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Abstract - In this paper, we describe implementation
aspects and performance results of an innovative and pub-
licly available RSVP implementation. Much debate exists
about the applicability of RSVP as a signalling protocol in
the Internet, particularly for a large number of unicast
flows. While there has been a significant amount of work
published on the theoretical concepts of RSVP signalling
and conjectures about its presumed shortcomings, rather
little attention has been paid to the implementation details
of the core protocol engine. With our work, in spite of
being still far from a final judgement, we try to shed light
on this issue by presenting certain design details of a new
implementation and a study about its performance. One
particular result is given by the observation that a rela-
tively cheap router based on PC hardware can sustain the
signalling for more than 50,000 unicast flows.*

I. INTRODUCTION

Much debate exists about the applicability and performance
capabilities of RSVP [1] as a QoS signalling protocol for the
Internet. However, the discussion of this issue usually lacks
solid performance figures from real experiments using a real
implementation. Furthermore, the issues of signalling com-
plexity (control plane) in general and packet forwarding com-
plexity (data plane) of per-flow and per-hop reserved flows are
often confused. The goals of this paper are twofold. First, we
aim to provide additional insight about RSVP’s performance
capabilities by presenting central design characteristics of our
protocol implementation. Second, we present detailed experi-
mental data describing load measurements we have carried
out using this implementation. These data cannot be used to
draw a single major conclusion, but represent detailed hard
facts for others to extrapolate them into their respective imple-
mentation context. We do however observe that, despite its
undebatable complexity, RSVP can perform better than often
assumed. Additionally, we conclude that there is potential for
further optimization, both through protocol extensions as well
as internal optimization of the protocol engine.

In the past, various proposals have been published, which
describe useful extensions to the basic version of RSVP (see
Section II.B for details). The goals of these extensions are
mainly to complete RSVP’s specification in the areas of secu-

rity and reliability and furthermore, to improve the stat
refreshing mechanism, which is already identified as curren
limiting overall performance. On the other hand, little atten
tion has been paid to the implementation of the core proto
engine itself. As a result, RSVP is often assessed as havin
poor performance, however, those judgments are rarely ba
on solid data. Therefore, the internal design structure a
algorithms, as well as the overall protocol performance, ha
been subject to careful investigation in this work. In this eva
uation, we focus on large numbers of unicast flows. One re
son is given by the prohibitively extensive infrastructur
necessary to carry out large-scale experiments with multic
communication. The second and more important reason is
the suitability of RSVP to handle large multicast groups, fo
which it was intentionally designed, is commonly undispute
Rather, the handling of a large number of unicast flows is co
sidered as the dominant scalability problem of RSVP.

The paper is structured as follows. In Section II, we revie
previous work related to RSVP performance and its evalu
tion. Section III presents our RSVP implementation, partic
larly certain central design concepts. In Section IV, w
describe the general setup for the performance experime
while the results are reported in Section V. In Section VI, w
present profiling information to further back up certain find
ings from the performance experiments. The paper is wrapp
up by presenting a summary, conclusion and outlook to futu
work in Section VII.

II. RELATED WORK

A.  RSVP Performance

Little work has been reported to assess the performance
commercial RSVP implementations. A notable exception
given by [2], in which a technical framework for carrying ou
such tests is presented. From the performance figures fo
“commercial midrange router” given in [2], it can be deduce
that RSVP flow setup scales significantly worse than line
These results indicate that the particular version of the RS
implementation under consideration may have been in a rat
early development stage and cannot serve as a basis for ju
ments about its signalling performance.

Another investigation of RSVP’s performance is reported
[3]. However, this work mainly considers an existing imple
mentation, theISI rsvpd [4], which we do not regard as the
optimal choice for performance measurements. This is furth

*. This work is partially funded by the European Commission
under the 5th Framework Programme IST, Project M3I (11429).
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documented in the rest of this paper. Some performance num-
bers are listed in [3] for another commercial RSVP implemen-
tation. However, this implementation does not sustain more
than 600 sessions and thus, can be assessed similarly to the
implementation studied in [2].

Other published work describes the implementation of an
RSVP-capable switch-router in [5], but the reported perform-
ance figures are targeted towards the fundamental capability
of the system to deliver QoS objectives in the first place,
rather than performance of signalling at a large scale.

In [6], interesting performance figures are reported for
RSVP message processing on a commercial router platform.
However, these performance figures are somewhat without
context, because it is not mentioned under which load condi-
tions they were measured. Additionally, because these num-
bers are not the central focus of the work in [6], not many
details about the experiments are given. Consequently, these
numbers can serve as a basic indication about RSVP’s
processing overhead, but they cannot be considered as the
final judgement in the discussion about RSVP.

In summary, although earlier work and published results
have already indicated some of the conclusions shown in this
paper, we present the first thorough study of RSVP’s perform-
ance. This study is based on a publicly available implementa-
tion and thus, verifiable by others.

B.  RSVP Extensions

A number of protocol improvements have been suggested
to increase the performance characteristics of RSVP opera-
tions. An initial proposal to speed up the service establishment
time in the presence of occasional packet loss and to reduce
steady-state refresh signalling overhead has been made in [7].
One of the drawbacks of this approach is the requirement to
change the protocol specification and to introduce an addi-
tional confirmation message into RSVP. An improved
approach has been described in [8], which also deals with the
general issue of reliability of RSVP messages, e.g., in case a
service invocation is torn down. Instead of refreshing all the
state information, neighbouring RSVP nodes only need to
exchange ‘heartbeats’ denoting their liveliness. A slightly dif-
ferent suggestion addressing the same issue even more strin-
gently is currently developed within the IETF RSVP working
group [9]. This mechanism addresses further details, such as
how to discover a very short-termed node failure.

It is beyond the scope of this work to rate these different
techniques. However, they clearly bear the potential to drasti-
cally reduce RSVP’s processing requirements for steady-state
refresh signalling. This eliminates one of the major perform-
ance limitations of the current RSVP specification. Other
RSVP extensions, which are in the process of being standard-
ized, encompass diagnostic messages [10], inter-operation
with IP tunnels [11], cryptographic authentication [12] and
user identity representation [13].

III. KOM RSVP ENGINE

For an overview and explanation of RSVP, see [14]. Unfo
tunately, the only publicly available router implementation o
RSVP, the ISI rsvpd, turns out to be of questionably desi
and coding quality and contains bugs. Therefore, we do n
consider it as the optimal choice for experimenting with prot
col extensions and performance assessments and we de
oped a new protocol engine from scratch, termedKOM RSVP
engine, or KOM rsvpdfor short. The main design goals of this
implementation are clarity of code, flexibility and extensibi
ity. Additionally, we aim at providing an experimental soft
ware platform for other researchers. Such an implementat
on a regular workstation using a common UNIX operatin
system can only serve as a proof of concept and research p
form for future investigations. Therefore, although we hav
tried to keep the design prepared for efficient operation, we
not believe that it is currently necessary to implement for ou
most efficiency at the coding level. We have employed
object-oriented design and the implementation is done
C++. It is publicly available at
http://www.kom.e-technik.tu-darmstadt.de/rsvp/

A.  General Design

A detailed description about the design of this implement
tion can be found in [15]. State information of RSVP is store
as objects containing relationships to other objects. The c
tents of a PATH message are stored in a Path State Bl
(PSB) whereas contents of a RESV message are stored
Reservation State Block(RSB). As an example for relation-
ships, each PSB has a relationship to aPrevious Hop State
Block (PHopSB) representing the hop from which this PAT
message has been received. Information concerning a rese
tion at an outgoing interface is stored in anOutgoing Interface
State Block(OutISB) and the relationship between reserv
tions and PSBs is modelled as separate objectOutgoing Inter-
face at PSB(OIatPSB). It turns out that this object can serv
as a crystalisation point to easily distinguish the operati
context when calling the traffic control module, which is us
ful to collocate the respective code. Additionally, it is used
internally represent an N:M relationship by two 1:N relation
ships (which simplifies implementation). Figure 1 shows th
entity-relationship diagram for the design of RSVP sta
information. Modelling RSVP state by an entity-relationshi
diagram is deemed useful both for documentation as well
efficient implementation through object-relationships [15].

Certain details regarding the generic design of the traf
and policy control interface are presented and discussed
[16]. A description of our overall vision of employing RSVP
as a general service signalling protocol can be found in [17

B.  Fuzzy Timers

By far the largest container in an RSVP implementation
necessary for timer handling. In this implementation, a regu
2
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hash-based data structure is used as follows. All timers of the
RSVP engine are stored in a hierarchical container. The upper
layer is implemented as an array representing time slots and
accessed through a hash. Individual time slots in the lower
layer are implemented as sorted lists. The amount of time cov-
ered by each slot is configurable. Such a container is only
capable to foresee a limited amount of time in the future,
which should be sufficient for RSVP. In order to accommo-
date the rare event that timers exceed this time horizon, an
additional sorted list is kept and timers from this list are
moved into the respective slot when it becomes available. This
concept is known as atimer wheel[18]. The access complex-
ity of such an implementation isO(log(n)), with n being the
(varying) number of timers in a slot. Consequently, perform-
ance of this container can be traded off against memory
requirements by choosing the size and number of slots. This
data structure design is shown in Figure 2.

For RSVP messages, this scheme can be optimized even
further. RSVP is designed to be robust against varying mes-
sage transmission times and in fact, a large number of all tim-
ers are calculated as random numbers within a certain interval.
As a consequence, there is no demand for outmost precision in
the scale of a few milliseconds. If the duration of a time slot in
the hierarchy becomes small compared to the basic refresh
time (e.g. smaller than 100 microseconds when the basic
refresh interval is set to 30 seconds), an option to employ
fuzzy timersis implemented. When enabling it, the timers
within each time slot are stored in a simple FIFO list instead

of being sorted according to their precise expiration. Durin
each time slot, timers are fired arbitrarily according to the
location in the simple list. The result is a slight inaccuracy
timers compared to their expiration time. The inaccuracy
bounded by the length of a time slot and can be considere
very reasonable trade-off. In principle, this scheme promise
performance gain over the plain timer wheel, because
access complexity is reduced toO(1). However, because of
the generally small number of timers stored in one time sl
such performance gains are hardly visible in reality. On t
other hand, as discussed in Section V.C, this design can
used to improve interaction with the operating system.

C.  Multi-threaded Message Processing

Employing the innovative design of the RSVP engine,
was possible to quite easily replace the initial sequential m
sage processing by a multi-threaded protocol engine with
incremental implementation effort of about 6 weeks. A fixe
number of worker threads can be used to concurrently proc
RSVP messages. Because of a current lack of system supp
certain interactions with the operating system, e.g. the rec
tion of raw IP packets, cannot be performed truly mult
threaded. Therefore, those operations are currently carried
sequentially. As a consequence, in addition to the work
threads, there is a dedicated thread to initially receive and d
patch protocol messages. Furthermore, a separate threa
created to handle timer events. Synchronisation points are
at

• access to the central state repository (synchronisation
point per session),

• interfaces to traffic control (synchronisation point per
interface),

• access to the central timer management (global synch
nisation point), and

• access to certain system services (global synchronisat
point, see above).

The design of multi-threaded message processing
sketched in Figure 3. There are two options to employ th
design, which can be chosen at compile time. The first opti
allows for an arbitrary number of worker threads, simulatin
the situation of a router possessing multiple CPUs as con
engine. The other alternative tries to mimick operation in
potential high-end router, which has a dedicated CPU at e
network interface.

Of course, using multiple threads on a single-CPU works
tion cannot be expected to significantly increase performan
other than potentially providing improved interaction wit
external I/O operations.

The design could be further improved. For example, t
global lock for the timer system could be replaced by mo
fine-grained locking for each slot of the timer container. O
the other hand, with the fuzzy timer scheme, access to
timer container is not as time-consuming and critical as with

RSB
1n

OutISB
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PSB

n1
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Session

1

n

Fig. 1.  Entity-relationship diagram for state blocks.
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sorted container. To this end, the purpose of this multi-thread-
ing extension is to demonstrate the simplicity and feasibility
of parallelizing RSVP operations as a proof of concept. Indic-
ative performance tests have been carried out and are
described in Section V.D.

It becomes very obvious that the object-relationship design
alleviates the task of parallelizing message processing a lot.
The reasons are given by the natural encapsulation of data and
procedures in an object-oriented design. This allows for easy
identification of synchronisation points. Because all state
objects are stored and accessed through the session object, no
additional locking is necessary for them, besides acquiring a
single lock for the session.

IV. EXPERIMENT SETUP

The performance experiments were carried out on standard
PC-based workstations, which serve as a router platform run-
ning FreeBSD 3.4. These workstations are equipped as fol-
lows:

• single Pentium III processor, 450 MHz, 512KB cache
• point-to-point 100 Mbit/sec Ethernet links, 3Com

3c905C-TX interface cards
• Gigabyte GA-6BXU mainboard, standard hard disk
• 128 MB RAM main memory
The total cost of this equipment as of December 1999 is

approximately 600 Euros plus 50 Euros per network interface.
For the tests, 6 nodes are connected with each other as
depicted in Figure 4. N5 is used as destination host and N1 as
source host. Multiple unicast sessions are created by specify-
ing multiple port numbers. Since handling of API sessions
creates additional overhead at the respective end node, N2 and
N6 are used as additional source and destination hosts, if a
large number of sessions is created. The RSVP refresh interval
is set to 30 seconds, as suggested in [1]. The RSVP daemons
run in single-threaded mode (except for Section V.D) and
exchange basic RSVP messages only, without policy data and
integrity objects. However, all experiments encompass the
generation and transmission of confirmation messages.

The load generator at N1 (N2) creates sessions and path
advertisements with a randomized time interval in between,

until a certain number of sessionsn is reached. The upper
bound of this time interval can be chosen for each experime
When the target number of sessions is reached, the load ge
ator creates and deletes sessions with the same random
time interval respectively, in a way that the number of sessio
is kept in the interval . The receiver at N5 (N6)
responds to each path advertisement by immediately gene
ing reservation requests, which establish the end-to-end fl
reservation.

The observations are made at Node N3 and N4. Measure-
ments are done by periodically executingtop and recording
the highest numbers for current total memory consumpti
and percentage of raw CPU time that is reported for execut
of the RSVP daemon on either node. Note that this kind
measurement introduces some inaccuracies and inherent
domness, which however should not mask the principle m
sage of the results.

V. EXPERIMENTAL RESULTS

In order to assess the performance of an RSVP implemen
tion and to address the usual concerns against its proces
overhead, a number of performance experiments have b
carried out. It is important to mention at this point that th
KOM RSVP engine has not been subject to careful a
detailed tuning at the coding level. No specific optimizatio
has been carried out, other than the general design decis
and algorithmic improvements described earlier.

The first series of tests compares the performance of
KOM rsvpd with the ISI rsvpd. The second series investigat
the current performance limits of the KOM rsvpd and the fo
lowing experiments analyse the effect of algorithmic improv
ments that have been implemented. Additionally, a
experiment is reported, which investigates the influence of
average flow lifetime on the processing effort. Finally, som
experiments have been carried out to obtain additional int
esting performance figures, e.g., about the end-to-end se
latency.

A.  Comparison with Existing Work

For this first series of tests, no specific optimizations ha
been turned on in the KOM RSVP engine. The timer contain

Message Processor
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Fig. 3.  Multi-threaded message processing.
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has been configured to consist of 20,000 slots covering 50
milliseconds each. Both implementations have been compiled
with the same optimization and debugging flags. The hash-
based session container does not provide any performance
gain for either alternative, because all flows are targeted to the
same host.

The ISI rsvpd contains bugs, which basically prohibit test-
ing scenarios that involve the deletion of multiple sessions. An
investigation of this problem revealed at least one non-trivial
error in the memory management to be responsible for this sit-
uation. It is quite easily possible to fix the most prevalent
problem, such that the software does not crash too often, but
as a result, memory leaks prohibit reasonable operation.

Because of these problems, the performance figures for the
ISI rsvpd can be considered as valid only to a limited extent.
We have chosen not to fix the above bug to avoid memory
leaks, which otherwise result in an infinite increase of
processing effort and memory consumption and thus, preclude
to obtain realistic performance figures. As a result, the num-
bers for the ISI rsvpd can only be considered as a lower bound
for CPU consumption, because it always crashes before a sta-
ble situation with creation and removal of sessions can be
reached. The listed results consequently show the situation
just before the crash. With the KOM rsvpd, each test has run
for several minutes. The listed percentage of CPU time is the
highest number that has been observed during that time. The
memory consumption has always stabilized at the reported
amount. The results are depicted in Table I.

The load generator used in these experiments first estab-
lishes the configured number of flows and then circulates
through the flows and removes and re-establishes them. In
order to vary the lifetime of each flow, the interval between
creation respectively removal of subsequent flows is adjusted.
Due to space limitations, this is not shown directly in the
tables. Instead, the average lifetime of a single flow is shown,
which is calculated according to the fact that the creation/
removal interval is evenly distributed between zero and the
maximum interval. The maximum creation/removal interval is
set to 25 milliseconds for the tests with 2000 flows and more.
Therefore, the average lifetime increases with an increasing
number of flows. Note that the interval is appropriately
adapted for the tests with smaller numbers of flows, such that
the average lifetime of flows is not much smaller than the
RSVP refresh interval. The influence of the average flow life-
time is further studied in Section V.E.

It can be derived from these performance figures, that the
KOM RSVP engine performs significantly more efficiently
than the ISI rsvpd. While it is unclear how much of this effi-
ciency gain has to be attributed to a better coding style in gen-
eral, it can obviously be concluded that the innovative object-
relationship design at least does not prohibit performant
implementation, however, at the expense of additional mem-
ory consumption. The KOM rsvpd consumes almost twice the
amount of memory per flow when compared to the ISI rsvpd

numbers. This can be attributed to the fine-grained implem
tation of state relationships, but also to the fact that memo
consumption was not the primary goal for optimization of ou
implementation.

B.  Performance Limits

The goal of this set of tests is to find the upper limits on th
number of reservation requests for a tuned version of t
RSVP implementation. The experiment setup and measu
ments have been done as described above. In the tuned
sion, the timer container consists of 100,000 slots covering
milliseconds each and the code for API processing is disab
at intermediate nodes. Assertion checking and debug outpu
turned off. Since these tests are carried out in a limited inf
structure with at most two destinations hosts, port numbers
included into the hash calculation for the session container
the tuned version. Because doing so establishes a perfect
distribution for the test scenario, the session hash index
been restricted to 4096 to simulate a realistic situation. F
thermore, the load generation is distributed between all fo
end nodes as depicted in Figure 4. The results are listed
Table II.

The following observations can be made in this experime
Tuning the protocol implementation reveals a significa
potential for increasing the performance. A router platfor
based on standard PC hardware can handle the full signal
for 50,000 unicast flows. The larger amount of initially allo
cated memory for the tuned version can be attributed to
additional memory requirements for the more fine-grain
timer container. The memory requirements per flow rema
unaffected. Two additional tests are listed, in which the cre

TABLE I
PERFORMANCE OFISI RSVPD VS. KOM RSVPD

Experiment settings ISI rsvpd KOM rsvpd

Flows Avg. lifetime % CPU Memory % CPU Memory

0 -- 0.00 1920K 0.00 2724K

500 25.00 sec 2.05 2372K 1.13 3620K

1000 25.00 sec 6.18 2856K 3.56 4544K

1500 28.50 sec 10.01 3296K 5.32 5472K

2000 25.00 sec 14.89 3768K 7.37 6388K

2500 31.25 sec 20.51 4244K 9.91 7308K

3000 37.50 sec 25.93 4728K 13.38 8236K

3500 43.75 sec 33.74 5208K 16.60 9160K

4000 50.00 sec 42.53 5692K 20.26 10084K

4500 56.25 sec 51.37 6168K 23.73 11008K

5000 62.50 sec 60.45 6656K 27.83 11928K

5500 68.75 sec 79.69*

* number of successful reservations: ~ 5400

7140K 32.96 12848K
5
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tion/removal interval is set in a way that the average lifetime
of a flow is approximately 4 minutes. The resulting CPU load
numbers demonstrate that the RSVP engine is indeed able to
handle such a large number of sessions, even when assuming a
realistic average lifetime of calls. In fact, the impact of the
lifetime of flows seems to be quite low. Further details are dis-
cussed in Section V.E.

One particular detail can be observed when comparing the
CPU load numbers for the basic version in Table II, depending
on how many nodes participate in load generation. If four end
nodes are used, the resulting load is substantially smaller and
the performance limit is increased. The explanation of this
behaviour is related to the implementation of the timer wheel
in combination with theselect system call, which is used to
query for incoming packets. If four end nodes participate in
load generation, messages arrive at intermediate nodes at three
network interfaces, instead of two. Each switch between timer
management and message reception incurs a call toselect ,
which is expensive. It takes at least 10 milliseconds on a regu-
lar Linux, Solaris and FreeBSD operating system to perform
this system call when a timeout is given. Afterselect
returns, exactly one message is read from each eligible inter-
face. Now, if messages arrive at more interfaces, more mes-
sages are potentially received, before the next invocation of
timer management. This leads to less context-switching
between message reception and timer management and thus,
reduces the total number of system calls, which in turn
decreases the system load.

Figure 5 shows an overall picture of the experimental
results from this and the previous section. The graph depicts

the fraction of CPU load as a function of the number of se
sions.

C.  Fuzzy Timer Handling

While in theory only fuzzy timer handling can guarante
the property of overall linear complexity by simplifying
access to the timer container, the previous experiment sho
that, by enabling a fine-grained timer wheel, this linearity
already observed. In fact, a further modification of implemen
ing fuzzy timers is needed to achieve any visible improveme
at all. Because of the effects of switching between timer ma
agement and interface service, which is described in the pre
ous section, all timers from the current slot are fired whenev
the system enters the timer management. This further redu
the number of context switches and calls toselect and con-
sequently, the overall processing load. A comparison with re
ular operation, which indicates the additional performan
gain, mainly at a high session load, is shown in Table III. At
load of about 58,000 flows, the system exceeds the maxim
amount of main memory that is available and starts swapp
to disk. This prohibits any further performant execution und
this high load.

It turns out that there is a triangular relationship betwe
the kernel clock granularity, the minimum timeout needed f
theselect call and the size of the time slots. It might actu

TABLE II
PERFORMANCELIMITS OF KOM RSVPD

Experiment settings
basic KOM rsvpd

(load gen. by 2 nodes)
tuned KOM rsvpd

(load gen. by 4 nodes)

Flows Avg. lifetime % CPU Memory % CPU Memory

0 -- 0.00 2724K 0.00 4724K

2500 31.25 sec 9.91 7308K 4.39 9324K

5000 62.50 sec 27.83 11928K 8.50 13940K

7500 93.75 sec 58.11 16548K 11.38 18560K

9800 122.50 sec 93.12 20788K -- --

10000 125.00 sec 65.00*

* load generated by 4 nodes, see main text

21156K 14.75 23168K

15000 187.50 sec -- -- 20.95 32396K

20000 250.00 sec -- -- 27.73 41632K

30000 375.00 sec -- -- 40.67 60096K

40000 500.00 sec -- -- 55.17 78556K

50000 625.00 sec -- -- 67.99 97012K

40000 240.00 sec -- -- 56.69 78556K

50000 250.00 sec -- -- 70.56 97012K
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Fig. 5.  Performance curve for ISI and KOM rsvpd.

TABLE III
PERFORMANCE OFFUZZY TIMER OPTIMIZATION

Experiment settings tuned KOM rsvpd fuzzy KOM rsvpd

Flows Avg. lifetime % CPU Memory % CPU Memory

0 -- 0.00 4724K 0.00 4724K

20000 250.00 sec 27.73 41632K 26.12 41632K

40000 240.00 sec 56.69 78556K 53.37 78556K

50000 250.00 sec 70.56 97012K 63.96 97012K

58000 232.00 sec -- -- ~70.00 >108M
6



Implementation and Evaluation of the KOM RSVP Engine
Martin Karsten, Jens Schmitt, and Ralf Steinmetz
Proceedings of IEEE INFOCOM 2001, Copyright (C) IEEE

the
ti-
rv-
P
the
e
is

and
uld
nal
th
dis-
f
i-

er-
nt
m
el

ich
ain
nd
ba-
y.
ion
up
clu-
-
on

rall
is

ese

r-
ti-
y
ests
at-
ally be possible to increase the performance limits by increas-
ing the range of time slots or increasing the clock granularity.
However, we have not done any such experiments, so far.

D.  Parallel Message Processing

This experiment is carried out to investigate the scalability
of multi-threaded message processing on a multi-processor
platform. This experiment uses the first alternative to employ
multi-threaded message processing as presented in
Section III.C, in that each message processing thread is bound
to a specific network interface. The experiment setup is very
simple and shown in Figure 6. The end-systems E1 and E2 are
the same PCs as in the other experiments and are connected to
a router R. Both end-systems act as sender and receiver and
create a large number of flows. A SparcServer 1000 with four
60Mhz CPUs running Solaris 2.6 serves as router. Note that
this router hardware provides significantly less absolute
processing power compared to the other tests. Because a sepa-
rate thread is needed in the RSVP daemon to receive raw IP
packets and dispatch them to the worker threads and another
thread is used for timer handling, at least four CPUs are
needed to carry out a reasonable experiment for this scenario.

In order to test the capabilities of this system, tests have
been run in single-threaded mode and in multi-threaded mode
with enabling an increasing numbers of CPUs. The goal of
each test is to find the highest number of flows that can be
handled reliably. Therefore, the RSVP daemon has been
slightly modified to regularly check the difference between
the number of PSB and RSB objects. If this difference
exceeds a certain threshold, the daemon stops and reports the
number of successfully established reservations. Because the
total number of flows that can be sustained by this router is
rather small, the RSVP refresh time is set to 3 seconds in order
to increase the effect of established sessions compared to the
creation of new ones. As well, to decrease the high influence
of system code, which cannot be executed truly multi-
threaded, the software is compiled without compiler optimiza-
tion. The results are listed in Table IV. Each test is executed
ten times and both the highest and lowest result are not taken
into account for calculating the average result.

It becomes clear from the resulting performance figures,
that the potential for parallelization gains is indeed given, but
certainly limited, at least on the tested platform. Furthermore,
when comparing the results for single-threaded execution with
those of multi-threaded execution on a single CPU, a signifi-
cant overhead for synchronization mechanisms can be

observed. These limitations must be partially accounted to
insufficient support of the operating system to support mul
threaded reception of raw IP packets and other low-level se
ices, but also to inherent parallelization limitations of RSV
processing and the improvable implementation design of
parallel code in the KOM protocol engine. To this end, th
result of implementing multi-threaded message processing
somewhat unsatisfactory. On the other hand, the design
implementation of multi-threaded message processing sho
be considered as a proof of concept, rather than the fi
design of a production-level implementation. Especially, wi
proper operating system support, the need for a separate
patcher thread (which might very well form the bottleneck o
the current system) and its synchronisation would be elim
nated. As discussed in Section V.B and Section V.C, the ov
all performance of the RSVP daemon is to a great exte
determined by the system-level task of receiving packets fro
the network and the particular interaction with the user-lev
daemon. This assumption is further verified in Section VI.

Another conclusion can be drawn from these tests, wh
backs up the above considerations. Testing the efficiency g
of a multi-threaded RSVP implementation on a simple a
small multi-processor workstation as in these tests, is pro
bly not sufficient to fully reveal parallel processing efficienc
For example, the performance drop when observing execut
on 4 CPUs can be explained as follows. On this platform,
to 3 CPUs can be bound to a process (process group) ex
sively. Effectively, in the tests with 4 CPUs no exclusive bind
ing of CPUs can been done and therefore, the RSVP daem
competes with other processes. Consequently, the ove
scheduling effort increases for the operating system. This
reflected by the lower performance and indicates, that th
tests cannot be regarded as real tests with 4 CPUs.

As discussed in Section III.C, there is a broad field for fu
ther work on tuning the design and implementation of mul
threaded RSVP operations. Additionally, it would be ver
desirable to compare the results obtained during these t
with performance figures from different hardware and oper
ing system platforms.

E1 E2R

observation point

Fig. 6.  Experiment setup for parallel processing.

TABLE IV
PERFORMANCE OFPARALLEL MESSAGEPROCESSING

Number of
CPUs

Number of flows
(individual tests)

Number of flows
(average)

single-
threaded

 451, 425, 464, 473, 466,
450, 450, 494, 520, 489

467

1 345, 389, 386, 380, 373,
373, 393, 350, 357, 366

371

2 552, 478, 571, 605, 571,
532, 563, 556, 518, 572

554

3 707, 723, 693, 756, 731,
718, 711, 702, 729, 727

719

4 592, 621, 711, 662, 652,
655, 648, 666, 655, 663

653
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E.  Lifetime of Flows

The experiments in Section V.B and Section V.C indicate
that the average lifetime of flows has only limited influence on
the computational effort. In order to further investigate this
issue, a dedicated set of tests has been done to examine this
effect. The results are listed in Table V.

The figures clearly show, that the resulting CPU load for a
certain number of flows is largely unaffected by the average
lifetime of flows, as long as it is above the RSVP refresh inter-
val (again set to 30 seconds here). Thereby, these numbers
back up the conjecture that the average lifetime of flows has
only limited influence on the overall processing effort. Since
RSVP state is refreshed periodically, the average flow lifetime
basically determines the ratio of setup messages compared to
refresh messages, whereas the overall number of messages is
approximately the same. It can thus be concluded that there is
not much difference between the individual processing effort
for setup messages and for refresh messages. Consequently,
when flow lifetimes are multiples of the refresh interval, a
large fraction of processing effort is due to refresh messages.

Indirectly, this result demonstrates the large potential for
performance gains by extending RSVP with mechanisms to
reduce the amount of state refresh messages, like those
referred to in Section II. However, this particular behaviour
could also be an artefact of this specific implementation.
Therefore, further work covering different implementations
would be needed to investigate the details. Unfortunately, at
this time, no such implementation is available. The ISI rsvpd
cannot reliably handle the deletion of sessions, hence, this
kind of experiment is currently not possible.

If the lifetime of flows becomes significantly shorter than
the refresh interval, this generates an absolute increase in the
number of RSVP messages and results in a much higher
processing load. In fact, for these cases, it can be noticed in
Table V that the increase of CPU load is approximately
inverse proportional to the lifetime of flows.

F.  Other Experiments

Some other experiments have been carried out to assess
implementation under a variety of aspects. Because th
results are highly bound to the specific scenario, they a
somewhat illustrative, but they may not be regarded as re
vant as the above experiments. Hence, they are not do
mented here in the same level of detail.

1) RSVP & Packet Classification

We have done the following experiment in order to measu
the combined throughput of signalling and packet classific
tion and scheduling. Along two adjacent FreeBSD-based ro
ers reservations for 10,000 flows are established, similar to
earlier experiments. Each of these flows requests a sm
amount of bandwidth. Then, a traffic source emits a const
packet stream, which belongs to one of the reserved flow
Although this packet stream exceeds the reservation by far
intermediate node must still classify and schedule all packe
We observed that in combination with HFSC scheduling fro
the ALTQ package [19], two adjacent routers running KOM
rsvpd can both sustain the signalling and traffic control confi
uration for 10,000 flows and at the same time, classify a
schedule 25,000 packets per second. Note that this result d
not make any statement about the aspect whether all flo
actually receive their QoS objective. Evaluating the ALT
package is beyond the scope of this paper.

2) End-to-End Setup Latency

Using the setup shown in Figure 7, tests have been carr
out to measure the setup latency of RSVP requests. R0 and R3
are not handling any background RSVP session. R1 and R2 are
loaded with up to 20,000 flows. The total end-to-end set
latency usually varied between 22 and 26 milliseconds, ind
pendent of the load of intermediate routers. Consequently,
latency of bidirectional session setup can be estimated to b
most 5-6 milliseconds per intermediate hop, which shows th
even along a path with a large number of hops, the end-to-e
setup latency will very likely be acceptable.

VI. PROFILING DETAILS

In order to further investigate the performance of our RSV
implementation, we generated profiling information from a
experiment equivalent to those described in Section V. T
protocol engine was compiled for optimized execution as
Section V.C and has been loaded with the signalling of 20,0
unicast flows. Table VI shows the execution times for vario
operations, which represent complete and non- overlapp

TABLE V
INFLUENCE OFAVERAGE FLOW LIFETIME

Experiment settings fuzzy KOM rsvpd

Flows Average lifetime % CPU Memory

10000 150.00 sec 13.96 23168K

10000 125.00 sec 14.75 23168K

10000 100.00 sec 14.99 23168K

10000 50.00 sec 15.77 23168K

10000 25.00 sec 16.65 23168K

10000 15.00 sec 21.48 23168K

10000 5.00 sec 77.10*

* number of successful reservations: ~ 9700

23168K

R0 R1 RecvR3R2

Fig. 7.  Experiment setup for end-to-end latency.

Send
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partitions of the overall message processing. Because of the
characteristics of profiling, the execution time here is relative
to the daemon’s overall accumulated processing effort.

It can be observed from this table, that packet parsing con-
sumes a significant amount of execution time. This can be
attributed to the fact that we have not spent effort to optimize
the code for parsing RSVP messages. In Table VI, the figures
for packet awaitingandpacket receptiondenote pure system
activities, i.e., interaction with the networking stack. The
operation of sending out packets is encompassed inmessage
processing. The execution time of further system activities,
namely sending out packets and looking up routing entries are
encompassed intimer handling. Details about system opera-
tions are illustrated in Table IX below. In Table VII, we
describe how the effort for message processing is further sub-
divided among more fine-grained operations.

Not surprisingly, PATH processing consumes the major
amount of execution time, mainly due to looking up the rout-
ing information for the destination address (see below). Note
that due to their similarity, the operations for processing a
RESV and RTEAR message are implemented in the same
method, therefore the execution time cannot be subdivided
between both.

Another interesting investigation is to analyse the effort
necessary for management of the timer system. This number

is somewhat difficult to assess, because of code inlining a
optimized compilation. The results are listed in Table VII
These are the raw numbers for timer management, i
excluding the execution times for subsequent actions. Th
explain the limited effect of fuzzy timer handling on top of a
efficient timer container structure. Note that these numbers
not related to the execution time reported fortimer handlingin
Table VI. The numbers here denote the raw effort for tim
management, excluding for example the operation that is c
ried out when a timer is fired.

Table IX illustrates how much execution time is spent fo
carrying out system services. The operations listed in th
table are only those contributing significantly. It turns out th
the RSVP engine executes system-level code for more th
70% of its time, large parts of this time interacting with th
kernel. Considering the restrictions discussed in Section III.
these figures explain the limited performance gains by par
lelizing message processing.

It turns out that looking up routing entries contributes sig
nificantly to the overall execution time for system service
This effect can be explained by the rather expensive rout
interface on FreeBSD, which requires at least two interactio
with the operating system’s kernel in order to obtain a routin
entry. This interface might bear the potential for optimizatio
at least in case of unicast routing lookups, which only deliv
a single routing entry as result.

Finally, memory management in general can be observed
strongly contributing to the overall execution time. Additiona
performance gains might be possible by replacing the s
tem’s universal memory management algorithms by a me

TABLE VI
RELATIVE PROCESSINGEFFORT OFPROTOCOLOPERATIONS

Operation % Execution Time

System initialization/cleanup 1.8

Packet awaiting 9.3

Packet reception 6.8

Packet parsing 10.7

Message processing 53.1

Timer handling 18.3

Total 100.0

TABLE VII
RELATIVE PROCESSINGEFFORT OFMESSAGEPROCESSINGOPERATIONS

Operation % Execution Time

Pre- and postprocessing 5.6

Session location 1.6

PATH processing 28.3

PTEAR processing 0.8

RESV/RTEAR processing 10.6

CONF message forwarding 3.4

Refresh reservations 2.8

Total 53.1

TABLE VIII
RELATIVE PROCESSINGEFFORT OFTIMER MANAGEMENT

Operation % Execution Time

Timer insertion & removal 7.2

Timer maintenance & firing 4.1

Total 11.3

TABLE IX
RELATIVE PROCESSINGEFFORT OFSYSTEM SERVICES

Operation % Execution Time

Routing lookup for PATH messages 16.2

Routing lookup for RCONF messages 2.5

Packet awaiting 9.3

Packet reception 6.8

Packet sending 8.8

System time lookup 8.2

Memory management (total) 20.0

Total 71.8
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ory management system, which is specifically optimized for
the type of operations needed for RSVP processing.

In general, the data generated from profiling explain the
relation between certain results from the performance tests
and back up assumptions about the internals of this implemen-
tation. They might serve as a basis for future detailed code
optimization of this or the design of other code.

VII. CONCLUSIONS ANDFUTURE WORK

The assessment of RSVP’s technical feasibility started with
collecting and analysing the available material. Very soon it
became obvious that the publicly available code as well as
previously published work were not sufficient to study the
aspects that were deemed interesting for this work. Therefore,
a new implementation of RSVP has been developed from
scratch. It employs the notion of objects and relationships
between them to efficiently store and access protocol state. It
is innovative in its design and for example, allows easy inclu-
sion of multi-threaded message processing. Furthermore, cer-
tain design and algorithmic extensions for the implementation
of an RSVP engine have been proposed in Section III. A high
potential for performance gains has been demonstrated by
tuning the implementation appropriately.

In the performance experiments of Section V, RSVP has
been evaluated with respect to its basic mode of operation.
The main goal of this work is to show the performance poten-
tial, even without further changes to the protocol. From the
performance figures, it can be deduced that the suitability of
RSVP as a general purpose signalling interface and protocol is
much better than generally assumed. A standard PC router, at
equipment cost of about 600 Euros (plus 50 Euros per net-
work interface, as of December 1999), can handle the signal-
ling for more than 50,000 sessions in a realistic scenario.

Essentially, the user-level RSVP implementation presented
in this paper is not the bottleneck for operation on a standard
UNIX platform. Instead, the execution of system services
largely determines the overall performance. This can be con-
cluded from the experimental results, including those measur-
ing the capabilities of multi-threaded message processing and
is further backed up through profiling experiments. Conse-
quently, further work, especially on different hardware and
operating system platforms, is needed to better understand the
ultimate limits of an RSVP engine. As discussed in
Section V.C, further experiments can be carried out, which
investigate the effect of the clock granularity and size of time
slots on a FreeBSD platform.

Implementation of a software platform for general end-to-
end service signalling remains an ongoing effort for us. We
are planning to investigate the effects of RSVP extensions as
referred to in Section II.B on its feasibility for the purpose of
serving as a general signalling protocol. Furthermore, we will
focus our future work on inter-operation between RSVP sig-
nalling and data-forwarding technologies, for example Diff-

Serv, MPLS or ECN. Last but not least, we plan to study th
impact of mobility and to design general solutions for th
inclusion of mobile routing protocols into an overall QoS sig
nalling architecture.
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