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Abstract—This paper investigates the throughput capacity of
a flow crossing a multi-hop wireless network, whose geometry
is characterized by general randomness laws including Uniform,
Poisson, Heavy-Tailed distributions for both the nodes’ densities
and the number of hops. The key contribution is to demonstrate
how the per-flow throughput depends on the distribution of 1)
the number of nodes Nj inside hops’ interference sets, 2) the
number of hops K, and 3) the degree of spatial correlations.
The randomness in both Nj ’s and K is advantageous, i.e., it
can yield larger scalings (as large as Θ(n)) than in non-random
settings. An interesting consequence is that the per-flow capacity
can exhibit the opposite behavior to the network capacity, which
was shown to suffer from a logarithmic decrease in the presence
of randomness. In turn, spatial correlations along the end-to-end
path are detrimental by a logarithmic term.

I. INTRODUCTION

A groundbreaking work at the intersection between com-
munication networks and information theory is a set of network
capacity results obtained by Gupta and Kumar [18]. Under
some simplifications at the network layers (e.g., no multi-user
coding schemes, or ideal assumptions on power control, rout-
ing, and scheduling), those results establish asymptotic scaling
laws on the maximal data rates which can be reliably sustained
in multi-hop wireless networks. They have further inspired a
tremendous research interest and provided fundamental insight
into the development of the long desirable functional network
information theory (see Andrews et al. [4]).

A major assumption in the network model from [18],
which was widely adopted thereafter, is that the geome-
try follows a uniform distribution. This assumption implies
that the nodes’ interference sets follow the binomial (or its
Poisson approximation) distribution. A small set of works
considered geometries with specific heterogeneous geometries,
which were shown to play a fundamental role in the capac-
ity scaling laws (see the Related Work Section). The goal
of this paper is to go beyond specific random geometries,
by analyzing (throughput) capacity results in networks with
general distributions1. To make the analysis manageable, the
paper assumes that network nodes implement the Aloha MAC
protocol; the simplicity of the protocol permits the derivation
of per-flow capacity results in closed-form and explicit up to
the optimization of a single parameter.

We point out that the paper particularly focuses on per-flow
capacity results, rather than the network capacity results which

1In this paper, the notions of throughput and (throughput) capacity, used
interchangeably, explicitly refer to the maximal flows’ throughput achieved
in some network, with no coding schemes being considered. The meaning of
capacity employed herein differs thus from the one in information theory.

are mostly treated in the literature. The advantage of per-flow
capacity results is that they determine the network capacity
by a summation argument; in contrast, a division argument to
compute the per-flow capacity from the network capacity only
holds for uniform geometries. Moreover, unlike the majority
of existing asymptotic capacity results—whose practicality is
often questioned for small to medium sized networks (Akyildiz
and Wang [2], p. 180)—this paper provides non-asymptotic
results, e.g., the per-flow capacity in (finite) T time units in a
network with (finite) N nodes.

Intuitively, different randomness laws in the geometry yield
different (per-flow) capacity results. This paper goes beyond
this simple intuition and makes three key contributions:

1) Analyzing the beneficial role of randomness in the
network’s geometry on the per-flow capacity.

2) Quantifying the magnitude of the benefit, referred to
as randomness gain, in terms of scaling laws.

3) Providing the “best” distributions maximizing the
randomness gain.

To properly summarize our observations, let us briefly
describe the network model; see Section III for the complete
description. A flow crosses some end-to-end (e2e) path with
K hops. The interference set of a hop j consists of Nj

(interfering) nodes, which is referred to as the hop density;
all Nj’s and K can have general distributions. The degree
of spatial correlations, denoted by γ, defines the number of
consecutive hops with correlated densities; for instance, in the
practical scenario when all N1, N2, . . . , NK are statistically
correlated, then γ := K .

The closed-form expressions of the derived capacity results
allow a sensitivity study of the various parameters in the
network model, e.g., Nj’s, K , and γ. From this study we
collected the following observations:

O1. By scaling N (here a shorthand for Nj’s), the per-
flow capacity depends on N ’s distribution under
a sample-path neighbor-aware probabilities assump-
tion. Concretely, nodes should set transmission prob-
abilities, explicitly or implicitly, according to the
nodes’ densities (transmission probabilities should be
roughly proportional to the number of neighbors).
With this assumption, different distributions of N
with identical averages can yield different scaling
laws. In turn, when nodes use a fixed optimized
transmission probability on all sample paths, the per-
flow capacity is sensitive to the distribution of N , but
only through its mean E[N ].



O2. By scaling time, the per-flow capacity is invariant
to K . In other words, if the system runs over a
sufficiently long time scale, then the per-flow ca-
pacity, with the interpretation of a rate, stabilizes
and does not depend on the actual number of hops.
More interestingly, by simultaneously scaling both
time and K , we find that randomness in K has also
a fundamental impact on the per-flow capacity (i.e.,
it changes the order of growth).

O3. The size of the randomness gain can be as large as
O(n) in N and much smaller in K , which indicates
that temporal correlations due to N are much more
sensitive to randomness than spatial correlations due
to K , as an effect of spatial reuse2. Based on specific
distributions of N and K , we find the surprising fact
that the randomness gain in K is the logarithm of the
randomness gain in N . To clarify its precise meaning,
the randomness gain is defined as the relative differ-
ence of the per-flow capacities in two scenarios: one
in which a network parameter (say N ) is random, and
another in which the same parameter N is set to its
(non-random) expectation E[N ].

O4. By simultaneously scaling time, K , and γ, the per-
flow capacity decays logarithmically in γ. The si-
multaneous scaling is needed as in 2); otherwise, the
impact of spatial correlation vanishes. The observed
logarithmic detrimental factor of spatial correlations,
is analogous to an existing result characteristic to
wired networks: in a tandem of nodes in which
exponentially sized packets arrive as a Poisson pro-
cess, the e2e delay scales as Θ(n logn) and not
as Θ(n) [7]. The Θ(n) holds under the so-called
Kleinrock’s Independence Assumption that packets
independently regenerate their sizes at each hop.
Without this assumption, the extra logarithmic factor
stems from the spatial correlations due to the “very
large” packets inducing long delays to packets behind
them, and at each node. Similarly, in our settings, the
logarithmic term arises when spatial correlations span
across the entire e2e path.

These insights complement some fundamental existing
ones. One is that randomness can have a detrimental role
in the network capacity (see Gupta and Kumar [18] or
Franceschetti et al. [15]). In contrast, our results show that, in
networks with non-uniform geometries, randomness has a ben-
eficial role in the per-flow capacity; for a discussion clarifying
the apparently contradicting detrimental and beneficial roles
of randomness see the end of Section V-A. Another important
known fact is that TDMA and CSMA with properly tuned
parameters achieve the same capacity (Chau et al. [10]). Such
a MAC insensitivity result, however, depends on the assumed
uniform geometry. In turn, our results indicate that in a single-
hop scenario with non-uniform random geometry, the per-flow
capacity is in fact sensitive to the MAC since CSMA implicitly
satisfies the sample-path assumption, whereas explicit over-
head would be needed for Aloha or TDMA.

2By temporal correlations we mainly refer to dependent events which can
occur simultaneously (i.e., transmissions within the same interference set). By
spatial correlations we mainly refer to dependent events which can occur at
different times (i.e., transmissions at two relays whose interference sets share
some nodes).

The rest of the paper is organized as follows. First we
discuss related work. In Section III, we introduce the network
model, and, in Section IV, we introduce the main analytical
tools enabling the capacity analysis. In Section V, we first
present the main result of the paper, i.e., non-asymptotic
bounds on the capacity of a fixed source-destination pair, and
then we investigate the capacity’s sensitivity to the random-
ness factors in geometry. Brief conclusions are presented in
Section VI.

II. RELATED WORK

Gupta and Kumar [18] analyzed the asymptotic capacity
of homogeneous random networks with uniformly distributed
nodes, and showed the notorious Θ

(

1/
√
n logn

)

scaling law
on the per-flow capacity under a specific communication chan-
nel model. This law was improved to Θ(1/

√
n) for another

channel model by Franceschetti et al. [15]. Under a mobility
model and a two-hop relay model, the per-flow scaling laws
were further improved to Θ(1), i.e., the best achievable one,
but at the expense of conceivably long delays (Grossglauser
and Tse [17]). For a more comprehensive review of related
scaling laws see Xue and Kumar [36].

Asymptotic capacities for heterogeneous networks, e.g., not
necessarily with uniformly distributed nodes, were derived in
special cases. Toumpis [32] considered a logically clustered
network in which n sources communicate with nd cluster
heads (yet all are uniformly placed), and showed that network
capacity degrades in the presence of bottlenecks when 0 <
d < 0.5. Perevalov et al. [28] considered physically clustered
networks, with uniformly placed nodes and clusters of nodes,
and showed that network capacity fundamentally depends on
the size of the clusters. For some clustered networks, Kulkarni
and Viswanath [24] showed that network capacity preserves
the scaling law from [18]. For some other specific clustered
networks, however, Alfano et al. [3] and Martina et al. [26]
recently showed that the per-flow capacity is fundamentally
influenced by the geometry. Similar results have also been
reported from simulations by Hoydis et al. [20]. Our paper
differs from these works in that it provides per-flow and
(non)-asymptotic capacity results for a broad range of random
geometries.

As far as non-asymptotic capacity results are concerned,
many exist in the single-hop case (e.g., Kleinrock and To-
bagi [23] or Bianchi [5]); the latter is derived for 802.11 DCF
networks, by assuming that all nodes independently see the
system in steady state. Much fewer results exist in multi-hop
networks, mostly under simplifying technical assumptions and
approximations to deal with the intrinsically hard problem of
spatio-temporal correlations. Capacity results were computed
in 802.11 DCF networks, modelled as contention graphs, under
the assumption that collision probabilities are mainly due to
hidden node interference (Gao et al. [16]). E2e delays in both
TDMA and Aloha line-networks were investigated using a
decomposition approach, which relies on the approximation
that the departure processes at the relay nodes have indepen-
dent inter-departure times (Xie and Haenggi [35]). The delay
analysis of wireless channels under Markovian assumptions
was studied by Zheng et al. [37], and the delay analysis of
multi-hop fading channels by Al-Zubaidy et al. [38].



Closer to our work, non-asymptotic per-flow capacity
bounds were derived in networks with non-random Nj’s and
K , and no spatial correlations (i.e., γ = 1) (see Ciucu et
al. [12], [11], [13]). This paper extends these results by
accounting for general randomness in Nj’s, K , and spatial
correlations (i.e., γ > 1).

Our results on the advantageous effect of randomness relate
to a “folk theorem” from queueing theory which states that,
when the mean inter-arrival (service) time is fixed, the constant
inter-arrival (service) time distribution minimizes queueing
metrics such as average waiting time. Such results were proven
for renewal processes (Rogozin [29]) and also for more general
arrival processes with exponential service times (Hajek [19]
and Humblet [21]). Moreover, our results on the bimodal
nature of distributions maximizing the randomness gain agree
with parallel results from queueing theory. For instance, bi-
modal distributions maximize queue lengths in GI/M/1 queues
(Whitt [33]), in G/M/1 queues with bulk arrivals (Lee and
Tsitsiklis [25]), or in queues with bulk arrivals and finite
buffers (Bušić et al. [8]).

III. NETWORK MODEL

In this section, we describe the network model and the type
of capacity results investigated in this paper.

We consider a general network model accounting for three
randomness sources, thus significantly generalizing related
models. Concretely, we consider the multi-hop random net-
work geometry from Fig. 1. Node 1 (the source) transmits to
node K+1 (the destination) using nodes 2, 3, . . . ,K as relays,
where K is a random variable denoting the number of hops.
The number of nodes inside the interference set (IS) of node j,
and excluding node j, is denoted by the random variable Nj ,
for j = 2, 3, . . . ,K + 1; Nj’s are also referred to as nodes’
(hops’) densities. The ISes allow to model arbitrary interfer-
ence models and do not rely on geometrical assumptions like
disc-based transmission or interference ranges.

One requirement is the existence of an e2e path between
the source and the destination. This assumption is motivated
by the very goal of the paper, i.e., the derivation of per-flow
capacities which requires the flow to be well-defined in terms
of an e2e path. If such e2e paths were subject to discontinuities,
the derived capacity results would still hold for the transient
regimes during which an e2e path exists.

The model further needs knowledge of the distributions
of Nj’s and K , which characterize the first two randomness
sources. These distributions can be quite general; in fact, the
capacity formulae from the main result (see Theorem 1) allow
plugging-in any specific distribution law in order to quantify
the underlying impact.

Concretely, all Nj’s are finite and identically distributed
with density

πn = P (N = n) , n = 2, . . . , nmax . (1)

N generically stands for Nj’s. Note that π1 = 0, i.e., the
nodes on the e2e path are not isolated, and nmax denotes
the maximum number of nodes inside an IS. The assumption
of identically distributed Nj’s is a mild one and mitigates
notational complexity.
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Fig. 1. A multi-hop wireless network with a random number of K hops. The
interference set (IS) of node j contains a random number Nj of nodes. The
performance metric of interest is the (non-)asymptotic e2e capacity of node 1
transmitting to node K + 1 using the nodes 2, 3, . . . ,K as relays.

For the second randomness source, we assume that the
number of hops K is finite, statistically independent of all
the Nj’s, and has the density

π̃k = P (K = k) , k = 1, 2, . . . , kmax . (2)

The maximal number of hops is kmax. The independence
assumption simplifies the proof of the main result, i.e., The-
orem 1; the proof could also account for the conditional
distributions P (Nj = n | K = k) at the expense, however, of
increasing notational complexity. Nevertheless, the indepen-
dence assumption between K and Nj’s is conceivably strong
in small networks. Indeed, if nodes set large interfering ranges
then the Nj’s are also large and K is small; in turn, if the
interfering ranges are small then the Nj’s are also small and
K is large. Such correlation effects lessen in large network
regimes, whereby our later asymptotic analysis applies.

The third source of randomness in the network model
concerns the degree of spatial correlations, i.e., the degree of
statistical dependence amongst Nj’s. Dealing with all possible
combinations and types of such dependencies is clearly an
overwhelming task. In our analysis we assume that for each
j = 1, 2, . . . , kmax, the r.v. Nj is statistically independent
of all Ni’s with i ∈ {j + γ, j + γ + 1, . . . , kmax}. By the
commutativity of the independence relationship between two
r.v.’s, Nj is also statistically independent of Ni’s with i ∈
{1, 2, . . . , j − γ}.

This particular dependency parameter γ characterizes the
maximal number of consecutive ISes for which dependencies
(correlations) may exist between the first and the rest. For
instance, if γ = 1 then all Nj’s are statistically independent; at
the other extreme, in a static scenario with k hops, γ = k corre-
sponds to dependencies between any pair of N1, N2, . . . , Nk

(this latter scenario is conceivably the most practical one).

Besides the description of the three randomness sources,
the network model requires the specification of the MAC
protocol. Concretely, given a slotted time model, the network
model requires that all nodes transmit with some probability
p, independently of each other, and from slot to slot. This
requirement is immediately satisfied by the slotted-Aloha
protocol (Abramson [1]), and implicitly satisfied by 802.11
DCF under an independence assumption from Bianchi [5],
in the single-hop case. The assumption from [5], which is
commonly adopted in the literature, states that all nodes see
the channel in steady state, while the transmission probability
p can be computed from the parameters of the protocol (see
Eqs. (7) and (9) in [5]). An additional approximation for
802.11 DCF is the consideration of an average slot size (given



also in [5], in Eq. (13)). In a multi-hop case the steady-state
assumption becomes however less justifiable, due to the hidden
node problem, and further assumptions are needed (Gao et
al. [16]). Since we are seeking rigorous capacity results, in
order to perform a rigorous analysis of the underlying roles of
the three randomness sources, we mainly adopt slotted-Aloha
and make side remarks on 802.11 DCF and also on TDMA.

Denoting the transmission from node i to j by [i → j], a
transmission [j → j + 1] is successful if node j is the only
transmitting node inside the IS of node j+1, in a time slot. As
far as data sources are concerned, we assume that the nodes
2, 3, . . . ,K have infinite buffers and only relay the data from
node 1 to node K +1. Also, all the other nodes are saturated,
i.e., they always attempt to transmit according to the MAC
protocol. This saturation assumption implies that the computed
capacity of the path [1 → K+1] is conservative from the data-
link layer perspective.

The concrete type of capacity investigated in this paper
is the per-flow (non-)asymptotic throughput capacity of the
transmission [1 → K +1]. Denote by A(t) the arrival process
at node 1 (i.e., counting the data units to be transmitted to
node K+1). Also, denote by D(t) the corresponding departure
process at node K+1 (i.e., counting the data units arrived from
node 1 up to time t) . For some fixed violation probability ε,
a probabilistic upper bound on the (e2e throughput) capacity
rate is a value λU

t such that

P

(

D(t) ≥ λU
t t
)

≤ ε . (3)

In turn, a probabilistic lower bound on the capacity rate is a
value λL

t such that

P

(

D(t) ≤ λL
t t
)

≤ ε . (4)

We point out that the derived capacity rates λU
t and λL

t

are obtained in transient (non-asymptotic in the time scale)
regimes, whereas the asymptotic results are immediately ob-
tained by letting t → ∞. The other non-asymptotic regime
is in the nodes’ densities N and number of hops K; again,
related asymptotic results follow directly by taking limits.

IV. ANALYTICAL TOOLS

In this section, we introduce the modelling tools for
the per-flow capacity problem. The main engine behind the
derivations in the paper is the framework of the stochastic
network calculus, in particular following Fidler [14]. The
advantage of the calculus approach is that it considerably
simplifies the complexity of modelling a whole network by
(logically) reducing it to a single-hop only. It is thus sufficient
to model any single-hop scenario from Fig. 1 with source j and
destination j+1; the multi-hop model will directly follow from
the convolution theorem in the stochastic network calculus.

Let us model an arbitrary single-hop where the source is
node j. For each node l inside the IS of node j+1 we associate
a random process Xl(t), where t represents time. For every l
and t, Xl(t) is a Bernoulli random variable (r.v.) taking value
1 with probability p; with abuse of notation, l = 1 refers to
the source j. These r.v.’s are mutually i.i.d. in both time and
space, and conditioned on the realizations of the number of

nodes/hops (for a parallel analytical framework, dealing with
non-necessarily independent increments of Xl(t), e.g., when
modelling CSMA/CA besides Aloha, we refer to Ciucu et
al. [13]).

Next we introduce the key process for computing the per-
flow capacity. This is referred to as the (virtual) interfering
process of the transmission [j → j+1], and is defined through
its increments V (t− 1, t) := V (t)− V (t− 1) for t ≥ 1 as

V (t− 1, t) = 1−X1(t)

Nj+1
∏

l=2

(1−Xl(t)) . (5)

The initial value is V (0) = 0. We make the important remark
that V (t) does not depend on whether the source j is saturated
or bursty, since it is defined independently of the arrival process
A(t) at the source. Moreover, as we mentioned earlier, our
analysis handles the situation of idle periods characteristic to
relay nodes j ≥ 2, and which are due to internal burstiness:
there is nothing to transmit at some slot, and yet the MAC
protocol may successfully select the relay node to access the
channel. Due to such situations we emphasize the attribute
virtual for the process V (t).

Next, we obtain the moment generating function (MGF)
and the Laplace transform of V (t), needed to derive the upper
and lower bounds, respectively, from Eqs. (3) and (4). For
some parameter θ > 0, these transforms are defined as

Mt(θ) = E
[

eθV (t)
]

and Lt(θ) = E
[

e−θV (t)
]

.

The MGF follows from the backwards equations using con-
ditioning, and also using the independent increments property
of V (t), i.e.,

Mt+1(θ) = Mt(θ)E
[

eθV (1)
]

= Mt(θ)
∑

i

E
[

eθV (1) | N(0) = i
]

P (N(0) = i)

= Mt(θ)
∑

i

(

eθqi + 1− qi
)

πi .

Therefore, by evaluating the sum,

Mt(θ) = btθ , (6)

where

bθ = 1 + q
(

eθ − 1
)

, q =
∑

l≥2

qlπl, ql = 1− p(1− p)l−1 ,

and where the πl’s are from Eq. (1). The Laplace transform
follows by a sign change, i.e.,

Lt(θ) = bt−θ .

The critical role of the virtual process is to link the arrival
process A(t) at the source j with the corresponding departure
process D(t) at the destination j + 1. This relationship is
expressed in terms of a stochastic service process, which is
a key tool in the stochastic network calculus (Chang [9],
Jiang and Liu [22]), and which is instrumental herein for
the derivation of e2e capacity results. The next lemma from
Ciucu [11] formally establishes this relationship.



Lemma 1: (SINGLE-HOP (EXACT) SERVICE REPRESEN-
TATION) Consider the interfering process V (t) from Eq. (5).
Then the bivariate random process

S(s, t) = t− s− V (s, t) (7)

is an exact stochastic service process for node A, i.e.,

D(t) = A ∗ S(t) a.s. , (8)

for all arrival processes A(t). Here, the symbol ‘∗’ denotes
the (min,+) convolution operator defined for all t ≥ 0 as
A ∗ S(t) := inf0≤s≤t {A(s) + S(s, t)} .

The process S(s, t) quantifies the service received over the
link [j → j+1]. A key observation is that Eq. (8) holds for all
arrival processes A(t). This invariance is instrumental for car-
rying out the incoming multi-hop analysis, by circumventing
the intrinsically difficult (queueing) problem that the arrival
processes at the relay nodes j ≥ 2 are hard to characterize.
The process D(t) from Eq. (8) can be also viewed as the output
from a variable capacity node (Boudec and Thiran [6]), given
the definition of the interfering process V (t) from Eq. (5).
Moreover, S(s, s+1) can be viewed as the instantaneous per-
flow effective capacity, as proposed to model the instantaneous
channel capacity by Wu and Negi [34]. In turn, the process
V (s, t) can be viewed as an impairment process as defined by
Jiang and Liu [22], p. 72. Having available an exact service
process for single-hop transmissions, we can next derive both
upper and lower bounds on e2e capacity.

V. END-TO-END PER-FLOW CAPACITY

In this section, we first derive the main result of this paper,
i.e., a closed-form expression for the per-flow capacity along
the e2e path from Fig. 1. Then we investigate its sensitivity
to the three randomness sources in the network model: the
distribution of the number of neighbors Nj’s and the number
of hops K , and the dependency parameter γ.

The procedure for getting the upper and lower capacity
bounds follows the methodology of the stochastic network
calculus (see Boudec and Thiran [6], Chang [9], and Jiang and
Liu [22]). First, service processes Sj(s, t) for each single-hop
transmission [j → j+1], j = 1, 2, . . . ,K , are constructed as in
Eq. (7). These processes are then convolved in the underlying
(min,+)-algebra yielding the (network) service process

S(s, t) := S1 ∗ S2 ∗ . . . ∗ SK(s, t) , (9)

which characterizes the available service (or the per-flow effec-
tive capacity in the terminology from Wu and Negi [34]) along
the e2e path [1 → K + 1]. Eq. (9) is the convolution theorem
from network calculus which reduces the multi-hop analysis
to a single-hop analysis. The advantage of the theorem is that
it circumvents the difficult problem of modelling input/output
processes at intermediate relay nodes, as mentioned earlier.

Theorem 1: (NON-ASYMPTOTIC CAPACITY BOUNDS)
Consider the multi-hop network model from Section III with
dependency parameter γ. Let ql = 1 − p(1 − p)l−1, q =
∑

l≥2 qlπl, and bθ = 1+q
(

eθ − 1
)

for any θ > 0 (see Eq. (6)).
Then, for some violation probability ε, a probabilistic lower
bound on the e2e capacity is for all t ≥ kmax

λL
t = sup

θ>0

{

1− 1

γ

log bγθ
θ

+
log ε

tθ
− cK

tθ

}

, (10)

where cK =
∑kmax

k=1 π̃k log
(

t+k−1
k−1

)

. The upper bound is

λU
t = inf

θ>0

{

1 +
1

γ

log b−γθ

θ
− log ε

tθ

}

. (11)

We remark that the asymptotic lower and upper bounds
coincide (after using Stirling’s approximation for the factorial
in the binomial term, with θ = Θ

(

t−ζ
)

, 0 < ζ < 1), i.e.,

λ := lim
t→∞

λL
t = lim

t→∞
λU
t = 1− q . (12)

We denote the asymptotic capacity by λ. Theorem 1 general-
izes existing non-asymptotic lower-bound results from Ciucu et
al. [12], [11], [13] which hold for non-random Nj’s and
K , and γ = 1. Moreover, Theorem 1 also provides the
corresponding upper bounds. We also point out that the results
are explicit up to optimizing after θ > 0.

PROOF. Let Pk denote the underlying probability measure
conditioned on K = k. Let t ≥ 0 and the service processes
Sj(s, t) for each transmission [j → j + 1] for j = 1, 2, . . . , k,
as in Eq. (7). Applying the e2e service process from Eq. (9),
we can write

Pk

(

D(t) ≤ λL
t t
)

≤ Pk

(

A ∗ S(t) ≤ λL
t t
)

= Pk

(

S1 ∗ S2 ∗ . . . ∗ Sk(t) ≤ λL
t t
)

,(13)

because of the saturation condition A(1) = ∞. Letting u0 = 0
and uk = t we can continue above as follows

Pk



 inf
0≤u1≤···≤uk−1≤t

k
∑

j=1

Sj (uj−1, uj) ≤ λL
t t





= Pk

(

inf
0≤u1≤···≤uk−1≤t

k
∑

j=1

(

uj − uj−1

−Vj (uj−1, uj)
)

≤ λL
t t

)

= Pk

(

sup
0≤u1≤···≤uk−1≤t

k
∑

j=1

(

Vj (uj−1, uj)−

(uj − uj−1)
)

≥ −λL
t t

)

, (14)

where Vj(uj−1, uj) = uj − uj−1 − Sj(uj−1, uj). Next, by
applying the Union and Chernoff bounds, we can bound the
last term in Eq. (14) by

∑

0≤u1≤···≤uk−1≤t

E





k
∏

j=1

eθVj(uj−1,uj)



 e−θ(1−λL
t )t .

At this point we rearrange the terms in the product in the
expectation as

k
∏

j=1

eθVj(uj−1,uj) =

γ
∏

l=1

∏

i≥0

eθVl+iγ(ul+iγ−1,ul+iγ) . (15)

The terms in the second product in the right-hand side term
are statistically independent. This is true according to the
definition of the dependency parameter γ, and also because
the underlying Bernoulli r.v.’s in Vl+iγ ’s have independent



increments; note the non-overlapping intervals of Vl+iγ’s. With
this observation we can bound the last expectation by





γ
∏

l=1

E





∏

i≥0

eγθVl+iγ(ul+iγ−1,ul+iγ)









1
γ

=
(

btγθ
)

1
γ ,

by using Hölder’s inequality, where bγθ has the expression
from the theorem with θ replaced by γθ. Recall also the MGF
of V (t) from Eq. (6).

Collecting terms we obtain

Pk

(

D(t) ≤ λL
t t
)

≤
∑

0≤u1≤···≤uk−1≤t

(

btγθ
)

1
γ e−θ(1−λL

t )t

=

(

t+ k − 1

k − 1

)

(

btγθ
)

1
γ e−θ(1−λL

t )t ,

where the binomial term is the number of combinations with
repetition.

For the upper bound, we recall from Theorem 1 that the
service processes Sj(s, t) are exact, and, therefore, the e2e
service process from Eq. (9) is exact as well; this property is
critical for proving the upper bound. Using again that A(1) =
∞ we can write

Pk

(

D(t) ≥ λU
t t
)

= Pk

(

A ∗ S(t) ≥ λU
t t
)

= Pk

(

S1 ∗ S2 ∗ . . . ∗ Sk(t) ≥ λU
t t
)

≤ inf
u1≤···≤uk

Pk





k
∑

j=1

Sj(uj−1, uj) ≥ λU
t t



 . (16)

For u1 ≤ · · · ≤ uk we can expand the probabilities as

Pk





k
∑

j=1

(uj − uj−1 − Vj(uj−1, uj)) ≥ λU
t t





≤ E





k
∏

j=1

e−θVj(uj−1,uj)



 eθ(1−λU
t )t ,

after using again the Chernoff bound.

At this point, we rearrange the terms in the product as in
Eq. (15) and proceed as for the lower bound using Hölder’s
inequality first and then the independence property of Vj’s over
non-overlapping intervals. We immediately get

Pk

(

D(t) ≥ λU
t t
)

≤
(

bt−γθ

)
1
γ eθ(1−λU

t )t ,

using the Laplace transform from Section IV.

Finally, for some fixed violation probability ε, the lower
bound λL

t and the upper bound λU
t follow by the change

of probability measure P =
∑

k π̃kPk, which completes the
proof. �

A. Sensitivity to Nj’s

Here, we discuss the capacity’s sensitivity to the distribu-
tion of the number of neighbors Nj’s (herein referred to as
N ). We focus on the asymptotic capacity from Eq. (12), and
it is thus sufficient to consider a single-hop transmission.

Let us firstly perform some preliminary calculations. Using
Jensen’s inequality we get that

λ =
∑

l≥2

πlp(1− p)l−1 ≥ p(1− p)E[N ]−1 .

The maximum in the last term is attained for p = 1
E[N ] ,

and thus λ = Ω(1/E[N ]). For the same value of p, and
using an upper bound on Jensen’s inequality (see Theorem 1.2
in Simic [31]), we get λ = O (1/E[N ]), and therefore the
asymptotic capacity scales as

λ = Θ

(

1

E[N ]

)

. (17)

This scaling also holds in the case of a static network in which
N is a constant, i.e., P (N 6= E[N ]) = 0.

An improved scaling law can be obtained by assuming
that, on every sample-path ω, all the nodes are aware of
their densities Nω, and set their transmission probabilities to
pω = 1

Nω
; this probability is now a random measure. A lower

bound on the asymptotic capacity is

λ =
∑

l≥2

πl

1

l

(

1− 1

l

)l−1

≥
∑

l≥2

πl

1

le
=

1

e
E

[

1

N

]

,

after using
(

1− 1
l

)l−1 ≥ limn→∞

(

1− 1
n

)n−1
= 1

e
. In turn,

an upper bound is

λ =
∑

l≥2

πl

1

l

(

1− 1

l

)l−1

≤
∑

l≥2

πl

1

l
= E

[

1

N

]

.

Therefore, with the sample-path neighbor-aware probabili-
ties assumption, the asymptotic capacity scales as

λ = Θ

(

E

[

1

N

])

. (18)

The same scaling is achieved by an ideal distributed schedul-
ing mechanism, such as TDMA (which can be modelled as
Xl(t) = 1 if t mod N = l − 1, and Xl(t) = 0 otherwise, in
Eq. (5)) or by 802.11 DCF, since the transmission probabilities
p implicitly scale as Θ

(

1
N

)

(Bianchi [5]). Therefore, CSMA
and TDMA networks achieve the same scaling, up to the
assumptions discussed in Section III on CSMA; this result was
previously shown to hold in the particular case of binomial
node densities (i.e., a underlying uniform geometry) and an
idealized CSMA model (see Chau et al. [10]).

Inspecting the two scalings from Eqs. (17) and (18), with
Jensen’s inequality E[N ]E

[

1
N

]

≥ 1, reveals that the latter
is asymptotically bigger. Therefore, the capacity in a ran-
dom network with neighbor-aware transmission probabilities is
asymptotically bigger than the capacity of a random network
with a fixed value for p, or a static network with optimally
adjusted p.

The discrepancy between the two scaling laws raises the
interesting question on the gain-maximizing distribution of
N which maximizes the capacity from Eq. (18). To prevent
trivial scenarios, such as when there are only two nodes in
the network (π2 = 1), we look for the distribution of N
relative to the normalized, or aligned, static scenario with a



Dist. πl E[N ] E
[

1
N

]

Gain

G-M (20) Θ(n) Θ(1) Θ(n)

Unif. 1
n Θ(n) Θ

(

log n
n

)

Θ(logn)

Bnom.
(n
l

)

( r
q )

lqn Θ (n) Θ
(

1
n

)

Θ(1)

Harm. κ
l log n Θ

(

n
log n

)

Θ
(

1
log n

)

Θ
(

n
log2 n

)

Harm.
κ/ log n
(n−l)

Θ (n) Θ
(

1
n

)

Θ(1)

Hv.tld. κ
l2

Θ(logn) Θ (1) Θ (log n)

Hv.tld. κ
(n−l)2

Θ (n) Θ
(

1
n

)

Θ(1)

Sbexp. κ
l3

Θ (1) Θ (1) Θ (1)

Sbexp. κ
(n−l)3

Θ (n) Θ
(

1
n

)

Θ(1)

Geom. κal Θ (1) Θ (1) Θ (1)

Geom. κan−l Θ (n) Θ
(

1
n

)

Θ(1)

TABLE I. CAPACITY RANDOMNESS GAINS FOR VARIOUS

DISTRIBUTIONSπ = (π1, . . . , πn); n IS THE MAXIMUM VALUE OF N .

constant number E[N ] of nodes (note that the random and
static scenarios are aligned in that the number of nodes are
identical, on average). We are thus interested in maximizing
the normalized randomness gain

argmax
N

Eq. (18)

Eq. (17)
= argmax

N

E[N ]E

[

1

N

]

, (19)

subject to the sample-path node-aware probabilities assump-
tion. The next theorem provides the solution.

Theorem 2: (GAIN-MAXIMIZING DISTRIB. IN EQ. (19))
Denote n = nmax (the maximum value of N ). Then Eq. (19)
is maximized by the distribution

π2 =
n− E[N ]

n− 2
, πn =

E[N ]− 2

n− 2
, πi = 0 (i = 1, 3, . . . , n−1)

(20)
when both n and E[N ] are fixed.

For the proof see the Appendix. The intuition behind the
bimodal distribution is that the increase rate in capacity by
lowering the number of neighbors is larger than the decrease
rate in capacity by increasing the number of neighbors. Note
also that the distribution maximizes not only Eq. (19), but
also the capacity when both n and E[N ] are fixed, under the
sample-path node-aware probabilities assumption.

Table I illustrates the scaling of E[N ]E
[

1
N

]

from Eq. (19),
for various distributions πl = P(N = l). κ’s are normalization
constants, r = 1 − q for the binomial distribution (Bnom.),
and 0 < a < 1 for the geometric distribution (Geom.). There
are two versions of harmonic (Harm.), heavy-tailed (Hv.tld.),
subexponential (Sbexp.), and geometric distributions, depend-
ing on the hops’ density; for instance, row four models a sparse
situation with higher densities assigned to smaller number of
nodes, whereas row five models the opposite situation.

The reported gain in the last column is relative to the expec-
tation E[N ]. Note that the gain-maximizing (G-M) distribution
from Eq. (20) with E[N ] = Θ(n) and the heavy-tailed distribu-
tion modelling sparse situations achieve the maximum relative
gain, further supporting the observation after Theorem 2. The
uniform (Unif.) distribution achieves the same gain Θ(logn)
as the first heavy-tailed distribution, but that is relative to an
asymptotically larger expected number of nodes, i.e., Θ(n) vs.
Θ(logn).

Summarizing the results, we conclude that the asymptotic
(in the time scale) per-flow capacity is fundamentally influ-

enced by randomness in network geometry, but only under
the sample-path node-aware probabilities assumption. This
assumption requires explicit overhead for both TDMA and
Aloha schemes, and it is implicitly satisfied by 802.11 DCF
since the nodes’ transmission probabilities are pω = Θ(1/Nω)
in steady-state (Bianchi [5]). Similar conclusions can be drawn
on the non-asymptotic capacity as well, since the bounds from
Eqs. (10) and (11), with θ = Θ

(

t−ζ
)

, deviate from Eq. (12) by
constant terms depending on the time scale and/or the number
of hops. Another interesting observation is that, according to
Table I, the randomness gain is non-trivial as long as πl does
not decay faster than κ/l2; an open problem concerns the
general distribution of N for which the gain is ω(1).

Let us clarify the apparent contradiction between the above
observation that “randomness increases the per-flow capac-
ity” and the folk principle that “determinism minimizes the
queue” from queueing theory (Humblet [21]) (which agrees
in particular with the fact that randomness decreases the
network capacity [18]). The reason is that our network model
is slightly different than the one from [18], specifically by
fixing both the source and the destination and letting the rest be
random. Recall that our network model is deliberately tailored
to directly study the per-flow rather than the network capacity.

B. Sensitivity to K

Here, we analyze the role of the distribution of the number
of hops K on the lower bound of the non-asymptotic capacity
from Eq. (10); as already pointed out, the other capacity results
(i.e., the upper bound from Eq. (11) and the asymptotic one
from Eq. (12)) are invariant to K . Despite this apparent incom-
pleteness (we only analyze the lower bounds), we conjecture
that the obtained scaling laws herein hold for upper bounds
as well, given the previous observation that the lower bound
captures the right scaling in K .

Analyzing the scaling law in K in Eq. (10) yields a trivial
result, i.e., Θ(1), since the limit in t must be taken simulta-
neously (recall that t ≥ kmax in Theorem 1). Informally, note
that if t = Θ

(

E[K]1−ζ
)

, for ζ > 0, then λL
t = 0 because there

are insufficient time slots to carry packets from the source to
the destination. To get more interesting results, let us properly
scale t = Θ

(

E[K]1+ζ
)

and γ = Θ(1), for some large E[K].
Then, the lower bound λL

t decays as

λL
t = Ω(− logE[K]) ,

in the case of a static network with a fixed number E[K] of
hops. In turn, in the case of a network with a random number
of hops K , λL

t decays as

λL
t = Ω(−E [logK]) .

Jensen’s inequality (E [logK] ≤ logE[K]) implies that
the lower bound on capacity in a random scenario is asymp-
totically bigger than in a static scenario. As in the previous
subsection, this discrepancy raises the problem of the gain-
maximizing distribution of K which maximizes the random-
ness gain, defined here as

argmax
K

(logE[K]− E [logK]) . (21)

Before we provide the answer, in the next theorem, let us
remark that the randomness gain is now defined in terms of



a difference, and not of a ratio as in Eq. (19). The reason
stands in the contribution of K and N to the e2e capacity:
the former has an additive effect (i.e., it affects the cumulative
throughput), whereas the latter has a multiplicative effect (i.e.,
it affects the throughput rate).

Theorem 3: (GAIN-MAXIMIZING DISTRIB. IN EQ. (21))
Denote k = kmax (the maximum value of K). Then Eq. (21)
is maximized by the distribution

π̃1 =
k − E[K]

k − 1
, π̃k =

E[K]− 1

k − 1
, π̃i = 0 (i 6= 1, k) (22)

when both k and E[K] are fixed.

The proof is similar to the proof of Theorem 2 and it is omitted.

Similar as in Theorem 2, the intuition for the bimodal
distribution is that the rate at which capacity increases by
lowering the number of hops is bigger than the rate at which
capacity decreases by increasing the number of hops. Note
that the distribution from Eq. (22) maximizes not only the
randomness gain from Eq. (21) but also the capacity (its lower
bound) when both k and E[K] are fixed. Also, note that the
randomness gain of the distribution from Eq. (22) can be
asymptotically larger than a constant (e.g., Θ(log log k) vs.

Θ
(

log2 k
k

)

when E[K] = Θ(log k)).

As far as other distributions are concerned, recall that
in the case of the Uniform distribution for the number of
neighbors, Table I reports a randomness gain of Θ(logn).
In contrast, there is no randomness gain in the case of the
Uniform distribution for the number of hops. The reason is that
while increasing the number of neighbors has a pronounced
effect on capacity, increasing the number of hops has a much
more moderate effect due to spatial reuse. This also indicates
that spatial correlations are much less sensitive to randomness,
as opposed to temporal correlations as observed in the previous
subsection. As another closely related example, the first heavy-
tailed distribution for N from Table I yields a Θ(logn) gain
in Eq. (19). In turn, using the convergence of the series
∑k

l=1
log l
l2

, the same heavy-tailed distribution for K has the
gain Θ(log log k) in Eq. (21).

The above example leads us to speculate that for specific
distributions of N and K , the (per-flow) capacity gain due
to randomness in the number of hops is the logarithm of the
capacity gain due to randomness in nodes’ densities.

C. Sensitivity to γ

Here, we briefly investigate the role of the dependency
parameter γ on the non-asymptotic capacity.

Note firstly that taking a limit in γ would require taking
limits in both E[K] and t. As in the previous subsection,
let t = Θ

(

E[K]1+ζ
)

for some large E[K], but take now
γ = Θ(E[K]) which models a high degree of dependencies
amongst Nj’s (including the worst-case when all hops’ densi-
ties are correlated to each other). Then, the lower bound decays
as

λL
t = Ω(− logE[K]) , (23)

i.e., the logarithm is the price for assuming a high degree
of spatial dependencies in the network. See also Burchard et

al. [7] where the same logarithmic factor is the additional
decay on e2e delays (in a Θ(·) sense) in networks with
Markovian type of traffic, due to spatial dependencies; recall
Item O4 from the Introduction.

Wrapping up, the main observations from this section are
summarized in Items O1-O4 from the Introduction. These
observations raise an interesting tradeoff between per-flow fair-
ness/delay vs. capacity metrics, which has been addressed at
the network level in the particular case of uniform geometries
(see Grossglauser and Tse [17], Neely and Modiano [27], and
Sharma et al. [30]). We believe that a further understanding
of this tradeoff at the per-flow level, in networks with general
geometries, can inspire distributed network algorithms emu-
lating randomness, in order to provide differentiated per-flow
services while maintaining a certain level of performance at
the network level. More concisely, how could one leverage the
randomness in the network geometry, given its advantageous
impact on per-flow capacity?

VI. CONCLUSIONS

We have derived closed-form per-flow capacity results, in
terms of both upper and lower (non-)asymptotic bounds, on
a multi-hop path with a fixed source-destination pair. The
key aspect of these results is that they apply to networks
with general random geometries and various degrees of spatial
correlations. By exploiting the simple analytical forms of the
obtained results, we have quantified the beneficial impact
of randomness in geometry on the per-flow capacity metric.
In particular, we have shown that different distributions of
hops’ densities with normalized averages can lead to gaps in
capacity scaling laws as large as Θ(n). We have identified
a logarithmic detrimental factor of spatial correlations, and
we have further observed a logarithmic relationship between
spatial and temporal correlations.

Beyond the intuitively obvious message that randomness
matters, this paper strives to communicate how does random-
ness quantitatively matter by analyzing a broad range of distri-
butions. The collected observations jointly raise the awareness
that the restriction to the widely-adopted uniform geometry
model can be quite misleading. Moreover, these observations
open the conceivably practical and yet challenging research
problem of increasing per-flow capacity by leveraging the
randomness in network geometry.
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APPENDIX

PROOF OF THEOREM 2. According to Eq. (18) we have to
solve a linear program with the objective function

max
πi

∑

i≥2

1

i
πi

subject to the constraints
∑

i≥1

iπi = m,
∑

i≥1

πi = 1, πi ≥ 0 .

Recall that π1 = 0 (there are at least two nodes). Select
some πi’s satisfying the above constraints and assume that
there exists i ∈ {3, . . . , n− 1} such that πi 6= 0. The idea
is to appropriately redistribute the entire value of πi to the
extremes π2 and πn, and then show that the new distribution
increases the objective function.

Let x = n−i
n−2πi and consider the new distribution π′

i similar
to πi except for

π′
2 = π2 + x, π′

i = 0, π′
n = πn + πi − x .

One can check that the redistribution of πi preserves the mean
m. It remains to prove that

1

2
π2 +

1

i
πi +

1

n
πn ≤ 1

2
(π2 + x) +

1

n
(πn + πi − x) .

By rearranging terms the inequality reduces to i ≥ 2 which is
true.

One can repeat the above procedures for all i in the set
{3, . . . , n− 1} satisfying πi 6= 0, and reduce the initial linear
program to

max
π2,πn

{

1

2
π2 +

1

n
πn

}

,

subject to the constraints

2π2 + nπn = m, π2 + πn = 1, π2 ≥ 0, πn ≥ 0 .

The solution is given by the choice from Eq. (20). �


