
Abstract—Wireless local and metropolitan area networks are en
route to complement 2nd and 3rd generation cellular networks to
provide for broadband wireless access for mobile users. The char-
acterization and generation of realistic workload is important to
allow for accurate network planning and traffic engineering. In
this paper, we present the instantiation of a novel workload model,
which is a hybrid of an empirical mobility model and a synthetic
traffic model. We focus on the effects which are induced by user
mobility. The model clearly separates the influence of mobility and
traffic to allow for greater flexibility. Thus, we are able to integrate
different traffic characteristics on top of our mobility model ele-
gantly. We present results for the example of a real city and com-
pare our model to existing synthetic models. Our findings are, that
our model is able to cover the macroscopic effects of real world
behavior more precise than currently available workload models.

Keywords—Workload model; mobility model; simulation; radio
access network.

I.  INTRODUCTION

The characterization and generation of workload is crucial to
allow for accurate network planning and traffic engineering. To
allow for proper prediction of the load to be observed within
wireless local and metropolitan area networks, we need to con-
sider load fluctuations induced by traffic variability as well as
induced by user mobility. Currently, there are fairly accurate
models to describe traffic variations. However, there is a lack of
mobility models which represent realistic user behavior for
macroscopic scenarios, like for example for a city at large. The
collection of statistical data from information related to per-
sonal mobility can aid in developing accurate mobility models.
We believe, that these may overcome restrictions of synthetic
workload models currently in use.

Our goal is to investigate the influence of user mobility for
future wireless radio access networks. We are particularly inter-
ested in load balancing or quality of service issues to deal with
the predicted traffic demand of future wireless networks. We
concentrate on the effects induced on data traffic by user mobil-
ity. Our work is not about devising models to evaluate teletraf-
fic properties in the traditional sense, like call arrival rate, call
blocking rate, handoff rate, and rate of location updates, which

are determined by the connection-oriented nature of telephony
applications. 

The contribution of this work lies in the instantiation of our
macroscopic mobility model [1] which is performed for an area
within central Darmstadt, a city of approximately 145.000
inhabitants. The results in the area of user mobility are com-
bined with realistic traffic models to constitute the workload.

The paper is organized as follows. Previous and related work
is surveyed in Section II. The theoretical foundations of our
model are briefly explained in Section III. Section IV gives the
detailed description of the instantiation process of the model
using real world data. Section V contains the analysis of our
results. This includes the evaluation of our model against exist-
ing synthetic ones as well as implementation issues. We finish
by drawing conclusions and by pointing to possible future
work.

II.  RELATED WORK

Related work encompasses empirical and synthetic
approaches to describe user mobility and workload. The empiri-
cal models are based on real network and mobility traces, while
the synthetic approaches mostly use purely random behavior to
characterize the movement of single users or groups of users. A
fairly comprehensive survey on mobility modeling in wireless
networks can be found in [2], a more detailed description of
some synthetic models in [3]. 

Recent empirical models include the work of Tang and Baker
[4] which is able to provide deep insights into user behavior for
a metropolitan area wireless network. The work of Kotz and
Essien [5] presents real world traces of a production wireless
LAN. The results however do account for a special campus
style network and mainly focus on traffic analysis—the mobil-
ity aspect is restricted by the campus setup and thus cannot be
transferred to public networks. Balanchandran et al. [6] concen-
trate on network performance of small scale networks which are
not representative for the metropolitan scale. 

Existing synthetic models for macroscopic usage often bor-
row concepts from transportation planning (see for example
[7]). Recent approaches for such models, including the work
from Lam et al. [8] and Nanda [9], focus on handoff rates and
other parameters related to the number of handovers and user
numbers within given cells. These do not differentiate between
different classes of users and traffic demands. The activity

This work is partially funded by Siemens AG, CT IC 2 within the 
MobQoS project. More Information may be obtained from
http://www.kom.tu-darmstadt.de/Research/MobQoS/MobQoS.html

A Hybrid Workload Model for
Wireless Metropolitan Area Networks

Matthias Hollick1, Tronje Krop1, Jens Schmitt1, Hans-Peter Huth2 and Ralf Steinmetz1
1Multimedia Communications Lab, Faculty of Electrical Engineering and Information Technology

Darmstadt University of Technology
Merckstrasse 25, D-64283 Darmstadt, Germany

2Siemens AG, Corporate Technology, Dept. Information and Communications, 
Otto-Hahn-Ring 6, D-81730 Munich, Germany



based mobility models described in Scourias and Kunz [10],
Rocha et al. [11], and Markoulidakis et al. [12] provide for
some basic mechanisms which may be used for our purposes.
The formulation of these models and their instantiation is how-
ever not optimized for data traffic analysis but for classical tel-
etraffic applications. 

The scope of synthetic models aims at microscopical user
behavior and thus they mostly do not account for a city at large.
Empirical models on the other hand only include users already
“on-air” which use already deployed services (in current mod-
els mainly fixed bandwidth telephony within cellular net-
works), thus omitting future services and applications as well
as users being currently “off-air”.

Our model combines the realism of empirical mobility mod-
els with the flexibility of synthetic traffic models. This consid-
erable gain in adaptability of the resulting hybrid workload
model comes however at the expense of extensive empirical
surveys to obtain the necessary statistical input data. 

III.  MACROSCOPIC WORKLOAD MODEL

Our model [1] distinguishes between user and traffic related
issues. We account for user mobility using movement patterns,
so called trips, which define the movement of a user from an
origin to a destination. The set of users is classified to describe
their behavior. 

Users may be active in one role (see Fig. 1) including resi-
dents at home, students, office or service worker, etc. or inac-
tive during rest periods. Trips are based on the intended
behavior of users which are attracted by certain locations (see
Fig. 2). We divide the investigated region of interest into zones
which represent homogeneous areas with respect to socio-eco-
nomic characteristics. Zones are described by multiple proper-
ties: number of workplaces, number of residents, etc. as
obtained by communal zoning plans. 

Since the zones attract users—corresponding to their current
role—we finally obtain the user distribution for all zones and

their variation over time. The combination of the user distribu-
tion with traffic models describing the traffic induced corre-
sponding to the different roles results in the workload on the
network. Hence, it is possible to independently investigate
mobility and traffic related problems using the proposed
model.

The model equations are given in [1]. The individual steps
of the modeling process include:

• Classification of users and behaviors B.
• Classification of zones z, cells c and locations Ar.
• Calculation of the time-dependent number of users with

behavior b within zone z.
• Calculation of the time-dependent activity a of users with

behavior b in zone z.
• Transformation of the results from zone to cell level.
• Classification of traffic classes m per user behavior.
• Calculation of the workload matrix wc

m.

IV.  INSTANTIATION OF THE WORKLOAD MODEL

We present a typical 24 hour day within our model. The
instantiation of the model is performed using statistical field
data. Modeling of locations is based on zoning information
usually found in zoning plans for city development. The
important property of zoning information is that the zones
describe nearly homogeneous areas with respect to our location
criterion. Most importantly, public data as well as census data
usually applies to the level of granularity of zones. This gives
exact information on the numbers of workplaces, residents, etc.
The granularity of data available suited our model nicely in
most parts. In particular, public information included the num-
ber of residents with main and second address. Residents are
additionally indexed by age (which can be used to classify
pupils and students) and social state (working / not working).
The detailed information about workplaces was available for
all zones, too.

For the classification of user behavior, we needed more pre-
cise information than available solely using census data. While

Figure 1: Classification of active user roles
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Figure 3: Modelled part of the city of Darmstadt; zones vs. cells



the distribution of users into the proposed classes can be
achieved using public census records, we needed further infor-
mation to characterize the time-dependent nature of trips. For-
tunately, these shortcomings can be addressed using public
time budget studies. The ones available for Germany from
“Statistisches Bundesamt” are however of extremely fine-
grained level of detail. Thus we used secondary sources, which
already interpreted these studies. In addition, we have been
able to access trajectories of personal activities for various
German cities. These have been available upon request at the
municipality of Darmstadt for nonprofit use.

Using the above mentioned sources, we have been able to
instantiate our model for Darmstadt, a German city of around
140,000 inhabitants. The area covered is approximately 9.13
square kilometers. We use 83 cells with a size of 110,000
square meters each. The cell shape is hexagonal with the side
length of the hexagon being 205.80m (height = 356.69m, width
= 411.60m). We needed to perform significant post-processing
overhead. 

The zones available in the zoning plan are for example of
arbitrary shape and size and need to be manually processed to
fit the proposed cell structure. Moreover, special locations have
been modeled using our intimate knowledge of the city. Gath-
ering data for these special places turned out to be very labor
intensive. Fig. 3 shows the zoning plan of the area modeled,

the city center of Darmstadt. The shape of some zones from
census data is drawn as well as the modeled grid of cells.

See Figures 4, 5, 6, and 7 for the predicted number of active
users, categorized according to the user types depicted in
Fig. 1. These numbers have been deduced for the scenario of
Darmstadt using our model. 

Combined with the attraction levels for the area of interest,
we obtain the projection of the time varying number of users
for all zones. Fig. 9 gives an example for the model prediction
of the number of active residents during evening (20:00 to
21:00h). The main residential areas are clearly visible in a belt
surrounding the center of the city. The center itself consists of
office and shopping facilities while the region on the left is
mainly covered by industrial areas - only populated with few
residents at the time of the presented snapshot. Fig. 9 gives an
example for the number of active users during noon (12:00 to
13:00h). It is clearly visible, that the city center and the nearby
university attract most of the users.

To obtain a valid workload model, we combine the user den-
sities obtained by means of the mobility model with traffic esti-
mates per user class. To allow for proper treatment of QoS
aspects while keeping the complexity manageable we intro-
duce four traffic classes similar to the ones proposed in the
3GPP initiative: conversational, streaming, interactive and
background traffic [13]. 

Figure 4: Overall number of active/inactive residents over 24 hours
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Figure 6: Overall number of trainees over 24 hours
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Figure 7: Overall number of workers over 24 hours
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Figure 8: Active residents in Darmstadt from 20:00 to 21:00h
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Figure 9: Active users in Darmstadt from 12:00 to 13:00h
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• Conversational denotes traffic like IP-telephony or video-
conferencing. This implies constant bit rate (CBR) traffic
with a low delay of at most 100ms. The aggregate of mul-
tiple conversational flows may be modelled as CBR, too.

• Streaming traffic accounts for video on demand, streaming
audio delivery or for example a news ticker. We assume a
variable bit rate (VBR) nature of the individual streams.
The delay bound is 250ms. The aggregate of various
streams can be modeled with self similar traffic.

• Interactive traffic models transactional traffic like for
example web traffic. We assume the interactive traffic to
be self-similar if we regard traffic aggregates.

• Background traffic accounts for traffic like for example
email delivery or synchronization of files at arbitrary
times. We assume a self-similar nature of background traf-
fic.

See Table 1 for the instantiation of the traffic classes we
have chosen for initial parameterization of our model. Within
our investigations, we focused on scenarios for future radio
access networks. Thus the respective traffic values give esti-
mates of the average traffic rate of the active individuals within
each user class which have been predicted using statistics of
online behavior of German citizens. 

We assign a traffic vector based upon these classes for each
user class derived. The combination of user mobility data and
traffic vectors results in the workload model. Please note, that
we model the traffic aggregates on cell level. It is easily possi-
ble to combine the mobility model with additional traffic vec-
tors to account for different scenarios.

V.  IMPLEMENTATION AND ANALYSIS

We implemented the mobility model using a spreadsheet to
collect and combine all user and location related input data. We
smooth the resulting user densities and obtain values for each 5
minute interval of simulation time (288 samples per day) using
gnuplot. Since the target simulation environment is ns-2 [14],
we developed a set of scripts to generate the corresponding Tcl

input data for the simulation directly from the spreadsheet data.
Thus we are able to easily change traffic vectors to account for
different scenarios. Moreover, we integrated various other
helper scripts to parameterize the nodes and traffic agents. 

Since the calculated amount of traffic only accounts for traf-
fic which is generated from users of a given cell, we further
need to distribute the traffic within the network. That is, we
may want to direct all traffic to a central edge gateway or on
the other hand may model a certain degree of localization.
Using our scripts, we are able to specify a ratio of external/
internal traffic which is included in automated traffic genera-
tion.

Compared with traditional synthetic models like for example
the random walk or the random waypoint model, our results
differ significantly in terms of user and traffic distribution
throughout the network: the works [15] and [16] analyze the
stationary properties of the random waypoint model which can
be summarized as follows: the distribution of the location of

TABLE 1: INSTANTIATION OF TRAFFIC RATES PER USER CLASS

Traffic

User class User type Conversational Streaming Interactive Background Sum

Residents Inactive 0.00 kbyte/s 0.00 kbyte/s 0.00 kbyte/s 0.04 kbyte/s 0.04 kbyte/s

Active 2.70 kbyte/s 3.20 kbyte/s 8.10 kbyte/s 6.60 kbyte/s 20.60 kbyte/s

Consumer Buyer 0.80 kbyte/s 0.30 kbyte/s 1.50 kbyte/s 0.60 kbyte/s 3.20 kbyte/s

Visitor 1.20 kbyte/s 1.00 kbyte/s 2.30 kbyte/s 0.70 kbyte/s 5.20 kbyte/s

Idler 1.50 kbyte/s 1.60 kbyte/s 3.60 kbyte/s 1.10 kbyte/s 7.80 kbyte/s

Worker Industry 0.40 kbyte/s 0.20 kbyte/s 1.30 kbyte/s 0.50 kbyte/s 2.40 kbyte/s

Office 2.90 kbyte/s 0.70 kbyte/s 4.40 kbyte/s 2.00 kbyte/s 10.00 kbyte/s

Service 0.60 kbyte/s 0.20 kbyte/s 1.30 kbyte/s 0.50 kbyte/s 2.40 kbyte/s

Mobile 2.30 kbyte/s 0.60 kbyte/s 5.30 kbyte/s 1.80 kbyte/s 10.00 kbyte/s

Trainee Pupil 0.60 kbyte/s 0.80 kbyte/s 2.70 kbyte/s 1.10 kbyte/s 5.20 kbyte/s

Student 2.50 kbyte/s 3.00 kbyte/s 6.00 kbyte/s 3.30 kbyte/s 14.80 kbyte/s

Traveller 1.80 kbyte/s 1.40 kbyte/s 3.50 kbyte/s 1.90 kbyte/s 8.60 kbyte/s

TABLE 2: FRACTION OF AREA OF NETWORK VS. USERS AND TRAFFIC

Fraction 
of Area

Fraction
of Users

Total Traffic (in 
kByte/s)

Fraction
of Traffic

5% 19.45% 187,789.18 15.20%

10% 30.38% 321,763.70 26.04%

15% 40.13% 434,984.70 35.20%

20% 50.11% 548,248.78 44.37%

25% 56.79% 62,9051.43 50.91%

30% 61.91% 699,633.32 56.62%

40% 70.34% 826,558.32 66.89%

50% 78.12% 943,639.39 76.37%

60% 84.36% 1,032,264.42 83.54%

70% 89.56% 1,105,837.54 89.50%

80% 94.05% 1,165,484.01 94.32%

90% 97.93% 1,214,794.85 98.31%

100% 100.00% 1,235,631.40 100.00%



nodes within a random waypoint model is concentrated near
the center of the modeled area because nodes traveling
between uniformly chosen points spend more time near the
center than near the edges. The random walk model on the
other hand converges to a nearly uniformly distribution of
location of nodes in the stationary case, which is insufficent for
the intended macroscopic usage, too.

However, to account for a city at large, we need to model
areas of higher attraction as well as areas of lower attraction
over day. The findings for our model are that we cannot assume
uniformly distributed nodes. If we investigate the busy hour of
the network for all individual modeled cells, we find, that
within approximately 20% of the area, we expect roughly 50%
of the active users causing 44% of the total traffic. Within
approximately 50% of the area, we expect 78% of the active
users causing 76% of the total traffic (see Table 2 and Fig. 10).

The calculated rate of our model varies substantially. While
the average rate over all cells is 14,887.13 kByte/s, there are
cells with a rate as high as 61,986.52 kByte/s and other cells
with a rate of only 1,968.29 kByte/s. The standard deviation
over the 83 cells being 11,002.80 kByte/s.

Visualizations of the resulting user and traffic fluctuations
over place and time for the Darmstadt scenario can be found at
[17]. 

VI.  CONCLUSIONS AND FUTURE WORK

This work presented the instantiation of a novel workload
model which is a hybrid of an empirical mobility model com-
bined with a synthetic traffic model. The results obtained can
be used for further experimental analysis esp. for traffic engi-
neering and network planning applications. In our case, we
successfully applied the workload for a simulation study in the
area of IP-based wireless metropolitan area networks to sup-
port user mobility [18]. The insights obtained using our model

show major fluctuations of user density, which are induced by
mobility.

Moving from traditional cellular networks to wireless local
and metropolitan area networks results in smaller cells and
traffic types other than voice. Thus we see an increasing need
to deal with time varying traffic on multiple timescales com-
bined with location-dependent load fluctuations. Our model is
targeted to cover these aspects as well as the facets of currently
developed cellular networks operating on very small cell sizes.
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Figure 10: Fraction of users and traffic over fraction of area


