
Abstract — Simulations are an important tool in network
research. As the selected topology often influences the outcome
of the simulation, realistic topologies are needed to produce real-
istic simulation results. We first discuss the different types of
topologies and present our collection of real-world topologies
that can be used for simulation. We then define several similar-
ity metrics to compare artificially generated topologies with real
world topologies. We use them to find out what the input param-
eter range of the topology generators of BRITE, TIERS and GT-
ITM are to create realistic topologies. These parameters can act
as a valuable starting point for researchers that have to generate
artificial topologies.

1 Introduction

1.1 Motivation
Simulations are an important tool in network research. The proper-
ties of a selected topology often crucually influence the outcome of
the simulation, realistic topologies are therefore highly desirable for
realistic simulation results. 

There is a lot of work [1, 2, 3, 4, 5, 6, 7, 8, 9] discussing the proper-
ties of Internet topologies and there are a number of different topol-
ogy generators, e.g. [10, 11, 12, 13]. These generators offer a big
range of configuration parameters, GT-ITM for example has 16 dif-
ferent configuration parameters (for the transit-stub model). 

How realistic a generated topology is depends on the combination of
these parameters. How should a researcher set these parameters?
With this paper we try to answer that question and furthermore try to
make an initial comparison of existing topology generators.

We discuss the different types of topologies depending on the level
of abstraction and introduce the term “POP-level” topology arguing
that people should carefully distinguish between POP-level and

router-level topologies. We also point to our library of real-world
topologies.

Usually artificially generated topologies are judged realistic or not
by pure visual inspection. In this paper, we define objective criteria
(similarity metrics) for the similarity between two topologies. Using
these metrics we compare artificial topologies with real-world topol-
ogies. We present the optimal combinations of input parameters for
three different topology generators that yield the highest similarity to
two real-world topologies. Researchers can take these parameter
combinations as a starting point and vary them to generate topolo-
gies that are similar to real-world topologies.

We conclude with a short summary and outlook, our tools are avail-
able at: http://www.kom.tu-darmstadt.de/heckmann/topologies/.

1.2 Related Work
In [1] powerlaw relationships are found in three inter-domain (AS-
level) topologies of the Internet which were constructed from BGP
data. This paper opened up a discussion about powerlaw AS-level
topologies. [2] investigate based on the work of Barabasi and Albert
[14] possible origins of these power laws using topology generators
to create artificial topologies, among them are BRITE and GT-ITM
which we also use in this paper. More works [6, 5, 8] are based on
the powerlaw relationship.

[3] show that during the process of constructing the topologies of [1]
from BGP data 20 to 50% of the physical links are missed and that
more exact topology graphs do not follow the powerlaw relationship
found in [1]. The authors also show that works based on [14], e.g.
[2], are not supported by the more exact topologies.

Contrary to the papers mentioned above for the basis of this paper
we do not investigate whether the powerlaws hold true or not. In
addition, we focus on POP/router-level instead of AS-level topolo-
gies. We use the powerlaw metrics in our metrics with low weights
because they are under heavy discussion but we include additional
metrics that can capture the distribution of, e.g., the outdegree inde-
pent of whether it follows powerlaw relationships or not. 

Similar work to ours is done in [4] but for AS level graphs with at
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least 1000 nodes in order to evaluate topology generators for AS
level graphs. We investigate smaller and for POP/router-level graphs.

[9] presents an interesting method of measuring router-level topolo-
gies based on traceroutes, BGP and DNS data. The results look very
promising and can be used as input for our tool. 

2 Types of Topologies
Literature typically distinguishes between AS-level topologies where
one node represents one autonomous system (AS) and router-level
topologies which implies that one node represents one router. But the
latter is not always the case, many topologies that are labeled “router-
level” are actually what we call POP-level with one node represent-
ing one point of presence (POP) of a provider. Take for example the
AT&T topology depicted in Figure 1 which is quite famous and often
used for simulations. The New York node in that topology does
surely not represent a single router but instead the complete POP of
AT&T in New York consisting of a larger number of interconnected
backbone and access routers. Using the data from [9] which is based
on BGP and DNS data AT&T has at least 61 routers in New York, 24
of them being backbone routers. 

3 Similarity Metrics
To measure the similarity of two network topologies we define a set
of metrics that capture the basic connectivity properties of the topol-
ogy graph. We are interested in graphs with the same connectivity
properties but not necessarily in equivalent graphs. We are not inter-
ested in any geographical information or whether the graphs look
visually similar. We concentrate on the shortest paths, the distance
between nodes and the degree of connectivity because these are the
properties we deem most important for network simulations.

In the graphs, we can distinguish between edge nodes (which are
connected to end-users and other networks) and core/backbone nodes
(which are only connected to nodes of the same network). 

We define the following similarity metrics to calculate the similarity
between a generated topology and a real-world reference topology:

1. The first metric uses the hop-plot of all nodes. For each graph G
we look at all n nodes and calculate how many other nodes can
be reached on their shortest path within h=1,2, 3... hops. 
From this we derive the relative frequency distribution  with
J classes j with frequencies . We have to compare the fre-
quency distributions of the generated and the reference topol-
ogy. We could do this by comparing the mean values but
obviously two very different distributions can have the same
mean value, so that would not be a good criterion. Comparing
the standard-deviation has the same problem. Therefore, we
sum up the absolute cumulative difference of each class j:

(1)

An example demonstrates the logic behind this:
Consider the two frequency distributions

 = { 0.5, 0.0, 0.5 } and

 = { 0.0, 1.0, 0.0 } 

Both have the same mean value but are obviously very different. 
Our criterion would return a difference d of 
d = 0.5 + 0.5 + 0.0 = 1.0
Two equal distributions would return a difference of d = 0.0.

2. The second metric  is similar to the first but only looks at
edge nodes. It captures how many other edge nodes can be
reached from an edge node within h hops.

3. We derive the relative frequency distribution of the outdegrees
di of all nodes i of one graph. We use the significance level of a
Wald-Wolfowitz test for the similarity of the distributions of the
two graphs as third similarity metric.1

4. While the third criterion tests the complete distribution of outde-
grees we also compare with the fourth criterion the rank expo-
nent  of the first powerlaw as defined in [1]: The outdegree di
of a node i is proportional to the rank of the node ri to the power
of a constant :

(2)

We compare the relative difference of the rank exponent of the 
artificially generated topology and the real-world reference to-
pology:

(3)

5. Because the powerlaws are a well discussed phenomenon we
also include the outdegree exponent  of the second powerlaw
[1]. This fifth criterion is quite similar to the third one, we
account for that in the weights for this criterion later one. The
second powerlaw claims that the frequency fd of an outdegree d
is proportional to the outdegree to the power of a constant :

(4)

We use the relative difference of the outdegree exponents as the 
fifth criterion

(5)

6. As sixth criterion we use the relative difference in the number of
nodes n:

(6)

7. For the seventh criterion we use the relative difference in the
number of links l:

(7)
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All of these criteria were normalized so that 1.0 represents the high-
est similarity. Some criteria can theoretically return negative values
if topologies are extremely different but that was of no significance
as we are looking at relatively similar topologies.

The metrics mentioned above and some additional metrics are imple-
mented in our Topology Comparison Tool. It is written in Java and
can be easily extended with additional metrics. Every metric can be
given a weight and based on those the tool calculates the difference
between two topologies normalized to a number between 0.0 and 1.0.

4 Fitting based on Similarity Metrics
Based on the similarity metrics of the last section we try to determine
the input parameters of the most often used and referenced topology
generators BRITE [10], TIERS [11] and GT-ITM [12] for two well-
known real-world topologies (see Figure 1). The 154 node AT&T
topology is quite famous and often used for simulations. The 30
nodes DFN (German Research Network) topology is also often used
in German projects. Both topologies are POP-level topologies. We
did not have any router level topologies at the time of our experi-
ments. It is quite hard to get real-world topologies, ISPs are some-
what reluctant to reveal information about their topologies. Because
of this we started to collect available real-world topologies, they are
publicly available at our topology site: http://www.kom.tu-darms-
tadt.de/~heckmann/topologies/.

4.1 Fractional Factorial Analysis
We started with a fractional factorial analysis to determine the influ-
ence of the different input parameters of the topology generators on
the different similarity metrics. The results were very disappointing
because of the strong non-linear influence of practically all input
parameters on the similarity metrics. Only for small parameter varia-
tions the linear model which the factorial analysis is based upon can
be assumed. Because of these results another search heuristic to
search the parameter space was implemented.

4.2 Systematic Search 
The topology generators use random numbers in their topology cre-

ation algorithm. We first tested how similar topologies created with
the same parameter set are. For all topology generators the combined
similarity metric varies less than 2% if the same parameters set is
used. So the topology generators return stable results if the parame-
ters are unchanged, the influence of the random number generator on
the similarity metrics is not strong.

We then used a heuristic similar to Hooke & Jeeves [15] to search for
the parameter combination that yields the maximum combined simi-
larity metric. The weights chosen for the different metrics from Sec-
tion 3 are summarized in Table 1. We are aware of the fact that these
weights are subjectively chosen. We put our emphasis on the number
of nodes and links and the distributional criteria and not on power-
laws. Our tool allows to add further metrics and change the weights

 Figure 1:  The DFN and AT&T Topologies

AT&TDFN

Criteria Weight

1 with h = 3
with h = 5
with h = 10

2
2
2

2 with h = 3
with h = 5
with h = 10

2
2
2

3 5

4 2

5 2

6 5

7 5

Table 1: Weights



to what the researcher deems important for his experiment. 

4.3 Results
The parameters of Table 2 were found for Brite and the DFN and
AT&T topologies with a high and satisfying combined and normal-
ized similarity of 0.972 rsp. 0.951. Please note that the values  and

 do not seem to significantly influence the outcome of the measure-
ments when the parameter links/node is set to 2.

The parameters for Tiers result in a similarity of 0.998 and 0.995, the

highest similarities found in our experiments, they are given Table 3. 

The results for GT-ITM are displayed in Table 4 and Table 5 and
have a similarity of 0.966 rsp. 0.879.

To conclude, Tiers was able in both cases to produce topologies that
had the highest similarity to the real world ISP topologies, GT-ITM
produced the least similarities. The level of similarity that could be
reached is quite high and indicates that hierarchical topology genera-
tors are able to produce realistic POP level topologies. This is con-
trary to the findings of [1] for AS level topologies.

α
β

topology type method AS nodes router model
  

links/node

DFN Bottom up random pick 17 30 GLP 0.42-0.46 0.62-0.68 3

AT&T Bottom up random pick 31 154 GLP or BA [0, 1.0] [0, 1.0] 2

Table 2: Parameters of Brite for DFN / AT&T-like Topologies

α β

DFN WAN MAN LAN nodes/WAN nodes/MAN nodes/LAN

1 a 1 1 9 4 17

redundancy 
for WAN

redundancy 
for MAN

redundancy 
for LAN

redundancy for
MAN to WAN

redundancy for
LAN to MAN

6 4 1 a 7 2

AT&T WAN MAN LAN nodes/WAN nodes/MAN nodes/LAN

1 a 1 3 25 6 41

redundancy 
for WAN

redundancy 
for MAN

redundancy 
for LAN

redundancy for
MAN to WAN

redundancy for
LAN to MAN

3 4 1 a 3 - 4 4

Table 3:  Parameters of Tiers for DFN / AT&T-like Topologies

a. Parameter cannot be changed in TIERS 1.2

method avg stubs/
transit

extra 
t-s links

extra 
s-s links

transit-stub 1 10 6

top nodes edge method alpha  beta

1 3 0.99 -

transit nodes edge method alpha  beta

5 4 0.35 100

stub nodes edge method alpha  beta

5 2 0.5 100

method avg stubs/transit extra 
t-s links

extra 
s-s links

transit-stub 3 12 12

top nodes edge method alpha beta

3 3 0.3 -

transit nodes edge method alpha beta

4 3 0.5 -

stub nodes edge method alpha beta

4 3 0.2 -

Table 4: Parameters of GT-ITM for DFN-like Topologies Table 5: Parameters of GT-ITM for AT&T-like Topologies



Further experiments showed that the similarity with regard to most
metrics (except of course the number of links and nodes metrics)
remains roughly equal if the number of nodes and links are increased
proportionally for all topology generators. The parameters found
seem to be scalable to larger topology graphs and thus are a valuable
hint for researchers.

5 Summary and Outlook
This work should help the researcher in finding or creating realistic
topologies. We first introduced the term POP-level topologies, many
topologies that are called “router-level” are in fact POP-level topolo-
gies and no true router-level topologies.

We also introduced our collection of real-world topologies that can
be used for simulations. They are available at our topology page
(http://www.kom.tu-darmstadt.de/~heckmann/topologies/) in
human-readable GML [16] file format and as an NS2 OTcl script that
can directly be used for NS2 simulations. On that page we also offer
our software, for example a topology converter that can read the most
common topology file formats.

In this work, we also presented similarity metrics for comparing net-
work topologies and based on these we derived the combination of
input parameters for 3 topology generators that lead to the highest
similarity with 2 real world ISP-level topologies. The results show
ranges of parameter combinations that generate realistic topologies
and can act as a starting point for anybody who wants to do realistic
ISP level simulations. 

We are aware that our results are only estimations for a limited num-
ber of topologies and metrics and plan to continue it using more
topologies as well as more and different combinations of similarity
metrics. 
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