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ABSTRACT
ACM Sigcomm 2006 published a paper [26] which was per-
ceived to unify the deterministic and stochastic branches
of the network calculus (abbreviated throughout as DNC
and SNC) [39]. Unfortunately, this seemingly fundamental
unification—which has raised the hope of a straightforward
transfer of all results from DNC to SNC—is invalid. To
substantiate this claim, we demonstrate that for the class of
stationary and ergodic processes, which is prevalent in traffic
modelling, the probabilistic arrival model from [26] is quasi-
deterministic, i.e., the underlying probabilities are either
zero or one. Thus, the probabilistic framework from [26] is
unable to account for statistical multiplexing gain, which is
in fact the raison d’être of packet-switched networks. Other
previous formulations of SNC can capture statistical multi-
plexing gain, yet require additional assumptions [12, 22] or
are more involved [14, 9, 28], and do not allow for a straight-
forward transfer of results from DNC. So, in essence, there
is no free lunch in this endeavor.

Our intention in this paper is to go beyond presenting a
negative result by providing a comprehensive perspective on
network calculus. To that end, we attempt to illustrate the
fundamental concepts and features of network calculus in a
systematic way, and also to rigorously clarify some key facts
as well as misconceptions. We touch in particular on the re-
lationship between linear systems, classical queueing theory,
and network calculus, and on the lingering issue of tight-
ness of network calculus bounds. We give a rigorous result
illustrating that the statistical multiplexing gain scales as
Ω(

√
N), as long as some small violations of system perfor-

mance constraints are tolerable. This demonstrates that the
network calculus can capture actual system behavior tightly
when applied carefully. Thus, we positively conclude that it
still holds promise as a valuable systematic methodology for
the performance analysis of computer and communication
systems, though the unification of DNC and SNC remains
an open, yet quite elusive task.
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1. INTRODUCTION
Queueing theory is an important theory for the perfor-

mance analysis of resource sharing systems such as commu-
nication networks. One of the success stories of queueing
theory is Erlang’s formula for the computation of the block-
ing probability that some shared resource is occupied [20];
this formula has been used for nearly a century to dimen-
sion telephone networks. Concomitantly, queueing theory
has been generalized from Erlang’s primordial single queue
model with Poisson arrivals and exponential service times
to the class of product-form queueing networks which can
account for multiple service time distributions, scheduling,
or routing (e.g., [3, 29]).

Notwithstanding the advances made in the classical branch
of queueing theory [25], which is primarily concerned with
exact models and solutions, the class of tractable queueing
networks is largely constrained by the technical assumption
of Poisson arrivals. This apparent limitation has motivated
the development of alternative theories to queueing, espe-
cially over the past three decades witnessing a rapid growth
of high-speed data networks. The relevance of the emerging
theories, especially for the Internet community, has become
evident with the discovery that Internet traffic is fundamen-
tally different from Poisson [32, 40]. Moreover, as it became
clear that improper traffic models can lead to bogus results,
the necessity to overcome the Poisson assumption limitation
has reached a wide consensus.

One of the alternatives to the classical queueing theory
is the network calculus. This was conceived by Cruz [16]
in the early 1990s in a deterministic framework, and ex-
tended soon after by Chang [11], Kurose [30], and Yaron and
Sidi [49] in a probabilistic or stochastic framework. Subse-
quently, many researchers have contributed to both formu-
lations of the network calculus (see the books of Chang [12],
Le Boudec and Thiran [5], and Jiang [28]). While DNC
was motivated by the need for a theory to compute deter-
ministic (worst-case) bounds on performance metrics, the
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raison d’être of SNC was to additionally capture statistical
multiplexing gain when some violations of the determinis-
tic bounds are tolerable. This feature enables a much more
efficient dimensioning of resource sharing systems, such as
packet-switched networks, and continues to play a pivotal
role in the evolution of SNC.

The promise of the combined branches of network calcu-
lus is to jointly overcome the technical barriers of queueing
networks on all fronts. Achieving this rather daunting task
is enabled by two key features:

• Scheduling abstraction. At a single queue with mul-
tiplexed arrival flows, the specific properties of many
scheduling algorithms, and also of many arrival classes,
can be abstracted away by suitably constructing the
so-called service processes (technical details are de-
ferred to Section 3).

• Convolution-form networks. The service processes from
single queues can be convolved across a network of
queues, and thus a multi-node network analysis can
be drastically simplified by reducing it to a single-node
analysis.

Equipped with these two features, the network calculus
can analyze many scheduling algorithms and arrival classes,
over a multi-node network, in a uniform manner. That
means that the Poisson model, in particular, plays no spe-
cial role anymore in facilitating the analytical tractability
of a whole network. Compared to classical queueing theory,
which separately analyzes various combinations of arrivals
and scheduling, network calculus conceivably offers a much
more simplified and uniform framework. For this reason, the
network calculus has been applied in many recent areas such
as IntServ [6], switched Ethernets [44], systems-on-chip [10],
avionic networks [41], the smart grid [48], etc.

This versatile applicability, however, is only possible at
the expense of providing bounds on performance metrics.
The bounds are a manifestation of resorting to inequali-
ties, whenever exact derivations become intractable. The
tightness of the bounds is certainly a major concern, since
loose bounds may be more misleading than wrongly fitted
Poisson models. The tightness issue has several dimen-
sions depending on the nature of the bounds (determinis-
tic or probabilistic) or the number of flows/queues. Deter-
ministic bounds are generally tight for single queues ([5],
p. 27), but can be very loose in some queueing networks
with arbitrary multiplexing [43]. Moreover, the determinis-
tic bounds can be very inefficient for network dimensioning
when some violation probabilities are tolerable (e.g., running
IntServ for many flows could result in very low network uti-
lization). Probabilistic bounds are generally asymptotically
tight (in terms of scaling laws in the number of queues) [8,
34], whereas numerical tightness ranges from reasonable [13]
to quite loose [34], depending on the arrival model.

In this paper we touch on the lingering issue of tight-
ness, as part of a broader perspective on network calculus.
Concretely, we address the asymptotic tightness of proba-
bilistic bounds, in the number of flows N , and demonstrate
that such bounds improve upon corresponding determinis-

tic bounds by a factor of Ω
(√

N
)
. That means that, e.g.,

implementing a probabilistic extension of IntServ could sig-
nificantly increase the network utilization. Our result not
only rigorously reveals the magnitude of the statistical mul-

tiplexing gain achieved with SNC, but clearly highlights the
fundamental advantage of SNC over DNC.

Our broader goal is to deliver an intuitive and yet com-
prehensive perspective of the two core concepts in network
calculus, i.e., service and envelope processes, by focusing on
subtleties and raising awareness of inherent pitfalls. Along
the discussion we attempt to make a suggestive statement
that there is no free lunch in the framework of the network
calculus, yet it brings good value as a companion/alternative
to the classical queueing theory. This perspective is moti-
vated by a large effort in the literature to develop SNC for-
mulations which reproduce in particular the ‘convolution-
form networks’ feature from DNC. Arguably the simplest
of such formulations has appeared in a Sigcomm 2006 pa-
per [26], and has since raised the hope that DNC results can
be transferred into SNC in a straightforward manner. Un-
fortunately, the formulation from [26] is based on a quasi-
deterministic arrival model1, which roughly means that the
proposed SNC cannot capture statistical multiplexing gain.
We believe that exposing this pitfall, through a rigorous
analysis, is essential to the comprehensive understanding of
SNC arrival models.

After introducing notations, the rest of the paper is struc-
tured as follows. In Section 3 we provide a comprehensive
perspective on service processes by making a multilateral
analogy of network calculus with linear systems and classi-
cal queueing theory. In Section 4 we present representative
envelope processes and elaborate on the quasi-deterministic
aspects of the one from [26]. In Section 5 we lead together
envelope and service processes in order to shed some light
on the often raised concern about the tightness of network
calculus bounds. We conclude the paper in Section 6.

2. NOTATIONS
The time model is discrete starting from zero. The time

indices are denoted by the symbols i, k, n. The cumula-
tive arrivals and departures at/from a (queueing) node up
to time n are denoted by non-decreasing processes A(n)
and D(n). The doubly-indexed extensions are A(k, n) =
A(n) − A(k) and D(k, n) = D(n) − D(k). The associ-
ated instantaneous arrival and departure processes are an =
A(n− 1, n) and dn = D(n − 1, n), respectively; by conven-
tion, a0 = d0 = A(0) = D(0) = 0. The vector represen-
tations are A = (A(0), A(1), . . . ) and a = (a0, a1, . . . ) for
the arrivals, and D = (D(0), D(1), . . . ) and d = (d0, d1, . . . )
for the departures. These processes have primarily a spatial
interpretation, e.g., an quantifies the number of data units
(referred to as bits throughout) arrived at time n; with abuse
of notation, a and d will also have a temporal meaning to
be made locally clear.

The sets of natural, integer, real, and positive real num-
bers are denoted by N, Z, R, and R+, respectively; their re-
striction to non-zero numbers are denoted by N

∗, Z∗, R∗, and
R

∗
+. The integer part of a number x ∈ R is denoted by �x�.

For x ∈ R, the positive part is denoted by [x]+ = max {x, 0}.
For some boolean expression E, the indicator function is de-
noted by 1E and takes the values 1 or 0 depending whether
E is true or false, respectively.

1The authors of [9] also point out the quasi-determinism
issue in [26], but for a service model and without proof; as a
further side remark, we have ourselves experienced a similar
quasi-determinism pitfall in SNC [42].
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For two functions f, g : N → R, the (min,+) convolution
operator ‘∗’ is defined as

f ∗ g(n) := min
0≤k≤n

{f(k) + g(n− k)} ∀n ≥ 0 .

If the function g is bivariate, i.e., g : N × N → R, then
f ∗ g(n) := min0≤k≤n {f(k) + g(k, n)} ∀n ≥ 0.

3. SERVICE PROCESSES
Network calculus operates by reducing a ‘complex’ non-

linear (queueing) system into a ‘somewhat looking’ linear
system. Because the reduced system is often analytically
tractable—linearity conceivably implies simplicity—network
calculus is regarded as an attractive approach to analyze
complex queueing systems. In this section we elaborate on
this key reduction operation by exploring conceptual simi-
larities with the more traditional linear system and queueing
theories, as well as on its main diverging point from the two.
The final goal is to highlight the emergence of the concept of
a service process, which is instrumental for abstracting away
some of the technical challenges characteristic of non-linear
systems.

The ‘complex’ system is a node, or a network of nodes,
in which bits arrive and depart according to various fac-
tors such as probability distributions for arrival processes,
scheduling, routing, etc. A fundamental networking and
queueing problem which is at the core of the philosophy
of network calculus is the following:

System Identification (SI) Problem: Is it possible to
characterize a random process (the departures) based on
another random process (the arrivals) while accounting for
yet another random process determined by other arrivals,
scheduling, routing, etc. (the noise)?

To answer, let us formalize the system by an operator
(a.k.a. filter)

T : F → F , T (a) = d ,

where F is the set of discrete-time sequences, i.e., F =
{a = (a0, a1, . . . ) : ai ∈ N}. The physical interpretation of
T is that it takes a = (a0, a1, . . . ) as input, it accounts for
the noise, and outputs d = (d0, d1, . . . ). The sequences a
and d have two networking interpretations, depending on
the type of information they quantify:

1. Spatial quantification (SQ): an and dn quantify the
number of bits which arrive and depart from the net-
work system at time n.

2. Temporal quantification (TQ): an and dn quantify the
arrival and departure times of the nth bit.

The SI problem requires thus the construction of T such
that for any input a, the output d can be completely de-
termined as d = T (a). The problem is difficult not only
because all inputs must be accounted for by a single expres-
sion of T , but also because T should account for noise and
its correlations with output and possibly input as well.

The next two sections, 3.1 and 3.2, present two partial
solutions for the SI problem by exploiting key properties
from linear system and queueing theories, respectively. Then
Section 3.3 combines the ideas from these partial solutions
into a more general, though approximative solution.

3.1 Linear System Theory
The SI problem has a direct correspondent in linear sys-

tem theory [31]. Assume that T is linear and time-invariant
(LTI), i.e.,

{
T (c1a1 + c2a2) = c1T (a1) + c2T (a2)
T
(
a(−k)

)
= T (a)(−k)

(1)

for all signals a,a1,a2, scalars c1, c2, and integers k. Here
we tacitly assume ‘signal’ interpretations of the input and
output sequences, and also their extension to doubly infi-
nite sequences such that the shifted version a(−k) of a, i.e.,
a(−k)n := an−k ∀n, k ∈ Z, is well defined. Define the Kro-
necker input signal u (also called impulse signal) and its
corresponding output signal v (also called impulse-response)

un =

{
0 , n 
= 0
1 , n = 0

, v = T (u) . (2)

The impulse signal u is (technically) motivated by the con-
volution property an =

∑
k
akun−k ∀a, n.

With these assumptions, it can be shown that for any
input signal a, the corresponding output signal d can be
completely determined by the following convolution

dn =

∞∑
k=−∞

akvn−k ∀n ∈ Z . (3)

This result is central in linear system theory, as it simply
solves for T . This solution for the SI problem, however,
relies on the strong LTI assumption from Eq. (1).

3.2 Queueing Theory and (min,+) vs. (max,+)
Algebras

Here we present another solution for the SI problem by
inspecting basic queueing properties in a simplified scenario.
First, let us readopt one of the networking interpretations
of the sequences a and d.

Consider a single work-conserving server (node) with ca-
pacity C and unlimited queueing (buffering) space; all ar-
rivals have the same size of one bit. The construction of the
operator T , that completely determines d = T (a) ∀a ∈ F ,
follows directly from basic queueing dynamics, and is almost
analogous to the one from Eq. (3). Under SQ, the output
sequence d is determined by

d1 + d2 + · · ·+ dn = min
0≤i≤n

{a1 + · · ·+ ai + C(n− i)} ,

for all n ≥ 1. It is convenient to represent the partial sums
by considering the input and output (cumulative) sequences
A = (A(0), A(1), . . . ) and D = (D(0), D(1), . . . ), where
A(n) = a1 + · · · + an, D(n) = d1 + · · · + dn ∀n ≥ 1, and
A(0) = D(0) = 0. With these notations, the operator T
satisfies D = T (A), where

D(n) = min {nC,A(1) + (n− 1)C, . . . , A(n)}
= min

0≤k≤n
{A(k) + (n− k)C} ∀n ∈ N . (4)

In turn, under TQ, d is determined by

dn = max

{
a1 +

n

C
, a2 +

n− 1

C
, . . . , an +

1

C

}

= max
1≤i≤n

{
ai +

n− i+ 1

C

}
∀n ∈ N . (5)
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These equations are fundamental elementary identities in
queueing theory.

The operations from Eqs. (4) and (5) on input sequences
resemble much with the convolution operation from Eq. (3),
except for the underlying algebra. Concretely, while Eq. (3)
is formed according to the traditional convolution involving
the addition of products, Eqs. (4) and (5) are formed by
minimizing and maximizing, respectively, sums. For this
reason, it is said that the operator T operates in a (min,+)
algebra in Eq. (4), and in a (max,+) algebra in Eq. (5).

We have thus presented another complete characterization
of T . What makes this second solution partial as well is that
the considered queueing system is noiseless, i.e., it assumes
a constant-rate server, no scheduling, etc.

3.3 Emergence of the Service Process Concept
We now combine the ideas from the previous two subsec-

tions in order to present a much more general solution for the
SI problem, and concomitantly to highlight the emergence
of one of the key modelling concepts in network calculus:
the service process.

We tailor the SI problem, for some general queueing sys-
tem, in terms of an unknown operator

T : F → F , T (A) = D , (6)

where A and D have the interpretations from the previous
subsection, i.e., cumulative sequences counting bits. Recall
that T has to be constructed in such a way that it completely
determines the output D for any input A.

Inspired from the previous two subsections, it is intuitive
to reproduce the steps for the construction of an impulse-
response from Section 3.1, but in the modified (min,+) al-
gebra which was shown to be appropriate, in Section 3.2,
to represent input-output relationships in queueing systems.
This approach could be viewed as a merge between linear
system theory and queueing theory.

As in Section 3.1, we first enforce an LTI assumption on
T by reproducing Eq. (1) in the (min,+) algebra:⎧⎨

⎩
T (min {c1 +A1, c2 +A2})

= min {c1 + T (A1) , c2 + T (A2)}
T
(
A(−k)

)
= T (A)(−k)

, (7)

for all sequences A,A1,A2, scalars c1, c2, and shifts k ∈ Z

(whether such an apparently strong assumption holds for
typical queueing systems will be clarified in two follow-up
examples). The second step is to define the analogue of
the Kronecker impulse signal and its shifted version in the
(min,+) algebra, i.e.,

δ(n) =

{
0 , n = 0
∞ , n 
= 0

, δ−k(n) = δ(n− k), ∀ n, k ∈ Z .

(8)
Similarly to the Kronecker impulse signal, the newly defined
impulse sequence δ is motivated by the fact that any input
sequence A can be expressed as the (min,+) convolution of
itself with the impulse function, i.e.,

A = A ∗ δ, or, equivalently,

A(n) = min
0≤k≤n

{A(k) + δ(n− k)} ∀n ∈ N .

When the input to the system is the impulse δ, define the
corresponding output as the impulse-response

S = T (δ) . (9)

Under the assumption that T is (min,+) LTI (in the sense
of Eq. (7)), it follows from the (min,+) linear system theory
(see [5], p. 136, or [2], p. 276) that for any input sequence
A the corresponding output sequence D satisfies

D(n) = min
0≤k≤n

{A(k) + S(n− k)} , (10)

where S = T (δ) is the impulse-response. Therefore, the un-
known operator T is now fully characterized: for any input
sequence A, the corresponding output is T (A) = A ∗ S.

Note that despite the cyclic dependence between T and
S, i.e., T (A) = A ∗ S and S = T (δ), T is well-defined. The
reason is that the impulse-response S, which induces the
cyclic dependence, has a well defined physical meaning as
the system’s output for the input δ.

The key observation to make, however, is that T is yet
another partial solution for the SI problem, due to the un-
derlying LTI assumption from Eq. (7). In the following we
present two queueing examples which show that, in spite
of the fact that many queueing systems are generally not
(min,+) linear, the unknown operator T , and thus a solu-
tion for the SI problem, can be constructed in great gener-
ality. Since there is no free lunch, this promising increase in
generality is only possible at an inevitable price: sacrificing
exactness, or, more concretely, replacing the equality from
Eq. (6) by an inequality, i.e., D ≥ T (A).

3.3.1 Example 1
Consider the (noiseless) queueing system from Figure 1.(a)

(see next page) and recall the relationship from Eq. (4) be-
tween departures and arrivals. Fitting this relationship with
Eq. (10) yields S(n) = nC ∀n ∈ N. As mentioned, S has also
the physical interpretation of the cumulative output from
the queue when the input is the impulse δ from Eq. (8).

This example, although repetitive, is meant to illustrate
the (almost perfect) analogy in the arguments used in Sec-
tions 3.1 and 3.2. Concretely, it is apparent that there is a
match between the construction of S from 1) the (min,+)
linear system theory (as in Eqs. (9) and (10)), and 2) ele-
mentary queueing properties (as in Eq. (4)). The missing
element for a perfect analogy is that the queueing system
is (min,+) LTI under an artificial interpretation of the re-
quired ‘plus’ property T (c + A) = c + T (A) from Eq. (7):
the addition of scalars c occurs, both in the input and out-
put, before the queueing system actually starts. This is
clearly an inconvenient physical system interpretation, but
it enables the view of a constant-rate queueing server as a
(min,+) LTI system. As a side remark, the physically more
meaningful interpretation of the ‘plus’ property as a burst
of c bits at time zero has the negative consequence that any
system of practical interest, in particular the constant-rate
work-conserving server, would be (min,+) non-linear. This
can be seen by a result in ([5], Proposition 8.3.1) on a system
with non-empty initial buffer clearly exhibiting a (min,+)
non-linear behavior.

3.3.2 Example 2
Making an analogy between (min,+) LTI systems and el-

ementary queueing properties is even more compounded for
the FIFO queueing system from Figure 1.(b), which includes
noise in the form of cross-traffic. The reason is that this
queueing system is not anymore (min,+) linear, even under
the artificial interpretation of the ‘plus’ operation. First,
the ‘min’ property T (min {A1,A2}) = min {T (A1), T (A2)}
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C
A D

(a) No multiplexing

DcAc

CA D

(b) Multiplexing

Figure 1: Two queueing systems from the perspec-
tive of flow A: in (a) the flow is isolated, in (b) the
flow shares the queue with another (cross) flow Ac

fails; a quick example is C = 3, Ac(t) = (0, 1, 3, 4), A1(t) =
(0, 3, 4, 6), and A2(t) = (0, 1, 7, 10). Second, the time in-
variance property fails as well; a quick example is C = 1,
A = (0, 1, . . . ), Ac = (0, 1, 3, . . . ), and the right shift k = 2.
Because the queueing system is not (min,+) LTI, one can-
not follow the construction of the impulse-response sequence
S in order to exactly characterize the queueing system as in
Eq. (10).

At this apparent impasse, the network calculus slightly
diverges from LTI systems and queueing theory. The key
idea is to transform the non-linear queueing system into a
‘somewhat looking’ linear system. The actual transforma-
tion occurs by directly constructing a ‘somewhat analogous’
impulse-response S (a.k.a. service process) [1] satisfying

D ≥ A ∗ S ∀A . (11)

Therefore, instead of exactly characterizing the system as in
Eq. (6), the network calculus makes the crucial concession
of inexactly characterizing the system by resorting to an in-
equality, as in Eq. (11). For the FIFO multiplexing example,
one choice of a service process S is the bivariate random
process Si(k, n) = [C(n− k)− Ac(k, n− i)]+ 1{n−k>i}, for
some i ≥ 0 [18], which satisfies

D(n) ≥ min
0≤k≤n

{A(k) + Si(k, n)} ∀A, n ∈ N . (12)

Except for the inequality, this characterization resembles
much with both Eq. (10) (from (min,+) LTI systems the-
ory) and Eq. (4) (from queueing theory). Note, however,
the non-trivial expression of Si(k, n) stemming from non-
trivial characteristics of FIFO multiplexing. In particular,
the bivariate form is due to the lack of time invariance.

The FIFO multiplexing example reflects a fundamental
tradeoff in network calculus. On one hand, as queueing sys-
tems are generally neither linear nor time invariant, network
calculus resorts to inequalities for their characterization, as
in Eqs. (11) or (12). On the other hand, the service pro-
cesses S ought to be reasonably concise and also provide
tight bounds in Eq. (11); otherwise, they may render a cum-
bersome analysis (see, e.g., [33] for the above choice of S)
or simply arbitrarily loose bounds. Constructing such ‘nice’
service processes for existing scheduling algorithms is a key
challenge in network calculus; see [36] for some state-of-the-
art examples of service processes concerning Δ-scheduling,
which generalizes FIFO, static priority, and earliest deadline
first (EDF).

Nevertheless, the underlying methodology of constructing
service processes to abstract away the details of schedul-
ing algorithms, in queueing scenarios with many flows, ren-
ders two central features of network calculus: scheduling ab-
straction and convolution-form networks. With the former,
many classes of scheduling policies and arrival processes are
amenable to a uniform analysis. In other words, once ser-

vice processes are suitably constructed, the network calculus
analysis does not conceptually differentiate between, e.g.,
FIFO and EDF policies, or Poisson and Markov arrival pro-
cesses, for the purpose of computing per-flow (or per-class)
performance metrics. With the latter feature, the multi-
node queueing analysis is drastically simplified. Concretely,
once service processes Si are constructed at each node along
a network path, the entire network analysis can be reduced
to the analysis of a single-node, which is characterized by
the following service process

S = S1 ∗ S2 ∗ . . . ∗ Sn
, (13)

i.e., the convolution of the service processes along the net-
work path. What makes this reduction particularly appeal-
ing is that the multi-node performance bounds obtained in
this manner are asymptotically tight in the number of nodes
(see, e.g., [14, 22]).

In conclusion, network calculus provides a methodology to
solve the SI problem by transforming a non-linear system
(subject to various arrivals, scheduling, or multi-node) into
a ‘somewhat looking’ linear system which is amenable to
a quite straightforward analysis. The key challenge is the
transformation itself, i.e., the construction of ‘nice’ service
processes.

Most of the interpretations on network calculus illustrated
in this section appear in the literature in isolation: for the
analogy with linear systems see [19, 12, 5], for the anal-
ogy with queueing theory see [27], for a discussion on the
non-linearity of FIFO systems see [35]. For a comprehensive
survey of service processes we refer to [23]. Our contribu-
tion herein was to present a comprehensive perspective on
the emergence and central role of service processes in net-
work calculus, by weaving together linear systems, queueing
theory, and network calculus.

4. ENVELOPE PROCESSES
We now shift the discussion to the other fundamental con-

cept in network calculus: envelope processes. While their
role is to model a very broad class of arrival processes,
achieving this generality comes at the price of sacrificing
exactness in the arrivals’ representation. The goal of this
section is to highlight the key aspects of envelope processes;
it is not meant to provide a review of the types of envelopes,
for which we refer to [37].

A (cumulative) arrival process A(n) is typically described
by either a complementary cumulative distribution function
(CCDF) or a moment generation function (MGF), i.e.,

FA(n)(σ) := P

(
A(n) > σ

)
, MA(n)(θ) := E

[
e
θA(n)

]
,

respectively, for all n ∈ N, σ ∈ R, and θ ∈ Θ, where Θ is
some space over R. The two descriptions silently assume
that A(n) is a stationary random process, which means that
the CCDF is invariant under time shift.

The existence of the MGF is equivalent to an exponen-
tially bounded CCDF, in which case the CCDF uniquely
determines the MGF according to the identity relating ex-
pectations and tails, i.e., E[X] =

∫∞
0

P(X > x)dx for posi-
tive random variable (r.v.) X. Conversely, in the case when
Θ is an open interval including zero, the MGF uniquely
determines the CCDF according to analytic function the-
ory ([21], p. 274). Throughout we consider arrival processes
which have an MGF.
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Let us consider the following example of a compound
Bernoulli arrival process

A(n) =
n∑

k=1

Xk ∀n ∈ N , (14)

where Xk’s are i.i.d. Bernoulli(p) r.v.’s taking the values
1 and 0 with probabilities p and 1 − p, respectively. The
simplicity of A(n) will enable the illustration of some key
insights in an intuitive and yet rigorous manner. The corre-
sponding expressions for the CCDF and MGF are

FA(n)(σ) =

{
1, σ < 0∑n

k=�σ�+1

(
n

k

)
pk(1− p)n−k, σ ≥ 0

MA(n)(θ) = eθrn
,

(15)

where r =
log(peθ+1−p)

θ
is a rate and θ ∈ R

∗
+.

Although the process A(n) is fully described, the network
calculus provides more ‘flexibility’ by offering further mod-
elling alternatives depending on two factors:

1. type of analysis: deterministic (a.k.a. worst-case) or
probabilistic. The former seeks to yield statements like
“The (queueing) delay is smaller than some number.”
The latter seeks statements like “The delay is smaller
than some number with some probability.”

2. tradeoff between accuracy and elegance of the analysis
itself.

For instance, in the case of a deterministic analysis, one
must resort to deterministic models to (partially) suppress
the uncertainty of arrivals. The suppression process occurs
by replacing random processes with deterministic functions,
which are referred to as deterministic envelopes (see Sec-
tion 4.2). In turn, in the case of a probabilistic analysis, one
can carry on with probabilistic arrival models, like CCDF
or MGF, throughout the analysis.

A word of caution is in place regarding carrying on with
exact probabilistic arrival models, like CCDF or MGF. Al-
though they can lend themselves to tight (or possibly exact)
bounds on performance metrics, the obtained results and
the analysis itself may lack elegance and insight. The CCDF
from Eq. (15) conceivably lends itself to quite a messy anal-
ysis. As another example, the very broad class of Markov
arrival processes can be modelled by an exact MGF expres-
sion, as a weighted hyperexponential (see, e.g., [15])

MA(n)(θ) =

L∑
l=1

wle
θrln (16)

with L terms, where
∑

wl = 1 and rl’s are rates. Carrying
on with the entire sum of exponentials can be very cumber-
some, and also prone to numerical problems, especially when
L is large. Often, a much simplified arrival model consist-
ing of an MGF bound with very few (one or two) dominant
exponentials is sufficient with only a negligible loss in tight-
ness. MGF or CCDF bounds are even more appropriate
when exact expressions are difficult to derive.

This bounding approach is instrumental to the philosophy
of network calculus concerning the modelling of arrival pro-
cesses. On one hand, it significantly widens the modelling
scope of arrivals. On the other hand, it lends itself to an
elegant analysis, not only in the sense of carrying out con-
cise formulas, but also in the sense that the final formulas

may be amenable to, e.g., convex optimizations encountered
in dimensioning problems. For the rest of this section we
present some key arrival models in network calculus. The
goal of the presentation is to give insight on the issue of
‘What are suitable bounding models for arrival processes?’.

4.1 A Pitfall: The Simplest Arrival Bound
Perhaps the most tempting bound for an arrival process

A(n) is the following

A(n) ≤ G(n) ∀n ∈ N , (17)

where G(n) is a non-random function. It is important to
remark that for every time n, the model bounds a r.v., i.e.,
A(n), by a non-random number, i.e., G(n). As an exam-
ple, if A(n) is the compound Bernoulli arrival process from
Eq. (14), then any function G(n) satisfying G(n) ≥ n would
fit Eq. (17); note that G(n) = n would be the tightest achiev-
able deterministic bound. As another example, if A(n) is a
(discretized) Poisson process, or any random process taking
arbitrarily large values with non-zero probabilities, then no
bounded function G(n) would fit Eq. (17).

The actual drawback of the bounding model from Eq. (17)
does not stand in its apparent weak modelling power, but
rather in its incompleteness for computing performance mea-
sures, e.g., the queueing backlog. Let us reconsider the
queueing scenario from Figure 1.(a). The backlog process
Bn is defined as

Bn = A(n)−D(n) ,

i.e., the amount of bits in the system at time n. Recalling
the expression for D(n) from Eq. (4), one may immediately
derive Reich’s equation:

Bn = max
0≤k≤n

{A(k, n) − C(n− k)} . (18)

This equation clearly indicates that the bounding model
from Eq. (17) is insufficient to get a non-degenerate bound
on the backlog process. That is because a bound on A(n)
does not necessarily induce a bound on A(k, n), which is
what is actually needed. For a quick example, take the
arrival process A = (0, 0, 20) and G(n) = 10n; clearly,
A(n) ≤ G(n) but A(1, 2) = 20 > 10 = G(1). A more in-
tuitive argument is that the backlog process depends on the
entire history of the process, and relative to any time point,
whereas Eq. (17) only captures the process relative to the
origin.

Let us next make an additional stationarity assumption
on A(n). Then, if a deterministic computation of queueing
measures was the goal, the model from Eq. (17) would re-
main insufficient; in fact, the model would only be sufficient
for constant-rate arrivals. However, if a probabilistic com-
putation was the goal, then the model from Eq. (17) could
become useful. Indeed, a computation of the backlog tail
would be for instance

P (Bn > σ) = P

(
max

0≤k≤n
{A(k, n)− C(n− k)} > σ

)

≤
n∑

k=0

P (A(k, n)− C(n− k) > σ) . (19)

The last line follows from Boole’s inequality2. As a side
remark, we point out that this apparently loose inequality is
2For some probability events E and F , Boole’s inequality is
P (E ∪ F ) ≤ P(E) + P(F ).

316



not so bad if the r.v.’s Xk := A(k, n) are rather uncorrelated
(e.g., when A(n) is a (discretized) Poisson process), but it
is quite loose if they are highly correlated [46]. In such a
case one can make use of more sophisticated techniques with
refined martingale inequalities (see [12], pp. 339-343). For
the purpose of our presentation it is sufficient to adopt the
simplified technique with Boole’s inequality.

Due to the stationarity assumption, the last line can be
continued by replacing A(k, n) with A(n − k), and further
by G(n − k) according to the bounding arrival model from
Eq. (17). Note however that G(n) should be defined as a ran-
dom process, and the inequality from Eq. (17) should hold
a.s. (almost surely, i.e., P (A(n) < G(n)) = 0). Otherwise, if
G(n) was a non-random function, then the previous deriva-
tion would be quasi-deterministic since all the probabilities
would evaluate either to 0 or 1.

4.2 Classic Deterministic Arrival Model
The previous pitfall indicates that, in general, it is not suf-

ficient to bound arrivals on all intervals (0, n) but rather on
all intervals (k, n). This observation suggests the following
bounding arrival model

A(k, n) ≤ G(n− k) ∀0 ≤ k ≤ n , (20)

where G(n) is a non-random function. Network calculus was
essentially founded on this arrival model [16].

With this arrival model, the deterministic continuation of
Eq. (18) is straightforward:

Bn ≤ max
0≤k≤n

{G(k)− Ck} . (21)

The RHS term can be computed explicitly in O(1) time if
G(n) is a sufficiently ‘nice’ expression, e.g., G(n) = rn + b
where r and b have the meanings of rate, and burst, respec-
tively. Otherwise, if G(n) is given pointwise, then the RHS
term can be computed in O(n) time.

We emphasize that there is no requirement of stationarity
on the arrival process A(n). In fact, the regularity constraint
from Eq. (20) is satisfied by infinitely many (and possibly
unknown) arrival processes, thus illustrating the high mod-
elling potential of Eq. (20). Moreover, despite the apparent
tradeoff between modelling potential and accuracy of repre-
sentation, the derivation from Eq. (21) is actually tight ([5],
p. 27). Tightness means that there exists an arrival process
which 1) satisfies the arrival bound from Eq. (20), and 2)
induces a backlog process which matches with the predicted
bound from Eq. (21). Even more remarkably, the tightness
of the backlog bound holds even when multiplexing many
possibly ‘conspiring’ flows, e.g., producing large bursts at
the same time.

To more concretely elaborate on the tightness of the de-
terministic modelling and analysis from Eqs. (20)-(21), let

us consider an aggregate A(n) =
∑N

j=1 Aj(n), where Aj(n)’s

are compound Bernoulli processes as in Eq. (14). The flows
are multiplexed at a server with capacity C < N , and there
is no statistical independence assumption amongst them.
The performance metric of interest is again a bound on the
backlog process Bn. According to Eq. (21), to get the tight-
est bound on Bn, one must first construct the smallest non-
random function satisfying Eq. (20), which is G(n) = Nn.
When plugged into Eq. (21), this yields the bound

Bn ≤ max
0≤k≤n

{N(n− k)− C(n− k)} = (N − C)n .

Because N > C the bound diverges and clearly becomes use-
less when n → ∞. We point out, however, that the bound
is tight even under a statistical independence assumption on
Aj(n)’s. Indeed, ∀p, n > 0 there exists a positive probabil-
ity such that Aj(n) = n ∀j, i.e., there exists a sample-path
which attains the apparently very loose bound on Bn.

Another illustrative example concerns possible degener-
ate results obtained from deterministic modelling and anal-
ysis. This is the case when the arrival process A(n) can
take infinitely large values, i.e., ∀ K > 0 ∃εK > 0 such
that P(A(n) > K) > εK (the Poisson process is an exam-
ple). For such arrival processes, the regularity constraint
from Eq. (20) is only satisfied by the degenerate function
G(n) = ∞, which clearly yields the degenerate, and useless,
backlog bound Bn ≤ ∞. However, reiterating the previous
argument, this degenerate bound is also tight.

We conclude here by pointing out that if one seeks deter-
ministic bounds from deterministic or even stochastic arrival
models, then DNC is an attractive theory (illustrated here
by Eqs. (20)-(21)): it has a high modelling potential and it
(mostly) yields tight bounds. Otherwise, if one seeks proba-
bilistic bounds, e.g.,

P (Bn > σ) ≤ ε(σ), where ε(σ) is to be determined,

then DNC is an inopportune theory. The main reason is
that a purely deterministic analysis can yield extremely loose
bounds due to not leveraging from statistical multiplexing
gain. This discussion will be continued in Section 5.

4.3 Stochastic Arrival Models
A probabilistic analysis generally requires a probabilistic

arrival model. Here we consider three of the main stochastic
arrival models proposed in the SNC literature. For the sake
of presentation we use the names SBB, S2BB, and S3BB,
and omit original names. The goal of this subsection is to
explain their motivation and benefits.

SBB : P

(
A(k, n)− G(n− k) > σ

)
≤ ε(σ) ∀ k, n, σ

S2BB : P

(
max

0≤k≤n
{A(k, n)− G(n− k)} > σ

)
≤ ε(σ) ∀ n, σ

S3BB : P

(
max

0≤k≤n≤∞
{A(k, n)− G(n− k)} > σ

)
≤ ε(σ) ∀ σ

G(n)’s are non-random and are called envelope functions.
ε(σ)’s are called error functions. Some technical and quite
intuitive conditions are that the envelope functions are non-
decreasing, whereas the error functions are non-increasing.
Note also that a degree of freedom of the bounding approach
is that for all three models the arrival process A(n) does not
need to be stationary, although the bounds themselves (the
envelopes G(n)) are so.

Before we explain the three models, it is important to ob-
serve the formation of the bottom two: S2BB [17] is formed
by inserting the free variable k from SBB (short-hand for
stochastically bounded burstiness) [45] into the probability,
whereas S3BB [26] is further formed by inserting the free
variable n as well. Informally, S3BB measures events con-
sisting of all past histories of the process A(n), i.e., relative
to all times. In turn, S2BB measures events consisting of
a single past history, i.e., relative to a fixed time, whereas
SBB measures events as single fragments of past histories.

Although the SBB model seems the simplest amongst the
three, it is actually the S2BB model which is the natural
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extension of the classic deterministic model from Eq. (20).
To see the reason, rewrite Eq. (20) as

max
0≤k≤n

{A(k, n)− G(n− k)} ≤ 0 ∀ n . (22)

Note that the S2BB model enforces a bound on the CCDF
of the LHS term above. In other words, the S2BB model
quantifies, with an upper bound, the probability that the
deterministic model is violated by more than σ. An attrac-
tive property of S2BB is that it immediately lends itself to
the calculation of performance bounds. Indeed, a straight-
forward manipulation of Eq. (18) and S2BB yields the bound

P (Bn > σ0 + σ) ≤ ε(σ) , (23)

where σ0 = maxk≥0 {G(k)− Ck} is exactly the deterministic
backlog bound from Eq. (21). To recapitulate, S2BB quan-
tifies the violation probabilities of the deterministic model
(see S2BB and Eq. (22)), whereas the probabilistic backlog
bound quantifies the violation probabilities of the determin-
istic backlog bound (see Eqs. (23) and (21)). As these vio-
lation probabilities are identical, one can argue that S2BB
is the ‘natural’ probabilistic extension of the deterministic
arrival model from Eq. (20) (or, equivalently, from Eq. (22)).

In practice, the choice of SBB vs. S2BB depends on the
arrivals’ input. If the input is a measurement trace, then
S2BB should be chosen since it immediately lends itself to
performance bounds, as shown earlier. Given a trace A(n)
with n elements, an S2BB fitting algorithm would follow the
steps: 1) make a guess on G(n) (e.g., G(n) = (r+ δ)n, where
r is the average rate of the trace and δ > 0 is a tuning
parameter), 2) compute the partial sums A(k, n) and the
LHS terms in Eq. (22), and 3) fit a distribution function.
Ignoring the accuracy of the fitting, i.e., the range of values
σ, the algorithm runs in O(n2) time. There is no specific
rule for the tuning parameter δ, which is to be optimized
numerically.

If the arrivals’ input is some random process A(n), then it
is generally easier to first fit the SBB model. A typical way
is to derive an MGF bound, e.g., MA(n)(θ) ≤ eθrn, for some
θ > 0 (see Eq. (16) for Markov arrival processes). If A(n) is
also stationary, then an SBB model can be fitted using the
Chernoff bound3, i.e.,

P (A(k, n) > r(n− k) + σ) ≤ e
−θσ ∀k, n, σ . (24)

This SBB model further lends itself to the S2BB model.
Indeed, one can write for some δ > 0:

P

(
max

0≤k≤n
{A(k, n)− (r + δ)(n− k)} > σ

)

≤
∑

0≤k<n

P (A(k, n) > r(k − n) + δ(k − n) + σ)

≤
∑
k≥1

e
−θδk

e
−θσ ≤ 1

θδ
e
−θσ

.

The second line follows from Boole’s inequality, whereas the
exponential bounds in the last line follow from Eq. (24).
What is important to remark is that the transition from the
SBB to S2BB involves a rate increase from r to r + δ. This
penalty is due to the need to obtain a bounded error function
for S2BB; note that, if δ was zero, then the obtained error
function would be unbounded.
3For some r.v. X and x, θ ∈ R+, the Chernoff bound is
P(X > x) ≤ MX(θ)e−θx.

4.4 Quasi-Determinism in the S3BB Model
So far we have only commented on the applicability of the

SBB and S2BB models. The reason is that, as we demon-
strate in this section, the S3BB model is quasi-deterministic
for the class of stationary and ergodic arrival processes. For-
mally, the quasi-determinism means that the corresponding
violation probabilities, set through the error function ε(σ),
can only take the extreme values, i.e.,

ε(σ) ∈ {0, 1} ∀σ . (25)

The immediate consequence is that the resulting SNC formu-
lation from [26] is essentially quasi-deterministic, and does
not capture statistical multiplexing gain. In fact, multiplex-
ing quasi-deterministic S3BB flows yields quasi-deterministic
aggregates, by using the Superposition Property from [26];
for the precise meaning of ‘statistical multiplexing gain’ we
refer to Section 5.

We next prove the quasi-determinism claim for station-
ary and ergodic processes, and then construct two rather
contrived arrival processes for which the S3BB model is not
necessarily quasi-deterministic.

4.4.1 Stationary and Ergodic Processes
First we give some definitions (see Breiman [7], pp. 104-

120). Consider a random process X = (X1, X2, . . . ) defined
on some joint probability space (Ω,F ,P); the Borel σ-field of
the subsets of R is denoted by B. We denote I = {1, 2, . . . },
and the product spaces R

I = {x = (x1, x2, . . . ) : xi ∈ R}
and BI = {B = (B1, B2, . . . ) : Bi ∈ B}.

By definition, the process X is (strongly) stationary if

P

(
Xi1 ≤ x1, Xi2 ≤ x2, . . . , Xin ≤ xn

)

= P

(
Xi1+k ≤ x1, Xi2+k ≤ x2, . . . , Xin+k ≤ xn

)
,

for all n, k ∈ N
∗, 0 ≤ i1 ≤ i2 ≤ · · · ≤ in, and x1, x2, . . . , xn.

In other words, stationarity means that the distribution of
any sequence (Xi1 , Xi2 , . . . , Xin) is invariant under shift.

Further, the notion of ergodicity requires the introduction
of an explicit shift operator T : RI → R

I , defined as

T (x1, x2, . . . ) = (x2, x3, . . . ) ,

for all sequences x = (x1, x2, . . . ). The stationarity of X
implies that T is measure preserving, i.e., by definition

P (X ∈ B) = P (TX ∈ B) ∀B ∈ BI
.

For B ∈ B, the event {X ∈ B} is said to be invariant if

{X ∈ B} = {TX ∈ B} P-a.s. ,

i.e., the events {X ∈ B} and {TX ∈ B} differ by a set of
probability zero. In other words, the event {X ∈ B} is in-
variant if its incidence does not depend (a.s.) on any finite
prefix of X. Finally, the process X is ergodic if any invariant
event has probability 0 or 1.

The following lemma will be used to prove the claim of
quasi-determinism.

Lemma 1. Consider a stationary and ergodic process X =
(X1, X2, . . . ). Then

P

(
max {X1, X2, . . . } > σ

)
∈ {0, 1} ∀σ .

The lemma implies that max {X1, X2, . . . } = K a.s., where
K is a constant or K = ∞.
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Proof. Fix σ and let B = (−∞, σ]I . We shall prove that

{X ∈ B} =

{
max
i≥1

Xi ≤ σ

}

is an invariant event, which is equivalent to showing that

P ({X ∈ B}Δ {TX ∈ B}) = 0 , (26)

where ‘Δ’ denotes the symmetric difference and {TX ∈ B} =
{maxi≥2 Xi ≤ σ}.

Let us first note that

P (max {X1, X2, . . . } > σ)

= lim
n→∞

P (max {X1, X2, . . . Xn} > σ)

= lim
n→∞

P (max {X2, X3, . . . , Xn+1} > σ)

= P (max {X2, X3, . . . } > σ) . (27)

The second and last lines follow from the monotone conver-
gence theorem (if Bn is a non-decreasing sequence of events,
then P (limn Bn) = limn P (Bn)). The third line follows from
the stationarity of Xn.

Expanding the symmetric difference from Eq. (26) into
the union of two events, we have for the first one

P

({
max
i≥1

Xi ≤ σ

}
∩
{
max
i≥2

Xi > σ

})
= P (∅) = 0 .

For the second one we use the inclusion-exclusion formula:

P

({
max
i≥1

Xi > σ

}
∩
{
max
i≥2

Xi ≤ σ

})

= P

(
max
i≥1

Xi > σ

)
+ P

(
max
i≥2

Xi ≤ σ

)
− 1

= 0 .

In the last line we applied Eq. (27). Collecting terms implies
that Eq. (26) holds and thus the event {X ∈ B} is invariant.
Because X is ergodic, it follows that P (X ∈ B) ∈ {0, 1},
which completes the proof. �

We are now ready to demonstrate the quasi-determinism
claim. Let the S3BB model from Section 4 for an arrival
process A(n), some envelope G(n), and error function ε(σ).
Assume that an := A(n − 1, n) is stationary and ergodic.
It then follows that for any m ∈ N

∗, the block process(
X

(m)
n

)
n≥1

comprising blocks of m consecutive instances

of an and defined as

X
(m)
n := A(n− 1, n+m− 1)− G(m) ∀n ≥ 1

is also stationary and ergodic (cf. [7], Propositions 6.6 and

6.31). According to Lemma 1, there exists K(m)’s such that

max
{
X

(m)
1 , X

(m)
2 , . . .

}
= K

(m) a.s. ,

for all m ≥ 1. Taking K = maxm K(m) we obtain that

max
0≤k≤n≤∞

{A(k, n) − G(n− k)} = K a.s. ,

thus concluding that

ε(σ) ∈ {0, 1} ∀σ
in the definition of the S3BB model.4

4We remark that S3BB is not necessarily quasi-deterministic
under the additional assumptions of restricting the ‘max’
operator to a finite interval 0 ≤ k ≤ n and letting ε(σ)
depend on the right margin n (see Definition 3.2.1 in [28]).

4.4.2 Non-Stationary or Non-Ergodic Processes
Here we give two examples of arrival processes for which

the S3BB model is not necessarily quasi-deterministic. Such
processes have to be non-stationary or non-ergodic.

For an example of a non-stationary process consider

a1 = r +X, an = r ∀n ≥ 2 ,

where X is some r.v. satisfying E[X] > 0. Note that the
cumulative process A(n) = rn+X ∀n does not have station-
ary increments because E[a1] 
= E[a2]. Moreover, for σ > 0,
the probability

P

(
max

0≤k≤n≤∞
{A(k, n)− r(n− k)} > σ

)
= P

(
[X]+ > σ

)

can be different from zero and one.
For an example of a non-ergodic process consider

an = X ∀n ≥ 1 ,

for some r.v. X. The cumulative process A(n) = nX is
stationary but non-ergodic, as there are many realizations
of the process for which the time averages are different. To
construct a non-quasi-deterministic S3BB model, one can
take G(n) = rn and X be any Bernoulli r.v. with E[X] = r
but P(X 
= r) > 0.

What the two examples have in common is that the sample-
paths are completely determined from some time scale on.
In particular, in the second example, the sample-paths are
completely determined once time starts. We speculate that
more compounded examples would also account for random-
ness but for a finite time scale only, in order to avoid the
limiting argument in the preceding quasi-determinism proof.
Due to this rather unnatural restricted capability in captur-
ing randomness, the relevance of such models is unclear.

5. STATISTICAL MULTIPLEXING GAIN
In this section we justify the raison d’être of SNC; con-

cretely, we present a result which rigorously reveals the mag-
nitude of the statistical multiplexing gain, as a scaling law,
achieved by SNC in the single-node case. Then we discuss
on the existence of multiplexing gain in the multi-node case,
and present numerical results.

5.1 Single-Node Case
Statistical multiplexing is an essential property of packet-

switched networks, which are based on the principle of re-
source sharing. It basically says that the number of resources
needed to support service for (say N) flows is much smaller
than N times the number of resources needed to support
service for a single flow. The raison d’être of SNC is to cap-
ture the gap between these two quantities, i.e., the statisti-
cal multiplexing gain, while closely reproducing the elegant
methodology of DNC.

To illustrate the magnitude of the statistical multiplexing
gain achieved with SNC we consider a node of capacity C
serving N flows Aj(n), each modelled with the envelope

Aj(k, n) ≤ r(n− k) + b ∀ k, n , (28)

where r > 0 is a rate and b ≥ r is a burst size. Consider now
the design question Q1: “How large should C be such that
the delay is smaller than some value, normalized to 1?” To
answer, it is convenient to derive a backlog bound. Assum-
ing the stability condition ρ := Nr

C
≤ 1, the bound follows
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directly from Eq. (21), where G(k) = Nrk:

Bn ≤ Nb ∀n .

Because of the delay normalization to 1, which implies that
C and the backlog scale identically, we conclude that the re-
quired capacity scales as C = O(N) in the burst b. Although
this conclusion is based on a tight bound (recall the discus-
sion from Section 4.2), the intuition is that a much smaller
capacity would be sufficient under broad statistical assump-
tions on the flows Aj(n), and as long as some violations of
the delay constraint are tolerable.

Let us additionally assume that Aj(n)’s are stationary and
statistically independent, and enforce the (tolerable) con-
straint P (delay > 1) ≤ ε, where ε is some small value, e.g.,
ε = 10−3. With these assumptions, we can use a stochastic
bound on the aggregate A(n) :=

∑N

j=1 Aj(n), i.e., [38]

P (A(n) > Nrn+ σ) ≤ e
− σ

2

2Nb2 ∀σ ≥ 0 . (29)

A backlog bound can then be computed as in Eq. (19):

P (Bn > σ) ≤ P

(
max

0≤k<n
{A(k, n)− C(n− k)} > σ

)

≤
∑
k≥1

P (A(k) > Nrk + (C −Nr)k + σ)

≤
∫ ∞

0

e
− 1

2

(
(C−Nr)s+σ√

Nb

)2

ds .

In the last line we used the bound from Eq. (29) and bounded
a sum of non-increasing terms by an integral. With the

change of variable u = (C−Nr)s+σ√
Nb

the last term becomes

√
Nb

C −Nr

∫ ∞

σ√
Nb

e
−u

2

2 du ≤ b2

r (ρ−1 − 1) σ
e
− σ

2

2Nb2 .

Here we used Gordon’s inequality for the standard normal

density function, i.e.,
∫∞
x

e−
u
2

2 du ≤ 1
x
e−

x
2

2 [24]. Setting the
last term to ε yields

σ
2 = 2Nb

2

(
log

b2

εr (ρ−1 − 1)
− log σ

)
.

From here it follows that C = O
(√

N
)
in the burst b (recall

that C scales identically with the backlog σ); note, however,
that C = O(N) in the rate r in order to satisfy the stability

condition. The O
(√

N
)

law can also be deduced from a

result from [4], which is however obtained using an approxi-
mative application of the Central Limit Theorem, and hence
not rigorous. Several other probabilistic bounds on multi-
plexed deterministically regulated arrivals (as in Eq. (28))
exist in the literature, e.g., [47, 50]; however, they do not

appear to easily lend themselves to the O
(√

N
)
law.

The difference in the scaling laws C = O(N) (obtained

with DNC) vs. C = O
(√

N
)

(obtained with SNC) re-

veals thus the magnitude of the statistical multiplexing gain

achieved with SNC as Ω
(√

N
)
.

5.2 Multi-Node Case
Lastly, we discuss on an unconventional type of statistical

multiplexing which, to the best of our knowledge, has not
been raised previously. Consider the tandem network from

D1A1 AM DM

C DCA ...

Figure 2: A tandem network with cross traffic

Figure 2 in which a flow A crosses M nodes in series; at each
node j = 1, . . . ,M along the end-to-end (e2e) path, A shares
the local resource (the capacity C) with a local cross flow Aj .
All flows are stationary and statistically independent. This
type of resource sharing looks similar to the conventional
one, except that the ‘resource’ is now a distributed one (i.e.,
all the capacities) and the cross flows do not share the same
resource with each other. The arising question concerns the
existence of a distributed multiplexing gain.

To answer, we apply and compare DNC and SNC for
the following scenario: A is bounded by the envelope from
Eq. (28) with rate r and burst b, and Aj ’s are bounded by
the same envelope but with rate Nr and burst Nb (N will be
used for tuning conventional (per-node) multiplexing gain).
We enforce the stability condition C ≥ (N+1)r and assume
that flow A gets lower priority at each node. We ask the
design question Q2: “How large should C be such that the
e2e delay of A is smaller than 1?”.

To deal with the additional complexities due to schedul-
ing and multi-node (i.e., the system’s ‘noise’), we run the
network calculus engine, i.e., transform the network system
into a ‘somewhat looking’ linear system. The first step is
to derive the service processes at each node, i.e., Sj(n) =
[(C−Nr)n−Nb]+, and then apply the convolution formula

from Eq. (13) yielding S(n) =
[(

n− NMb
C−Nr

)]
+
(C − Nr).

From the transformed system, consisting of the input A and
the service process S, the deterministic e2e delay bound is

W ≤ (NM+1)b
C−Nr

. A probabilistic e2e delay bound can be also

derived (not shown here) using the SNC formulation from
Fidler [22] and the representation from Eq. (29).

Figure 3 illustrates the required capacities C, computed
with DNC and SNC, for the questions Q1 in (a) and Q2 in
(b). Note that (a) clearly shows the (conventional) multi-
plexing gain when b = 3r. Note also that the multiplexing
gain kicks-in around ten flows. In turn, (b) illustrates that
there is no distributed multiplexing gain when there is only
one cross flow N = 1; however, for sufficiently large N , e.g.,
50, the conventional multiplexing gain kicks-in and compen-
sates for the lack of distributed multiplexing gain.
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Figure 3: Capacity dimensioning, with DNC and
SNC, for the delay constraints (delay ≤ 1) and
P(delay > 1) ≤ ε, respectively (r = 1, ε = 10−3)
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6. CONCLUSIONS
Network calculus (NC) has seen a lot of research over the

last 20 years, e.g., Google Scholar yields ≈ 3000 hits when
searching for “network calculus”, comparing relatively well
to its ‘older brother’ queueing theory, which yields ≈ 60000
hits. The broad perception on NC is that it holds good
promises as an alternative/complementary methodology to
classical queueing theory. Yet, in the camp of NC researchers
as well as the larger audience, the mood somewhat oscillates
between “Hooray, we found the Holy Grail!” and “Oh no, it’s
not gonna work.” In this paper, we have tried to better lo-
cate where the truth stands and aimed at reducing the level
of confusion—and hopefully not creating new one—by clar-
ifying some important issues related to the core modelling
abstractions in network calculus: arrival envelopes and ser-
vice processes. On this mission, we also provided some new
insights into network calculus in the larger frame of things.
Specifically, we collected the following facts:

• NC is about approximating a complex (typically non-
linear) queueing system by a min-plus linear one. The
approximation closely follows the traces of both tradi-
tional LTI system theory and of elementary properties
from classical queueing theory; the analogy is good,
but not perfect.

• With respect to arrival envelopes we provided a num-
ber of pitfalls as well as advice on how to avoid them.
The most salient and profound observation is that the
S3BB envelope model presented at ACM Sigcomm 2006
delivers quasi-deterministic performance bounds for a
large class of arrivals (stationary and ergodic), which
means that it cannot generally capture statistical mul-
tiplexing gain.

• Statistical multiplexing gain can be captured well by
SNC, under carefully defined envelope and service pro-
cesses. In particular, for the application scenario of
multiplexing independent regulated arrival processes,
we rigorously showed the gain to be on the order of
Ω(

√
N), which before had only been shown approxi-

mately. So there is light at the end of the tunnel and
hopefully it is not by a train railing towards us.

• We have also discussed on the tightness of bounds,
a lingering issue surrounding almost any discussion on
NC. We clarified issues about the tightness of the DNC
and provided insights into that of SNC. In short, DNC
generally delivers tight bounds, i.e., the bounds can be
attained; SNC is as tight as the underlying probability
inequalities being used (Boole, Chernoff, martingale
inequalities). As these inequalities can be plugged into
SNC in a modular fashion, one may argue that the
SNC analysis can be made as tight as the state-of-the-
art in probability theory allows.

Summing up, while using NC does not provide us with
a free lunch, it still seems to be of good value in analyzing
traditionally hard fundamental queueing problems due to its
scalable tradeoff between accuracy and ease of analysis.
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