)
,

is a strict service curve for flow fi, where we define

γ′i(t) := β1,0 ⊗ νqi,qi+Qi
(t),

the stair function

νh,P (t) := h

⌈
t

P

⌉
for t ≥ 0, (2)

and β1,0 is a constant-rate function with slope 1.
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2. Moreover,

βi(t) :=
wil

min
i

wilmin
i +

∑
j ̸=i wj lmax

j


β(t)−

∑

j ̸=i

wj l
max
j



+

=
qi

qi +Qi
[β(t)−Qi]

+

is a strict service curve for flow fi. If β is a constant-rate server, then the residual service
curve βi is a rate-latency service curve.

Note that for packets of constant size the delay bound of Theorem 7 has been shown to be
tight [TLB21], i.e., a sample path attaining the delay bound was constructed. To be precise, only
the first part of the theorem, where each packet receives full link speed during transmission, is
actually tight since the second part only provides the traffic-agnostic residual rate. For a constant-
rate server with rate C, this rate is equal to qi

qi+Qi
C.

For IWRR, a leftover service curve has been derived in [TLB21]. Not only do the authors show
that exploiting the interleaving in the analysis can significantly improve delay bounds, they also
prove that their bound is tight. We only state the leftover service curve for IWRR.

Theorem 8 (Strict Leftover Service Curves for IWRR). Assume n flows arriving at a server per-
forming interleaved weighted round robin (IWRR) with weights w1, . . . , wn. Let this server offer a
strict service curve β to these n flows. Then,

βi(t) := γ′′i (β(t)) ,

is a strict service curve for flow fi, where

γ′′i (t) :=β1,0 ⊗ Ui (t),

Ui(t) :=

wi−1∑

k=0

νlmin
i ,Ltot

([
t− ψ

(
klmin

i

)]+)

Ltot :=qi +Qi

ψi(x) :=x+
∑

j ̸=i

Ψij

(⌊
x

lmin
i

⌋)
lmax
j

Ψij(p) :=

⌊
p

wi

⌋
wj + [wj − wi]

+ (3)

+min {(p mod wi) + 1, wj}

and the stair function νh,P (t) is defined in Equation (2) as well as qi = wil
min
i and Qi =

∑
j ̸=i wj l

max
j

again.

3.3 The case of constrained cross-traffic
Both theorems, Theorem 7 and 8, do not make any assumptions on the cross-traffic. While this
can be seen as a strength, in our work, we argue that by assuming cross-flows to be constrained,
we open the door for improvement. This can lead to significantly reduced delay bounds (see our
numerical evaluation in Section 5). This reduction comes despite the fact that we do not closely
model packet transmission at full link speed. However, as we see in the next section, since we consider
the maximum of shifted linear functions, we can often still obtain more than just the traffic-agnostic
residual rate. The central notion we employ to take knowledge on cross-flows into account is the
bandwidth-sharing policy. We start off with its definition.

Definition 9 (Bandwidth-Sharing Policy [Bou21]). A server has a bandwidth-sharing policy if there
exist positive weights ϕi > 0, i = 1, . . . , n and nonnegative number Hij ≥ 0, 1 ≤ i, j ≤ n such that

6



for a backlogged period (s, t] of flow fi it holds that

Di(s, t)

ϕi
≥ [Dj(s, t)−Hij ]

+

ϕj
, for all j ̸= i. (4)

Note that the bandwidth-sharing policy can be seen as a generalization of the resource allocation
under GPS, where the Hij would be 0. We therefore interpret it as a penalty term that is a conse-
quence of emulating the ideal fluid fair sharing of GPS by a real packet scheduler implementation.
For example, deficit round robin (DRR) has been show to be a bandwidth-sharing policy [Bou21].
For this class of schedulers, a profound result is given in the literature. It was initially derived for
GPS and then extended to schedulers which realize a bandwidth-sharing policy.

Theorem 10 (Strict Leftover Service Curves for Bandwidth-Sharing Policies). Assume n flows
arriving at a server with a bandwidth-sharing policy with positive weights ϕi > 0, i = 1, . . . , n and a
nonnegative penalty term Hij ≥ 0, 1 ≤ i, j ≤ n. Let this server be a VCN that offers a convex β to
these n flows. Let N = {1, . . . , n} and assume that each flow fi is constrained by a concave arrival
curve αi, i = 1, . . . , n. Then,

βi(t) = max
i∈M⊂N

ϕi∑
k∈M ϕk

[
β(t)−

∑

k/∈M

αk(t)−
∑

k∈M

Hik

]+

(5)

is a strict service curve for flow fi.

Proof. See Theorem 1 in [Bou21].

The number of possible sets M to optimize over, of course, potentially becomes very large for a
high number of flows: we have 2|N |−1 subsets of N containing i. Yet, we point out that any selection
of M provides a strict leftover service curve. That means, we can come up with heuristics that avoid
a combinatorial explosion by trading efficiency for the accuracy of the calculated bounds.

4 New Strict Service Curves for (Interleaved) Weighted Round
Robin

In this section, we show that WRR as well as IWRR are bandwidth-sharing policies. This insight
has the direct consequence of providing new leftover service curves which take into account arrival
constraints on the cross-flows.

Theorem 11 (WRR is a Bandwidth-Sharing Policy). Assume n flows arriving at a server per-
forming weighted round robin (WRR) with weights w1, . . . , wn. Then, WRR is a bandwidth-sharing
policy for flow fi with

ϕ′i = wil
min
i =: qi,

ϕ′j = wj l
max
j =: qj , j ̸= i

(6)

and
H ′

ij = wj l
max
j 1{i̸=j} = qj1{i ̸=j},

where 1{i ̸=j} = 1 for i ̸= j and 0, else. In other words, we have

Di(s, t)

ϕ′i
≥

[
Dj(s, t)− wj l

max
j 1{i ̸=j}

]+

ϕ′j
(7)

for any (s, t] such that flow fi is backlogged.
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Proof. Following along the lines of [BBC18, pp. 201], we consider a backlogged period of (s, t] of flow
fi and let p ∈ N denote the number of completed services of flow fi in the interval (s, t]. Constructing
the worst case, we have

Di(s, t) ≥ pwil
min
i . (8)

Moreover, this yields directly an upper bound for p ∈ N:

p ≤
⌊
Di(s, t)

wilmin
i

⌋
. (9)

On the other hand, in this interval,

Dj(s, t) ≤ (p+ 1)wj l
max
j , ∀j ̸= i. (10)

Summing the inequalities in (8) and (10) yields

Di(s, t)

wi

(8),(10)
≥ Dj(s, t)

wj
+ plmin

i − (p+ 1)lmax
j

=
Dj(s, t)

wj
− p

(
lmax
j − lmin

i

)
− lmax

j

(9)
≥Dj(s, t)

wj
−

⌊
Di(s, t)

wilmin
i

⌋ (
lmax
j − lmin

i

)
− lmax

j

≥Dj(s, t)

wj
− Di(s, t)

wi
·
lmax
j − lmin

i

lmin
i

− lmax
j .

This is equivalent to

Di(s, t)

wilmin
i

≥ 1

lmax
j

(
Dj(s, t)

wj
− lmax

j

)
=
Dj(s, t)− wj l

max
j

wj lmax
j

.

Inserting ϕ′i, ϕ′j as in Equation (6) and using that Di(s, t) ≥ 0 for all 0 ≤ s ≤ t finishes the proof.

We interpret the assignment for ϕ′i, i = 1, . . . , n in Equation (6) as the weight corrected to the
amount of data per round in the worst case from the perspective of the flow of interest.

Corollary 12 (Strict Leftover Service Curve for WRR). Assume n flows arriving at a server per-
forming weighted round robin (WRR) with weights w1, . . . , wn. Let this server be a VCN that offers
a convex β to these n flows. Let N := {1, . . . , n} and assume that each flow fi is constrained by a
concave arrival curve αi, i = 1, . . . , n. We define

Q′
M :=

∑

k∈M\{i}
wkl

max
k .

Then,

βi(t) = max
i∈M⊂N

qi
qi +Q′

M

[
β(t)−

∑

k/∈M

αk(t)−Q′
M

]+

(11)

is a strict service curve for flow fi. In the following, we call the leftover service curve βi WRR M.

Proof. The corollary is a consequence of WRR being a bandwidth sharing policy (Theorem 11)
(ϕ′i, i = 1, . . . , n and Hik constructed above) together with Theorem 10 which gives a strict service
curve for these policies.

One can easily show that if β is a constant-rate server, then βi is a rate-latency service curve for
any i ∈M ⊂ N .

Furthermore, note that Corollary 12 can be relaxed in the sense that we actually do not need all
cross-flows to be constrained by arrival curves. For these flows fk we can simply define αk(t) = ∞
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and they are going to be an element of M , i.e., they do not increase the sum
∑

k/∈M αk(t), when
maximizing over M in Equation (11). The same applies when the long-term arrival rate of fk,
limt→∞

αk(t)
t , is actually larger than the long-term server rate of β. In other words, similar to the

state of the art, we are not limited to stable systems.
Let us explain the actual gain compared to the state of the art under token-bucket constrained

arrivals and a constant-rate server with rate C. Compared to Theorem 7.2, we have now the
possibility to change the latency for M ⊊ N (

∑
k/∈M γrk,bk(t) is decreasing in M , while Q′

M is
increasing) and at the same time change the traffic-agnostic residual rate to qi

qi+Q′
M

(
C −∑

k/∈M rk
)
.

As an obvious consequence, the improvement impact is increased the more the cross-traffic can be
constrained. Additionally, Corollary 12 directly recovers Theorem 7.2. However, the relation to the
stair function in Theorem 7.1. is not as clear. In our numerical evaluation (Section 5), we show that
our leftover service curve can outperform the one in Theorem 7.1. and lead to better delay bounds.

Next, we continue with the analysis of interleaved weighted round robin. It mitigates burstiness
by employing a simple trick, namely by introducing cycles that prevents flows from sending data
consecutively. Yet, these cycles make the mathematical analysis more difficult. In this section, we
show, based on some insights presented in [TLB21], that IWRR is also a bandwidth-sharing policy.
To be precise, we show it for two different penalty terms. While one is obtained by exploiting
peculiarities of IWRR, the other is the same as for WRR. Therefore, our new strict service curve
for IWRR can only be equal or better than the one we obtained for WRR.

Theorem 13 (IWRR is a Bandwidth-Sharing Policy). Assume n flows arriving at a server per-
forming interleaved weighted round robin (IWRR) with weights w1, . . . , wn. Then,

1. IWRR is a bandwidth-sharing policy for flow fi, where

ϕ′′i = wil
min
i = qi,

ϕ′′j = (wj + wi) l
max
j = qj + wil

max
j

(12)

and
H ′′

ij =
(
[wj − wi]

+
+ 1

)
lmax
j 1{i ̸=j}.

In other words, we have

Di(s, t)

ϕ′′i
≥

[
Dj(s, t)−

(
[wj − wi]

+
+ 1

)
lmax
j 1{i ̸=j}

]+

ϕ′′j
(13)

for any (s, t] such that flow fi is backlogged.

2. IWRR is bandwidth-sharing policy with the ϕ′i, ϕ′j , H ′
ij from WRR.

Proof of 1. Let (s, t] be a backlogged period of flow fi. Again, let p ∈ N denote the number of
completed services of flow fi in the interval (s, t]. By construction, it holds that

Di(s, t) ≥ plmin
i . (14)

Note that, in comparison to WRR, we need to adjust the inequality since we have cycles in between
rounds. As a direct consequence of Equation (14), we can upper bound p ∈ N by

p ≤
⌊
Di(s, t)

lmin
i

⌋
. (15)

Moreover, by combining Lemma 4 and Lemma 6 in [TLB21], we receive

Dj (s, t) ≤ Ψij(p)l
max
j , ∀j ̸= i, (16)
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where is Ψij(p) is defined in Equation (3). Summing the inequalities in (14) and (16) yields

Di(s, t)

wi

≥Dj(s, t)

wj
− p

wi

(
lmax
j − lmin

i

)

−

(
[wj − wi]

+
+min {(p mod wi) + 1, wj}

)
lmax
j

wj

(15)
≥ Dj(s, t)

wj
−

⌊
Di(s,t)

lmin
i

⌋

wi

(
lmax
j − lmin

i

)
(17)

−

(
[wj − wi]

+
+min

{⌊
Di(s,t)

lmin
i

⌋
mod wi + 1, wj

})
lmax
j

wj

≥Dj(s, t)

wj
−

⌊
Di(s,t)

lmin
i

⌋

wi

(
lmax
j − lmin

i

)
(18)

−

(
[wj − wi]

+
+
⌊
Di(s,t)

lmin
i

⌋
+ 1

)
lmax
j

wj

≥Dj(s, t)

wj
− Di(s, t)

wi
· 1

lmin
i

(
lmax
j − lmin

i

)

− Di(s, t)

wj
·
lmax
j

lmin
i

−

(
[wj − wi]

+
+ 1

)
lmax
j

wj
.

Note that in Equation (18), we upper bounded min
{(⌊

Di(s,t)

lmin
i

⌋
mod wi

)
+ 1, wj

}
by

⌊
Di(s,t)

lmin
i

⌋
.

Above inequality is equivalent to

Di(s, t)

wilmin
i

≥ wj

wj + wi
· Dj(s, t)

wj lmax
j

− wj

wj + wi
·

(
[wj − wi]

+
+ 1

)
lmax
j

wj lmax
j

.

Replacing wi and wj with ϕ′′i and ϕ′′j , respectively, from Equation (12) yields

Di(s, t)

ϕ′′i
≥
Dj(s, t)−

(
[wj − wi]

+
+ 1

)
lmax
j

ϕ′′j
.

In the final step, we use again that Di(s, t) ≥ 0.

10
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(b) Delay bounds

Figure 2: Parameter set: weights = {4, 6, 7, 10}, lmin = {4096, 3072, 4608, 3072} bits,
lmax = {8704, 5632, 6656, 8192} bits, burst sizes = {30208, 19968, 24576, 27648} bits, arrival

rates = {0.65, 0.85, 0.95, 0.55} Mbit/s.

Proof of 2. Starting in Equation 17, we could also continue as follows:

Di(s, t)

wi

(17)
≥ Dj(s, t)

wj
−

⌊
Di(s,t)

lmin
i

⌋

wi

(
lmax
j − lmin

i

)

−

(
[wj − wi]

+
+min

{(⌊
Di(s,t)

lmin
i

⌋
mod wi

)
+ 1, wj

})
lmax
j

wj

≥Dj(s, t)

wj
−

⌊
Di(s,t)

lmin
i

⌋

wi

(
lmax
j − lmin

i

)

−

(
[wj − wi]

+
+min {wi, wj}

)
lmax
j

wj

≥Dj(s, t)

wj
− Di(s, t)

wi

(
lmax
j

lmin
i

− 1

)

−

(
[wj − wi]

+
+min {wi, wj}

)
lmax
j

wj
.

Note that it holds

[wj − wi]
+
+min {wi, wj} =

{
wj , if wi ≤ wj ,

wj , otherwise

= wj .

Above inequality is therefore equivalent to

Di(s, t)

wilmin
i

≥ Dj(s, t)− wj l
min
i

wj lmax
j

.

Replacing wi and wj with ϕ′i and ϕ′j and using that D1(s, t) ≥ 0 yields the result.

We can now formulate the leftover service curve.

11



Corollary 14 (Strict Leftover Service Curve for IWRR). Assume n flows arriving at a server
performing interleaved weighted round robin (IWRR) with weights w1, . . . , wn. Let this server be a
VCN that offers a convex β to these n flows. Let N := {1, . . . , n} and assume that each flow fi is
constrained by a concave arrival curve αi, i = 1, . . . , n. We define

Q′′
M :=

∑

k∈M\{i}
wk

((
1 +

wi

wk

)
· lmax

k

)
.

and
H ′′

ik =
(
[wk − wi]

+
+ 1

)
lmax
k 1{i̸=k}.

Then,
βi(t) = max

i∈M⊂N

{
maxβi

1,M , β
i
2,M

}
(19)

is a strict service curve for flow fi, where

βi
1,M (t)

=
qi

qi +Q′′
M


β(t)−

∑

k/∈M

αk(t)−
∑

k∈M\{i}
H ′′

ik



+

(20)

and βi
2,M is the strict leftover service curve for WRR (Equation (11)). In the following, we call the

leftover service curve βi IWRR M.

Proof. Similar to the WRR case, Theorem 13 proves that IWRR is a bandwidth sharing policy for
two different penalty terms. Theorem 10 then gives us two different strict leftover service curve.
At last, we use that the maximum of strict service curves is again a strict service curve [BBC18, p.
109]. Note that this property is actually already used in the derivation of Theorem 10.

Again, if β is a constant-rate server, then β1,M and β2,M are rate-latency service curves for any
choice of i ∈M ⊂ N .

5 Numerical Evaluation
In this section, we numerically compare our newly obtained leftover service curves under constrained
cross-traffic, WRR M (Corollary 12) and IWRR M (Corollary 14), to the state of the art in Theorem 7
(WRR) and Theorem 8 (IWRR).

We assume all flows fi to be constrained by a token bucket arrival curve γri,bi , i = 1, . . . , n. For
the service, we always assume a constant server rate C > 0 for the aggregate of flows.

In our numerical experiments, we first compare our results against the state of the art in a
literature example and then evaluate the impact of factors such as the burst sizes of cross-flows, the
(maximum and minimum) packet sizes, and the number of cross-flows. Last, we also take a look
at scenarios with larger numbers of flows in which we need to search for the optimal set M in our
leftover services curves heuristically.

5.1 Comparison to state of the art
First, let us consider the example presented in [TLB21]. We start off with a direct comparison of
the service curves. The results are given in Figure 2a.

As expected, the stair function from Theorem 7.1 always provides a larger service curve than
the rate-latency variant in Theorem 7.2. Moreover, we can also see the positive effect of the cycles
within rounds for the IWRR service curve (Theorem 8). The first new leftover service curve, WRR
M, is significantly larger due to the larger traffic-aware residual rate, except for the very start due
to a larger latency period (recalling the illustrative Figure 1 and the corresponding discussion in
the introduction). IWRR M, on the other hand, has a smaller latency period, yet the curve is then

12
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Figure 3: For the parameter description of traffic classes, we use the notation {low,mid,high, foi}:
weights = {4, 5, 6, 5}, burst sizes = {70, 700, 7000, 3000} Kbit. We use the packet lengths
lmin
i = 576 bytes, lmax

i = 1500 bytes and arrival rates = 7 Mb/s for each flow and a server
utilization = 0.7.

dominated by the larger rate qi
qi+Q′

M

(
C −∑

k/∈M rk
)

of WRR M. This observation is consistent with
our expectation, since we invoked more inequalities in the proof of IWRR being a bandwidth-sharing
policy. Therefore, it is more difficult for the IWRR M service curve to benefit from the interleaving.

Next, we continue by comparing the impact of the service curves on the delay bounds (calculated
using Theorem 6). Note that, for Theorem 7.2. and our leftover service curves in Corollary 12 and
14, we receive rate-latency functions and we can therefore apply closed-form solutions for the delay
bound [LT01, p. 24]. For the stair functions, on the other hand, calculation is more complex [BT08].
The results are depicted in Figure 2b.

As expected, the stair function for WRR leads to better delay bounds than the result with the
traffic-agnostic residual rate, while the interleaving reduces delay bounds even further. However,
most importantly, our new service curves, taking cross-traffic into account, lead to significantly
smaller delay bounds compared to all other curves. The decreasing gain over the state of the art for
higher utilizations is expected, since for high utilizations all flows tend to be backlogged most of the
time which forces the traffic-aware residual rate to get ever closer to the traffic-agnostic one.

5.2 Impact of burst sizes
It is clear that our new leftover service curves depend on the burst sizes of the cross-flows, while the
state of the art is oblivious to it and is only affected by the maximum packet sizes as well as the
weights of the cross-traffic. Therefore, in this numerical experiment we investigate this impact.

We consider three different classes of cross-traffic: low-, mid-, and high-burstiness flows in addi-
tion to the flow of interest (foi). We distribute 9 cross-flows over these 3 classes such that we start
off with a scenario of cross-traffic with low burstiness and then gradually turn it into a scenario
with high burstiness. Specifically, we denote by (nlow, nmid, nhigh) the number of flows of each “burst
class”. The results are given in Figure 3.

As expected, we observe that for (7, 1, 1), the case with the smallest cross-flow burstiness, the
gain of using this information is the largest because the latency increase in our leftover service curves
is small. In this case, the delay bounds are reduced by more than half compared to the state of the
art. Increasing the burstiness, of course, reduces this advantage. However, it stays below even in
the scenario with the highest burstiness.

5.3 Impact of packet sizes
The accuracy of all performance bounds depends on the variability of the packet sizes. In this
numerical experiment, we examine how the ratio between maximum and minimum packet size of
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Figure 4: Impact of the packet size range on the delay bounds. We choose the same parameters
setting as in the previous experiment, except for the minimum packet size lmin

i , i = 1, . . . , n.
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Figure 5: The parameter setting is the same as in Figure 3, except the number of cross-flows per
class.

the flows impacts the delay bounds. To that end, we define the packet size range (PSR) as

PSR :=
maxi=1,...,n l

max
i

mini=1,...,n lmin
i

.

In the experiment, we start off with packets of equal size, that is, a PSR of 1, and then, by decreasing
minimum packet sizes, increase the PSR. The results are displayed in Figure 4. Clearly, the delay
bounds increase when the PSR increases. However, we observe that our analysis is affected less and
the gain of our results over the state of the art increases. The likely reason is that our leftover service
curves can better compensate for the higher packet size variability using the additional degree of
freedom from the selection of flows that are assigned to the set M .

5.4 Impact of number of cross-flows
In the next experiment, we investigate the impact of the number of cross-flows. Specifically, we con-
sider again the three “burst classes” with the same number of flows in each class, yet now increasing
the number of flows per class. If k is the number of flows per class, clearly, we have 3k cross-flows
in total. The results are depicted in Figure 5. We observe that our analysis improves on the state
of the art by more than 20% across the different numbers of cross-flows.

5.5 Dealing with larger number of flows
In the previous experiment, we investigated the impact of the number of cross-flows on the delay
bounds. The total number of flows was kept relatively moderate. In fact, as briefly discussed in
Section 3.3, if we want to deal with larger number of flows, we need to take into account that
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Total number of flows Delay bound heuristic Delay bound Theorem 8
13 0.59 0.75
49 0.62 0.78
100 0.63 0.78
499 0.63 0.79
1000 0.64 0.79

Table 1: Delay bound comparison between the heuristic and the state of the art under the
parameters of Figure 3.

our leftover service curves rely on maximizing all possibly subsets M such that i ∈ M ⊂ N , i.e.,
2|N |−1 combinations. Therefore, for a large number of flows, finding the optimal M to minimize the
delay bound becomes computationally prohibitive. However, we do not have to evaluate all possible
subsets but can actually apply a search heuristic to this combinatorial problem. Here, we briefly
propose a very efficient and simple one:

• Let dM denote the delay bound of WRR M for i∈M⊂N .

• Set dopt :=∞ and Mopt := {i}.

• Sort all cross-flows in a descending order by burst size, with j being the sorted flow index.

• For j from 1 to |N | − 1
calculate dnew = min

{
dopt, dMopt∪{j}

}

if dnew < dopt

then set dopt := dnew and Mopt :=Mopt ∪ {j}.

We compare this heuristic WRR M with the state of the art with the smallest delay bounds, Theo-
rem 8 (IWRR), for large numbers of flows, again from the three classes as in previous experiments.

The results are given in Table 1. We see that our heuristic yields significantly smaller delay
bounds across the different numbers of flows. We measured a runtime of 39.3s to find the optimal
M, while the heuristic took only 4 ·10−4s. Even for the largest scenario with 1000 flows, the heuristic
completed the search in less than 29.9s.

6 Conclusion
In this paper, we have improved performance bounds of (interleaved) weighted round robin under
the assumption of constrained cross-traffic. To that end, we showed that both discussed WRR
variants are bandwidth-sharing policies. For WRR, we gained more insights by refining the flow
weights with the respective worst-case packet lengths. Consequently, we exploited this property to
derive new strict leftover service curves for (I)WRR. In a numerical evaluation, we observed that
the improvement is not only substantial, but persistent across different experiments investigating
the impact of several factors.

For future work, the extension to other round-robin schedulers and proving the bandwidth-
sharing property for stair functions are interesting research challenges. Furthermore, motivated by
the promising results, it will be very interesting to investigate systematically the heuristic optimiza-
tion of the new leftover service curves for round-robin schedulers.
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Abstract

[CNS22] derives end-to-end performance guarantees for the (interleaved) weighted round-robin
(WRR) scheduler. The main technique is based on proving that it satisfies the conditions of a
bandwidth-sharing policy [Bou21]. However, the two presented proofs are incomplete, since not
all necessary cases are considered. Yet, these remaining cases could not be proved. Therefore, the
property of a bandwidth-sharing policy could not be proved; nevertheless, we state an alternative
policy that can be used to derive performance bounds. These bounds are larger than the ones
presented in [CNS22]; yet, they are still able to outperform the state of the art, that does not
consider constrained cross-flows.

1 Why the proofs in [CNS22] are incomplete
Assume n flows arriving at a server performing either weighted round robin (WRR) or interleaved
weighted round robin (IWRR) with weights w1, . . . , wn ∈ N. We denote by lmin

i and lmax
j the minimum

and maximum packet size of the respective flow. In [CNS22], proofs are given that both, WRR and
IWRR, are bandwidth-sharing policies.

Definition 1 (Bandwidth-Sharing Policy [Bou21]). A server has a bandwidth-sharing policy if there
exist positive weights ϕi > 0, i = 1, . . . , n and nonnegative numbers Hij ≥ 0, 1 ≤ i, j ≤ n such that
for any backlogged period (s, t] of flow fi, it holds that

Di(s, t)

ϕi
≥ [Dj(s, t)−Hij ]

+

ϕj
, for all i ̸= j. (1)

Under additional assumptions on the involved arrival and aggregate service curves, it is shown in
[Bou21] that for all bandwidth-sharing policies one can derive a strict leftover service curve.

A proof for WRR is given in [CNS22]. Yet, we actually just prove it for a fixed i (of the flow of
interest) and all j ̸= i instead of all possible combinations of i, j such that i ̸= j. In other words, the
roles of i and j are not interchangeable as is required for a bandwidth-sharing policy in Inequality (1).
This interchangeability, however, is not feasible, since the proposed weights

ϕ′i = wil
min
i ,

ϕ′j = wj l
max
j , for all j ̸= i,

are asymmetric in the sense that we use the minimum packet size for the flow of interest, but the
maximum packet size for all cross-flows. Thus, this subtle difference has a large impact, as we suspect
that the condition of a bandwidth-sharing policy for all combinations of i ̸= j cannot be met unless
maximum and minimum packet sizes are equal across all flows (in this special case, the obtained
service curve for WRR in [CNS22] is correct). An analogous pitfall is also present for the case of
IWRR.

In this work, our approach is therefore to introduce a new policy that allows for asymmetric weight
assignments, but still allows for the derivation of a strict leftover service curve.
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2 Resource-Segregating Policy
In this section, we introduce the notion of a resource-segregating policy. In contrast to a bandwidth-
sharing policy, it is a policy that only needs to hold from the perspective of a fixed flow, the flow of
interest (foi). First, we show that it is a sufficient condition to derive strict leftover service curves.
Then, we show that both, WRR and IWRR, are resource-segregating policies.

Definition 2 (Resource-Segregating Policy). Let index i ∈ {1, . . . , n} be fixed. A server has a
resource-segregating policy for a flow fi, if there exist positive numbers ϕj , j = 1, . . . , n and nonneg-
ative numbers Hij , 1 ≤ i, j ≤ n such that for all j ̸= i and for any backlogged period (s, t] of flow fi,
it holds that

Di(s, t)

ϕi
≥ [Dj(s, t)−Hij ]

+

ϕj
. (2)

Observe that resource-segregating policies are a superset of bandwidth-sharing policies, since for
the former we fix the index of the flow of interest. In the following, we prove that if a server offers a
strict service curve to an aggregate of flows with a resource-segregating policy, we can derive a strict
service curve for the flow of interest. The proof is inspired by the one given for generalized processor
sharing (GPS) in [Cha00, pp. 68], but with a generalization reported in [Fid10].

Theorem 3. Let N := {1, . . . , n} and M ⊆ N arbitrary such that i ∈ M . Let a server offer a
strict service curve β to the aggregate of flows f1, . . . , fn with a resource-segregating policy for flow
of interest fi with parameters ϕj , j = 1, . . . , n and Hij , 1 ≤ i, j ≤ n that is traversed by n flows with
arrivals curves αj , j = 1, . . . , n. Then, for i ∈M ⊆ N ,

βi(t) = sup
i∈M⊆N

ϕi∑
j∈M ϕj


β(t)−

∑

j∈N\M

(
αj ⊘ βj (t)

)
−

∑

j∈M

Hij



+

(3)

is a strict service curve for flow fi, where βj is some leftover service curve for fj, j ∈ N \M .

Proof. Let the index i of the flow of interest be fixed and i ∈ M ⊆ N be arbitrary. Let (si, t] be
backlogged period of flow fi. As we have a strict service curve β for the aggregate and since (si, t] is
a backlogged period of the entire system, it holds that

∑

j∈N
Dj (si, t) ≥ β (t− si)

⇔
∑

j∈M

Dj (si, t) ≥ β (t− si)−
∑

j∈N\M
Dj (si, t) .

(4)

Thus, it follows that

∑

j∈M

ϕj


Di (si, t)

(2)
≥ ϕi

∑

j∈M

[Dj (si, t)−Hij ]
+

≥ ϕi


∑

j∈M

Dj (si, t)−
∑

j∈M

Hij




(4)
≥ ϕi


β (t− si)−

∑

j∈N\M
Dj (si, t)−

∑

j∈M

Hij


 .

(5)

Note that in the above inequality, we used that it trivially holds that

Di(s, t)

ϕi
≥ [Di(s, t)−Hij ]

+

ϕi
.

Inequality (5) is equivalent to

Di (si, t) ≥
ϕi∑

j∈M ϕj


β (t− si)−

∑

j∈N\M
Dj (si, t)−

∑

j∈M

Hij


 .

2



Moreover, for any leftover service curve βj for flow fj , we can calculate an output bound viaDj (s, t) ≤
αj⊘βj (t−s) for all 0 ≤ s ≤ t [Cha00, p. 57], [LT01, pp. 23] for all j ∈ N \M . As we have 0 ≤ si ≤ t,
this yields

Di (si, t) ≥
ϕi∑

j∈M ϕj


β (t− si)−

∑

j∈N\M

(
αj ⊘ βj (t− si)

)
−

∑

j∈M

Hij


 .

Combining this with Di (si, t) ≥ 0 and the fact that the maximum of strict service curves is again a
strict one [BBC18, p. 109] finishes the proof.

We point out that, in contrast to Corollary 12 and Corollary 14 in [CNS22] (which employ
[Bou21, Theorem 1]), the (strict) leftover service curve in Theorem 3 only assumes a strict service
curve β for the aggregate of flows (instead of a variable capacity node) and does not require the αj

to be concave nor β to be convex.
Next, we prove that both WRR and IWRR are resource-segregating policies.

Theorem 4 (WRR is a Resource-Segregating Policy). Assume n flows arriving at a server performing
weighted round robin (WRR) with weights w1, . . . , wn. Then, WRR is a resource-segregating policy
for flow fi with

ϕ′i = wil
min
i =: qi,

ϕ′j = wj l
max
j =: qj , j ̸= i,

(6)

and
H ′

ij = wj l
max
j 1{i ̸=j} = qj1{i ̸=j},

where 1{i̸=j} = 1 for i ̸= j and 0, else. In other words, we have

Di(s, t)

ϕ′i
≥

[
Dj(s, t)− wj l

max
j 1{i ̸=j}

]+

ϕ′j
(7)

for any (s, t] such that flow fi is backlogged.

Proof. The proof is (almost) the same as in [CNS22].
Following along the lines of [BBC18, pp. 201], we consider a backlogged period of (s, t] of flow fi

and let p ∈ N denote the number of completed services of flow fi in the interval (s, t] . Constructing
the worst case, we have

Di(s, t) ≥ pwil
min
i . (8)

Moreover, this yields directly an upper bound for p ∈ N:

p ≤
⌊
Di(s, t)

wilmin
i

⌋
. (9)

On the other hand, in this interval,

Dj(s, t) ≤ (p+ 1)wj l
max
j , ∀j ̸= i. (10)

Summing the inequalities in (8) and (10) for some j ̸= i yields

Di(s, t)

wi

(8),(10)
≥ Dj(s, t)

wj
+ plmin

i − (p+ 1)lmax
j

=
Dj(s, t)

wj
− p

(
lmax
j − lmin

i

)
− lmax

j

(9)
≥Dj(s, t)

wj
−

⌊
Di(s, t)

wilmin
i

⌋ (
lmax
j − lmin

i

)
− lmax

j

≥Dj(s, t)

wj
− Di(s, t)

wi
·
lmax
j − lmin

i

lmin
i

− lmax
j .

This is equivalent to

Di(s, t)

wilmin
i

≥ 1

lmax
j

(
Dj(s, t)

wj
− lmax

j

)
=
Dj(s, t)− wj l

max
j

wj lmax
j

.

Inserting ϕ′i, ϕ′j as in Equation (6) and using that Di(s, t) ≥ 0 for all 0 ≤ s ≤ t finishes the proof.
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Theorem 5 (IWRR is a Resource-Segregating Policy). Assume n flows arriving at a server perform-
ing interleaved weighted round robin (IWRR) with weights w1, . . . , wn. Then,

1. IWRR is a resource-segregating policy for flow fi, where

ϕ′′i = wil
min
i = qi,

ϕ′′j = (wj + wi) l
max
j = qj + wil

max
j

(11)

and
H ′′

ij =
(
[wj − wi]

+
+ 1

)
lmax
j 1{i ̸=j}.

In other words, we have

Di(s, t)

ϕ′′i
≥

[
Dj(s, t)−

(
[wj − wi]

+
+ 1

)
lmax
j 1{i ̸=j}

]+

ϕ′′j
(12)

for any (s, t] such that flow fi is backlogged.

2. IWRR is resource-segregating policy with the ϕ′i, ϕ′j , H ′
ij from WRR.

For the sake of conciseness, we provide a full proof of the first part and only a sketch of the second.
The proofs are (almost) the same as in [CNS22].

Proof of 1. Let (s, t] be a backlogged period of flow fi. Again, let p ∈ N denote the number of
completed services of flow fi in the interval (s, t] . By construction, it holds that

Di(s, t) ≥ plmin
i . (13)

Note that, in comparison to WRR, we need to adjust the inequality since we have cycles in between
rounds. As a direct consequence of Inequality (13), we can upper bound p ∈ N by

p ≤
⌊
Di(s, t)

lmin
i

⌋
. (14)

Moreover, by combining Lemma 4, and Lemma 6 in [TLB21], we receive

Dj (s, t) ≤ Ψij(p)l
max
j , ∀j ̸= i, (15)

where Ψij(p) is defined as

Ψij(p) :=

⌊
p

wi

⌋
wj + [wj − wi]

+
+min {(p mod wi) + 1, wj} .

Summing Inequalities (13) and (15) for some j ̸= i yields

Di(s, t)

wi

(13),(15)
≥ Dj(s, t)

wj
− p

wi

(
lmax
j − lmin

i

)
−

(
[wj − wi]

+
+min {(p mod wi) + 1, wj}

)
lmax
j

wj

(14)
≥ Dj(s, t)

wj
−

⌊
Di(s,t)

lmin
i

⌋

wi

(
lmax
j − lmin

i

)
−

(
[wj − wi]

+
+min

{⌊
Di(s,t)

lmin
i

⌋
mod wi + 1, wj

})
lmax
j

wj

(16)

≥Dj(s, t)

wj
−

⌊
Di(s,t)

lmin
i

⌋

wi

(
lmax
j − lmin

i

)
−

(
[wj − wi]

+
+

⌊
Di(s,t)

lmin
i

⌋
+ 1

)
lmax
j

wj
(17)

≥Dj(s, t)

wj
− Di(s, t)

wi
· 1

lmin
i

(
lmax
j − lmin

i

)
− Di(s, t)

wj
·
lmax
j

lmin
i

−

(
[wj − wi]

+
+ 1

)
lmax
j

wj
.
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Note that in Inequality (17), we find an upper bound on min
{(⌊

Di(s,t)

lmin
i

⌋
mod wi

)
+ 1, wj

}
by

⌊
Di(s,t)

lmin
i

⌋
+ 1. Above inequality is equivalent to

Di(s, t)

wilmin
i

≥ wj

wj + wi
· Dj(s, t)

wj lmax
j

− wj

wj + wi
·

(
[wj − wi]

+
+ 1

)
lmax
j

wj lmax
j

.

Replacing wi and wj with ϕ′′i and ϕ′′j , respectively, from Equation (11) yields

Di(s, t)

ϕ′′i
≥
Dj(s, t)−

(
[wj − wi]

+
+ 1

)
lmax
j

ϕ′′j
.

In the final step, we use again that Di(s, t) ≥ 0.

Sketch of 2. Starting in Inequality (16), we could also continue to find an upper bound on

min

{(⌊
Di(s, t)

lmin
i

⌋
mod wi

)
+ 1, wj

}

by min {wi, wj} . Applying again Equation (14) and using that

[wj − wi]
+
+min {wi, wj} = wj , (18)

the claim follows immediately.

Theorem 5 now gives us two different strict service curves by applying Theorem 3. Again, we can
take their (pointwise) maximum.

Note that, in order to derive a leftover service curve βi for the foi fi with Theorem 3, a different
“initial leftover service curve” for all cross-flows must be given. However, this is the case for WRR
and IWRR (we provide the corresponding results below). This can be used to improve the service
curve by an iterative procedure: we can use Theorem 3 to derive an improved service curve βj for
each flow fj , j ∈ N \M. The βj , in turn, can be used to derive an improved service curve for flow fi.
This technique is also used in [TBL22] for deficit round robin (DRR).

Theorem 6 (Strict Leftover Service Curves for WRR). Assume n flows arriving at a server per-
forming weighted round robin (WRR) with weights w1, . . . , wn. Let this server offer a strict service
curve β to these n flows. We define qi := wil

min
i and Qi :=

∑
j ̸=i wj l

max
j .

1. Then,
βi(t) := γ′i

(
[β(t)−Qi]

+
)
,

is a strict service curve for flow fi, where we define

γ′i(t) := β1,0 ⊗ νqi,qi+Qi
(t),

the stair function

νh,P (t) := h

⌈
t

P

⌉
for t ≥ 0, (19)

and β1,0 is a constant-rate function with slope 1.

2. Moreover,

βi(t) :=
wil

min
i

wilmin
i +

∑
j ̸=i wj lmax

j


β(t)−

∑

j ̸=i

wj l
max
j



+

=
qi

qi +Qi
[β(t)−Qi]

+

is a strict service curve for flow fi. If β is a constant-rate server, then the residual service curve
βi is a rate-latency service curve.
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Proof. See [BBC18, pp. 200].

For IWRR, we can also derive a different, initial leftover service curve.

Proposition 7 (Strict Leftover Service Curves for IWRR). Assume n flows arriving at a server
performing interleaved weighted round robin (IWRR) with weights w1, . . . , wn. Let this server offer a
strict service curve β to these n flows.

1. Then

βi(t) :=
ϕ′′i

ϕ′′i +
∑

j ̸=i ϕ
′′
j


β(t− s)−

∑

j ̸=i

(
[wj − wi]

+
+ 1

)
lmax
j




is a strict service curve for flow fi, where ϕ′′i , ϕ′′j are defined in Equation (11).

2. Moreover,

βi(t) :=
ϕ′i

ϕ′i +
∑

j ̸=i ϕ
′
j


β(t− s)−

∑

j ̸=i

wj l
max
j




is a strict service curve for flow fi, where ϕ′i, ϕ′j are defined in Equation (6).

Proof of 1. Let (s, t] be a backlogged period of flow fi. Again, let p ∈ N denote the number of
completed services of flow fi in the interval (s, t] . Again, by construction, it holds that

p
(14)
≤

⌊
Di(s, t)

lmin
i

⌋
.

Moreover, by combining Lemma 4 and Lemma 6 in [TLB21], we receive

Dj (s, t)
(15)
≤ Ψij(p)l

max
j , ∀j ̸= i,

where Ψij(p) is defined as

Ψij(p) :=

⌊
p

wi

⌋
wj + [wj − wi]

+
+min {(p mod wi) + 1, wj} .

As we assume a strict service curve for the aggregate, it holds that

β(t− s) ≤
n∑

j=1

Dj(s, t)

= Di(s, t) +
∑

j ̸=i

Dj(s, t)

≤ Di(s, t) +
∑

j ̸=i

Ψij(p)l
max
j .

Following along the lines of the proof of Theorem 5, we find an upper bound

Ψij(p)l
max
j =

(⌊
p

wi

⌋
wj + [wj − wi]

+
+min {(p mod wi) + 1, wj}

)
lmax
j

(14)
≤





⌊
Di(s,t)

lmin
i

⌋

wi

wj + [wj − wi]
+
+min

{(⌊
Di(s, t)

lmin
i

⌋
mod wi

)
+ 1, wj

}
 lmax

j

(20)

(16)
≤





⌊
Di(s,t)

lmin
i

⌋

wi

wj + [wj − wi]
+
+

⌊
Di(s, t)

lmin
i

⌋
+ 1


 lmax

j

≤
(
Di(s, t)

lmin
i

· wj

wi
+
(
[wj − wi]

+
+ 1

)
+
Di(s, t)

lmin
i

)
lmax
j

(11)
=

(
Di(s, t)

ϕ′′i
· wj + wi

Di(s, t)

ϕ′′i

)
lmax
j +

(
[wj − wi]

+
+ 1

)
lmax
j

(11)
= Di(s, t) ·

ϕ′′j
ϕ′′i

+
(
[wj − wi]

+
+ 1

)
lmax
j .

6



Therefore, we obtain

β(t− s) ≤ Di(s, t) +
∑

j ̸=i

Ψij(p)l
max
j

≤ Di(s, t)


1 +

∑

j ̸=i

ϕ′′j
ϕ′′i


+

∑

j ̸=i

(
[wj − wi]

+
+ 1

)
lmax
j .

As a consequence, we receive

Di(s, t) ≥
1

1 +
∑

j ̸=i

ϕ′′
j

ϕ′′
i


β(t− s)−

∑

j ̸=i

(
[wj − wi]

+
+ 1

)
lmax
j




=
ϕ′′i

ϕ′′i +
∑

j ̸=i ϕ
′′
j


β(t− s)−

∑

j ̸=i

(
[wj − wi]

+
+ 1

)
lmax
j


 .

Proof of 2. Starting in Inequality (20), we find the alternative upper bound

Ψij(p)l
max
j

(20)
≤





⌊
Di(s,t)

lmin
i

⌋

wi

wj + [wj − wi]
+
+min

{(⌊
Di(s, t)

lmin
i

⌋
mod wi

)
+ 1, wj

}
 lmax

j

≤





⌊
Di(s,t)

lmin
i

⌋

wi

wj + [wj − wi]
+
+min {wi, wj}


 lmax

j

=





⌊
Di(s,t)

lmin
i

⌋

wi

wj + wj


 lmax

j

≤




Di(s,t)

lmin
i

wi
wj + wj


 lmax

j

(6)
=
Di(s, t)

ϕ′i
ϕ′j + ϕ′j ,

where we used again that
[wj − wi]

+
+min {wi, wj}

(18)
= wj .

Therefore, we obtain

β(t− s) ≤ Di(s, t) +
∑

j ̸=i

Ψij(p)l
max
j

≤ Di(s, t)


1 +

∑

j ̸=i

ϕ′j
ϕ′i


+

∑

j ̸=i

ϕ′j .

As a consequence, we receive

Di(s, t) ≥
1

1 +
∑

j ̸=i

ϕ′
j

ϕ′
i


β(t− s)−

∑

j ̸=i

ϕ′j




=
ϕ′i

ϕ′i +
∑

j ̸=i ϕ
′
j


β(t− s)−

∑

j ̸=i

wj l
max
j


 .

Another option would be to use the stair function given in [TLB21, Theorem 1].
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Figure 1: Service curve. Parameter set: weights = {4, 6, 7, 10}, lmin = {4096, 3072, 4608, 3072}
bits, lmax = {8704, 5632, 6656, 8192} bits, burst sizes = {30208, 19968, 24576, 27648} bits,

arrival rates = {0.65, 0.85, 0.95, 0.55} Mbit/s, server rate C = 5 Mbit/s.

3 Numerical Evaluation
In this section, we numerically compare our newly obtained leftover service curves (Theorem 3) under
constrained cross-traffic, WRR M (Theorem 4) and IWRR M (Theorem 5), to the state of the art in
Theorem 6 (WRR) and [TLB21, Theorem 1] (IWRR). If not stated otherwise, for the initial service
curves, we choose the rate-latency service curves in Theorem 6.2 for WRR and in Proposition 7 for
IWRR. For the sake of completeness, we also present the invalid delay bounds using Corollary 12 and
Corollary 14 in [CNS22].

We assume all flows fi to be constrained by a token bucket arrival curve γrj ,bj , j = 1, . . . , n. For
the service, we always assume a constant server rate C > 0 for the aggregate of flows.

In our numerical experiments, we first compare our results against the state of the art in a literature
example and then evaluate the impact of factors such as the burst sizes of cross-flows, the (maximum
and minimum) packet sizes, and the number of cross-flows. Last, we also take a look at scenarios
with larger numbers of flows in which we need to search for the optimal set M in our leftover services
curves heuristically.

3.1 Comparison to state of the art
First, let us consider the example presented in [TLB21, Figure 3]. We start off with a direct compar-
ison of the service curves. The results are given in Figure 1.

As expected, the stair function from Theorem 6.1 always provides a larger service curve than the
rate-latency variant in Theorem 6.2. Moreover, we can also see the positive effect of the cycles within
rounds for the IWRR service curve ([TLB21, Theorem 1]). The first new leftover service curve, WRR
M, is larger due to the larger traffic-aware residual rate, except for the start due to a larger latency
period (recalling the corresponding discussion in the introduction of [CNS22]). IWRR M, on the other
hand, has a smaller latency period, yet the curve is then dominated by the larger rate of WRR M.
This observation is consistent with our expectation, since we invoked more inequalities in the proof of
IWRR being a bandwidth-segregating policy. Therefore, it is more difficult for the IWRR M service
curve to benefit from the interleaving. The invalid service curves in [CNS22], on the other hand, come
with a larger slope as they avoid the cross-flows’ burstiness increase of the output bound.

Next, we continue by comparing the impact of the service curves on the delay bounds. For the
server rate, we choose

C :=
qi +Qi

qi · u
n∑

j=1

rj ,

where i denotes the index of the flow of interest, u is defined as stabilizing utilization, and qi, Qi are
defined in Equation (6). In other words, we scale the utilization to the backlog clearing rate [PG94]
of the flow of interest. This ensures in most of our experiments that for j = 1, . . . , n, it holds that

αj ⊘ βj (t) = γrj ,bj ⊘ β qj
qj+Qj

·R,
Qj
R

(t) <∞ ∀t ≥ 0;
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(a) Delay bounds
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(b) Delay bounds iterative improvement

Figure 2: Parameter set: weights = {4, 6, 7, 10}, lmin = {4096, 3072, 4608, 3072} bits,
lmax = {8704, 5632, 6656, 8192} bits, burst sizes = {30208, 19968, 24576, 27648} bits,

arrival rates = {0.65, 0.85, 0.95, 0.55} Mbit/s.

in other words, it ensures the stability condition rj <
qj

qj+Qj
·R to hold for all flows.

Note that, for Theorem 6.2. and our leftover service curves in Theorem 4 and Theorem 5, we
receive rate-latency functions, and we can therefore apply closed-form solutions for the delay bound
[LT01, p. 24]. For the stair functions, on the other hand, calculation is more complex [BT08]. The
results are depicted in Figure 2a.

As expected, the stair function for WRR leads to better delay bounds than the result with the
traffic-agnostic residual rate, while the interleaving reduces delay bounds even further. However, most
importantly, our new service curves, taking cross-traffic into account, lead to significantly smaller delay
bounds compared to all other curves. Moreover, we also note that gap to the invalid delay bounds in
[CNS22] is barely visible, and we therefore almost recover the old result.

3.2 Impact of iterative improvement
In the previous experiments, we used Theorem 6.2 and Proposition 7, respectively, as initial service
curves. Alternatively, we can also reinsert the obtained service curve (we only a need a strict service
curve for flows fj , j = 1, . . . , n) to improve it. For the same parameter set as the previous figure, this
is depicted in Figure 2b.

We observe that for WRR M, the iterative technique is able to almost half the gap to the invalid
delay bound in [CNS22] (it took roughly five to six iterations until no significant improvement was
observed). For IWRR, on the other hand, a convergence is already noticeable after two iterations.

3.3 Impact of burst sizes
It is clear that our new leftover service curves depend on the burst sizes of the cross-flows, while the
state of the art is oblivious to it and is only affected by the maximum packet sizes as well as the
weights of the cross-traffic. Therefore, in this numerical experiment we investigate this impact.

We consider three different classes of cross-traffic: low-, mid-, and high-burstiness flows in addition
to the flow of interest (foi). We distribute 9 cross-flows over these 3 classes such that we start off with
a scenario of cross-traffic with low burstiness and then gradually turn it into a scenario with high
burstiness. Specifically, we denote by (nlow, nmid, nhigh) the number of flows of each “burst class”.
The results are given in Figure 3.

As expected, we observe that for (7, 1, 1), the case with the smallest cross-flow burstiness, the gain
of using this information is the largest because the latency increase in our leftover service curves is
small. In this case, the delay bounds are reduced by more than 75% compared to the state of the
art. Increasing the burstiness, of course, reduces this advantage. However, it stays below even in the
scenario with the highest burstiness. The bounds from Corollary 12 and Corollary 14 in [CNS22] are
slightly smaller; however, the gap is not visible in the figure.
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Figure 3: For the parameter description of traffic classes, we use the notation {low,mid,high, foi}:
weights = {4, 5, 6, 5}, burst sizes = {70, 700, 7000, 3000} Kbit. We use the packet lengths
lmin
i = 576 bytes, lmax

i = 1500 bytes and arrival rates = 7 Mb/s for each flow and a
stabilizing utilization u = 0.7.

Theorem 8.6.3 in [BBC18]

Theorem 8.6.2 in [BBC18]

Theorem 1 in [TLB21]

WRR MIWRR M

Cor. 12 in [CNS22]
Cor. 14 in [CNS22]

0.00

0.01

0.02

0.03

2.52.01.51.0

Packet size range (PSR)

D
e

la
y
 b

o
u

n
d

 [
m

s
]

Figure 4: Impact of packet size range on the delay bounds. We choose the same parameters setting
as in the previous experiment, except for the minimum packet size lmin

i , i = 1, . . . , n.

3.4 Impact of packet sizes
The accuracy of all performance bounds depends on the variability of the packet sizes. In this
numerical experiment, we examine how the ratio between maximum and minimum packet size of the
flows impacts the delay bounds. To that end, we define the packet size range (PSR) as

PSR :=
maxi=1,...,n l

max
i

mini=1,...,n lmin
i

.

In the experiment, we start off with packets of equal size, that is, a PSR of 1, and then, by decreasing
minimum packet sizes, increase the PSR. The results are displayed in Figure 4. Clearly, the delay
bounds increase when the PSR increases. However, we observe that our analysis is affected less and
the gain of our results over the state of the art increases. The likely reason is that our leftover service
curves can better compensate for the higher packet size variability using the additional degree of
freedom from the selection of flows that are assigned to the set M .

3.5 Impact of number of cross-flows
In the next experiment, we investigate the impact of the number of cross-flows. Specifically, we
consider again the three “burst classes” with the same number of flows in each class, yet now increasing
the number of flows per class. If k is the number of flows per class, clearly, we have 3k cross-flows
in total. The results are depicted in Figure 5. We observe that our analysis improves on the state of
the art by more than 50% across the different numbers of cross-flows.
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Figure 5: The parameter setting is the same as in Figure 3, except the number of cross-flows per
class.

3.6 Dealing with larger number of flows
In the previous experiment, we investigated the impact of the number of cross-flows on the delay
bounds. The total number of flows was kept relatively moderate. In fact, if we want to deal with
larger number of flows, we need to take into account that our leftover service curves rely on maximizing
all possibly subsets M such that i ∈ M ⊆ N , i.e., 2|N |−1 combinations. Therefore, for many flows,
finding the optimal M to minimize the delay bound becomes computationally prohibitive. However,
we do not have to evaluate all possible subsets but can actually apply a search heuristic to this
combinatorial problem. Here, we briefly propose a very efficient and simple one:

• Let dM denote the delay bound of WRR M for i∈M⊆N .

• Set dopt :=∞ and Mopt := {i}.

• Sort all cross-flows in descending order by burst size, with j being the sorted flow index.

• For j from 1 to |N | − 1
calculate dnew = min

{
dopt, dMopt∪{j}

}

if dnew < dopt

then set dopt := dnew and Mopt :=Mopt ∪ {j}.

• Set dopt := min {dopt, dThm. 6}, where dThm. 6 is the delay bound obtained with the service
curve in Theorem 6.

We compare this heuristic WRR M with the state of the art with the smallest delay bounds,
[TLB21, Theorem 1] (IWRR), for large numbers of flows, again from the three classes as in previous
experiments.

The results are given in Table 1. We see that our heuristic yields significantly smaller delay bounds
across the different numbers of flows. We measured a runtime of 16.47s to find the optimal M for
13 flows, while the heuristic took only 4 · 10−4s. Even for the largest scenario with 1000 flows, the
heuristic completed the search in less than 65.7s.

Table 1: Delay bound comparison between the heuristic and the state of the art under the
parameters of Figure 3.

Total number of flows Delay bound heuristic Delay bound [TLB21, Theorem 1]
13 0.032 0.085
49 0.032 0.088
100 0.032 0.089
499 0.032 0.089
1000 0.032 0.090
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4 Conclusion
In this paper, we have rectified the incomplete proofs from [CNS22]. To that end, we introduced a
new policy called resource-segregating policy. Consequently, we proved that both WRR variants are
resource-segregating policies. However, as we applied an output bound on the cross-flows, our delay
bounds are potentially more conservative. Nevertheless, our numerical evaluation indicates that our
improvement over the state-of-the-art remains substantial and persistent across different experiments.
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