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ABSTRACT
Stochastic network calculus is a versatile framework to derive prob-

abilistic end-to-end delay bounds. Its popular subbranch using

moment-generating function bounds allows for accurate bounds

under the assumption of independence. However, in the dependent

flow case, standard techniques typically invoke Hölder’s inequality,

which in many cases leads to loose bounds. Furthermore, optimiza-

tion of the Hölder parameters is computationally expensive. In this

work, we show that two simple, yet effective techniques related to

the deterministic network calculus are able to improve the delay

analysis in many scenarios, while at the same time enabling a con-

siderably faster computation. Specifically, in a thorough numerical

evaluation of two case studies, we show that using the proposed

techniques: 1. we can improve the stochastic delay bounds often

considerably and sometimes even obtain a bound where the stan-

dard technique provides no finite bound; 2. computation times are

decreased by about two orders of magnitude.
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• Networks→ Network performance analysis; Network per-
formance modeling.
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1 INTRODUCTION
Stochastic network calculus (SNC) provides a flexible mathemat-

ical framework to provide probabilistic end-to-end delay bounds

in packet-switched networks. It has its roots in the work on de-

terministic performance guarantees [15, 16] and was put forward
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in the following years by making use of min-plus algebra [1]. It

was then extended to provide probabilistic performance bounds

[11, 13, 19, 20], in particular by the seminal work of C.S. Chang

[8, 9].

However, recent work [12] emphasized the bounds’ lack of ac-

curacy, and suggested an appealing martingale-based approach. It

provides tight single hop lower and upper bounds on the delay

for different scheduling disciplines. Yet, to the best of our knowl-

edge, there is no concatenation result in the martingale-based SNC

that would enable an end-to-end analysis over multiple nodes. It is

well-known that the bounds’ tightness is dominated by the chosen

stochastic inequalities [13]. While the the approach using envelope

functions [11, 17, 20] offers a wider modeling scope, e.g., heavy-

tailed distributions [22], the SNC branch using moment-generating

functions [9, 19] is shown to provide tighter bounds when lever-

aging the independence of arrival flows [26]. On the other hand,

dependent arrivals, denoted by 𝐴1 (𝑠, 𝑡) and 𝐴2 (𝑠, 𝑡) with 0 ≤ 𝑠 ≤ 𝑡 ,

are usually treated by invoking Hölder’s inequality:

E

[
𝑒\ (𝐴1 (𝑠,𝑡 )+𝐴2 (𝑠,𝑡 ))

]
≤ E

[
𝑒𝑝\𝐴1 (𝑠,𝑡 )

]
1/𝑝

· E

[
𝑒𝑞\𝐴2 (𝑠,𝑡 )

]
1/𝑞

,

where \ > 0, and 1

𝑝 + 1

𝑞 = 1, 𝑝, 𝑞 ∈ [1,∞]. Not only does this often

lead to loose delay bounds, the additional parameter to optimize

(one for each application) can significantly increase the computa-

tional effort. Some previous work already observed that analysis

techniques that avoid Hölder’s inequality tend to result in signif-

icantly tighter delay bounds [6, 18, 24, 25, 30]. One technique to

mitigate the problem is to use the “paying multiplexing only once”

(PMOO) principle known from deterministic network calculus [29].

In this paper, we investigate two alternative techniques: flow
prolongation (FP) and the maximum service output bound (MSOB).

Both techniques add pessimism to the analyzed scenario in order to

avoid stochastic inequalities, most notably Hölder’s inequality and

the Union bound / Boole’s inequality, speculating on consequently

improved delay bounds.

Flow prolongation modifies the topology by extending cross-

flows such that the obtained delay bounds are still rigorous. Intro-

duced in [28] to improve computation time, [4] investigates the

impact of flow prolongation on the bound’s accuracy in the deter-

ministic network calculus. While the number of improved flows

varies between 57% and 92%, the maximum improvement is below

1.2%. Yet, as we show in this paper, the impact is much more sig-

nificant in the stochastic network calculus, where it had not been

applied before.

Flow prolongation has also been used in the context of FIFO

multiplexing analysis [3] to prove that the least upper delay bound

https://doi.org/10.1145/3388831.3388848
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(LUDB) does not provide a tight worst-case delay bound. A similar

technique to change the topology is used in the context of window

flow controllers [2]. Yet there, the goal is to enforce subadditivity

in order to obtain a converging bound.

The second technique, themaximum service output bound,mainly

targets at avoiding Hölder’s inequality by upper bounding the

server output by its maximum service capabilities. This results in

removing all the randomness from the output process and enables

a more tractable analysis. It comes with the obvious disadvantage

of being overly pessimistic, since we effectively assume a server to

be busy at all times.

The remainder of the paper is structured as follows. In Section 2,

we list existing stochastic network calculus results we need in the

following. Section 3 motivates the problem and introduces our

two alternative techniques. Two case studies of small, but typical

analysis scenarios are investigated in Section 4. Their numerical

evaluation is presented in Section 5. Section 6 concludes the paper.

2 SNC BACKGROUND AND NOTATION
We use the MGF-based SNC in order to bound the probability that

the delay exceeds a given value 𝑇 ≥ 0. The MGF bound on a

probability is established by applying Chernoff’s bound [23]

P(𝑋 > 𝑎) ≤ 𝑒−\𝑎 E

[
𝑒\𝑋

]
, ∀\ > 0.

We define the arrival process of a flow 𝑓 by the stochastic process

𝐴 with discrete time space N = {0, 1, 2, . . . } and continuous state

space R+ = [0,∞) as

𝐴(𝑠, 𝑡) B
𝑡∑

𝑖=𝑠+1

𝑎𝑖 ,

with 𝑎𝑖 as the traffic increment process in time slot 𝑖 .

Network calculus provides an elegant system-theoretic analysis

by employing min-plus algebra. Let 𝑥 (𝑠, 𝑡) and𝑦 (𝑠, 𝑡) be real-valued,
bivariate functions. The min-plus convolution of 𝑥 and 𝑦 is defined

as

𝑥 ⊗ 𝑦 (𝑠, 𝑡) B inf

𝑠≤𝜏≤𝑡
{𝑥 (𝑠, 𝜏) + 𝑦 (𝜏, 𝑡)} .

The min-plus deconvolution of 𝑥 and 𝑦 is defined as

𝑥 ⊘ 𝑦 (𝑠, 𝑡) B sup

0≤𝜏≤𝑠
{𝑥 (𝜏, 𝑡) − 𝑦 (𝜏, 𝑠)} .

The characteristics of the service process are captured by the

notion of a dynamic 𝑆-server [9].

Definition 2.1. Assume a server has an arrival flow 𝐴 as its input

and the respective output is denoted by 𝐷 . Let 𝑆 (𝑠, 𝑡), 0 ≤ 𝑠 ≤ 𝑡 , be

a stochastic process that is nonnegative and increasing in 𝑡 . The

service element is a dynamic 𝑆-server if for all 𝑡 ≥ 0 it holds that

𝐷 (0, 𝑡) ≥ 𝐴 ⊗ 𝑆 (0, 𝑡) = inf

0≤𝑠≤𝑡
{𝐴(0, 𝑠) + 𝑆 (𝑠, 𝑡)} . (1)

Definition 2.2 (Work-Conserving Server [19]). For any 𝑡 ≥ 0, let

𝜏 B sup {𝑠 ∈ [0, 𝑡] : 𝐷 (0, 𝑠) = 𝐴(0, 𝑠)} be the beginning of the last
backlogged period before 𝑡 . Assume again the service 𝑆 (𝑠, 𝑡), 0 ≤
𝑠 ≤ 𝑡 , to be a stochastic process that is nonnegative and increasing

in 𝑡 with 𝑆 (𝜏, 𝜏) = 0. A server is said to be work-conserving if for

any fixed sample path the server is non-idling and uses the entire

available service, i.e., 𝐷 (0, 𝑡) = 𝐷 (0, 𝜏) + 𝑆 (𝜏, 𝑡).

The analysis is based on a per-flow perspective. That is, we

consider a certain flow, the so-called flow of interest (foi). Through-
out this paper, for the sake of simplicity, we assume the servers’

scheduling policy between flows to be arbitrary multiplexing [27].

Proposition 2.3 (Leftover Service [19]). Consider two arrivals
flows 𝑓1 and 𝑓2 at a work-conserving dynamic 𝑆-server with service
process 𝑆 . Then, the corresponding arrival 𝐴1 sees under arbitrary
multiplexing the leftover service

𝑆
l.o. (𝑠, 𝑡) = [𝑆 (𝑠, 𝑡) −𝐴2 (𝑠, 𝑡)]+ .

We define the virtual delay at time 𝑡 ≥ 0 as

𝑑 (𝑡) B inf {𝜏 ≥ 0 : 𝐴(0, 𝑡) ≤ 𝐷 (0, 𝑡 + 𝜏)} .
Theorem 2.4 (Output and Delay Bound [9]). Consider an ar-

rival process 𝐴(𝑠, 𝑡) with dynamic 𝑆-server 𝑆 (𝑠, 𝑡).
The departure process 𝐷 is upper bounded for any 0 ≤ 𝑠 ≤ 𝑡

according to
𝐷 (𝑠, 𝑡) ≤ 𝐴 ⊘ 𝑆 (𝑠, 𝑡).

The virtual delay at 𝑡 ≥ 0 is upper bounded by

𝑑 (𝑡) ≤ inf {𝜏 ≥ 0 : 𝐴 ⊘ 𝑆 (𝑡 + 𝜏, 𝑡) ≤ 0} .
We focus on the analogue of Theorem 2.4 for moment-generating

functions:

Theorem 2.5 (MGF Delay Bound [9, 19]). For the assumptions
as in Theorem 2.4, we obtain:

The violation probability of a given stochastic delay bound 𝑇 ≥ 0

at time 𝑡 ≥ 0 is bounded by

P(𝑑 (𝑡) > 𝑇 ) ≤ E

[
𝑒\ (𝐴⊘𝑆 (𝑡+𝑇,𝑡 ))

]
, ∀\ > 0. (2)

In order to obtain the tightest possible result, the bound in Equa-

tion (2) should be optimized in \ .

The next theorem shows how network calculus leverages min-

plus algebra to derive end-to-end results.

Theorem 2.6 (End-to-End Service [19]). Consider a flow 𝑓

crossing a tandem of 𝑛 work-conserving servers with service processes
𝑆𝑖 , 𝑖 = 1, . . . , 𝑛. Then, the overall service offered to 𝑓 can be described
by the end-to-end service

𝑆e2e (𝑠, 𝑡) = 𝑆1 ⊗ 𝑆2 ⊗ · · · ⊗ 𝑆𝑛 (𝑠, 𝑡).
In the following, we introduce (𝜎, 𝜌)-constraints that enable

us to derive time-independent, stationary bounds under stability

[9]. An arrival flow is (𝜎𝐴, 𝜌𝐴)-bounded for some \ > 0, if for all

0 ≤ 𝑠 ≤ 𝑡

E

[
𝑒\𝐴(𝑠,𝑡 )

]
≤ 𝑒\𝜌𝐴 (\ ) ·(𝑡−𝑠)+\𝜎𝐴 (\ ) .

A dynamic 𝑆-server is (𝜎𝑆 , 𝜌𝑆 )-bounded for some \ > 0 if for all

0 ≤ 𝑠 ≤ 𝑡

E

[
𝑒−\𝑆 (𝑠,𝑡 )

]
≤ 𝑒−\𝜌𝑆 (−\ ) ·(𝑡−𝑠)+\𝜎𝑆 (−\ ) .

3 THE CASE FOR USING LESS STOCHASTIC
INEQUALITIES

In this section, we present our two techniques to improve SNC

delay bounds: flow prolongation and the maximum service output

bound. At first, however, we illustrate by means of a simplistic

example how inaccuracies stemming from the use of stochastic

inequalities can sometimes be easily circumvented.
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(a) Original network with 𝑆e2e =
[ (
[𝑆1 −𝐴3 ]+ ⊗ 𝑆2

)
−𝐴2 ⊘ 𝑆1

]+ ⊗ 𝑆3 . (b) Flow prolongation leads to 𝑆e2e = [ (𝑆1 ⊗ 𝑆2 ⊗ 𝑆3) − (𝐴2 +𝐴3) ]+ .

Figure 1: Network transformation through flow prolongation.

3.1 Inaccuracy Caused by Stochastic
Inequalities

A well-known consequence of Theorem 2.6 is that, if the service

processes are (𝜎, 𝜌)-bounded, so is their convolution [2]. Yet, its

derivation requires the usage of stochastic inequalities and therefore

causes more inaccuracy, as the following example shows.

Corollary 3.1. Let \ > 0. Assume two servers 𝑆1 and 𝑆2 in
tandem, such that the departures of flow 𝑓1, 𝐷1, are the arrivals at
server 𝑆2. Further, we assume the servers to be independent dynamic
𝑆1- and 𝑆2-servers, respectively. Under the assumption of (𝜎𝑆 , 𝜌𝑆 )-
constrained servers, the MGF of the end-to-end service

E

[
𝑒−\𝑆e2e (𝑠,𝑡 )

]
= E

[
𝑒−\ (𝑆1⊗𝑆2 (𝑠,𝑡 ))

]
is

(
𝜎𝑆e2e

, 𝜌𝑆e2e

)
-bounded, where

𝜎𝑆e2e
(−\ ) =𝜎𝑆1

(−\ ) + 𝜎𝑆2
(−\ )

+ 1

\
log

(
1

1 − 𝑒−\ |𝜌𝑆2
(−\ )−𝜌𝑆

1
(−\ ) |

)
,

𝜌𝑆e2e
(−\ ) =min

{
𝜌𝑆1

(−\ ), 𝜌𝑆2
(−\ )

}
in case 𝜌𝑆1

(−\ ) ≠ 𝜌𝑆2
(−\ ), and

𝜎𝑆e2e
(−\ ) = 𝜎𝑆1

(−\ ) + 𝜎𝑆2
(−\ ),

𝜌𝑆e2e
(−\ ) = 𝜌𝑆1

(−\ ) − 1

\

if 𝜌𝑆1
(−\ ) = 𝜌𝑆2

(−\ ).

It provides a solution to obtain a bound on the convolution.

However, it can lead to inaccuracy, as the proof requires the use of

the Union bound. This issue can be illustrated with the following

example.

Example 3.2. Let 𝑆1 and 𝑆2 be constant rate servers with rate 𝑐1

and 𝑐2, respectively. Then, both are (𝜎, 𝜌)-constrained with

𝜎𝑆𝑖 (−\ ) = 0,

𝜌𝑆𝑖 (−\ ) = 𝑐𝑖 .

Since both processes are deterministic, we can perform a determin-

istic bivariate convolution and obtain the exact result

E

[
𝑒−\𝑆e2e (𝑠,𝑡 )

]
= 𝑒−\ min{𝜌𝑆

1
(−\ ),𝜌𝑆

2
(−\ )} · (𝑡−𝑠) . (3)

However, using Corollary 3.1, we either obtain

E

[
𝑒−\𝑆e2e (𝑠,𝑡 )

]
=𝑒

−\ min{𝜌𝑆
1
(−\ ),𝜌𝑆

2
(−\ )} · (𝑡−𝑠)+log

(
1

1−𝑒
−\

���𝜌𝑆
2
(−\ )−𝜌𝑆

1
(−\ )

���
)
,

if 𝑐1 ≠ 𝑐2, or

E

[
𝑒−\𝑆e2e (𝑠,𝑡 )

]
= 𝑒−\ (𝜌𝑆1

(−\ )− 1

\ ) · (𝑡−𝑠) ,

for 𝑐1 = 𝑐2 . In both cases, the result is strictly worse compared to

Equation (3).

3.2 Flow Prolongation
Flow prolongation transforms the network model into a more pes-

simistic one by extending cross-flows that interfere with the flow

of interest along its path. More formally, it is defined as follows.

Consider a feed-forward network S from the perspective of the

foi, i.e., after reducing it to a tandem with servers (1, . . . , 𝑛), where
1 is the first server of the foi and 𝑛 the last, respectively. Let an-

other flow 𝑓𝑖 share its path with the foi, i.e., it traverses the servers

( 𝑗, 𝑗 + 1, . . . , 𝑗 + 𝑘) such that 𝑗, 𝑘 ≥ 1 and 𝑗 + 𝑘 < 𝑛. Then, a flow

prolongation results in a tandem network S where 𝑓𝑖 is extended

to 𝑓 𝑖 such that it traverses the servers ( 𝑗, 𝑗 + 1, . . . , 𝑗 +𝑘, . . . , 𝑗 +𝑚),
where𝑚 > 𝑘 and 𝑗 +𝑚 ≤ 𝑛. In other words, 𝑓 𝑖 extends its shared

path with the foi. Such a flow prolongation is only performed if the

servers 𝑗 +𝑘 +1, . . . , 𝑗 +𝑚 remain stable in S. Further, at the servers
𝑗 + 𝑘 + 1, . . . , 𝑗 +𝑚, we set the priorities of the prolonged flow 𝑓 𝑖
lower than for all other cross-flows, but higher than for the foi. By

this, it is ensured that for all other cross-flows this prolongation is

effectively transparent, whereas for the foi the scenario in S has

worsened compared to S due to the reduced service at the servers

𝑗 +𝑘 +1, . . . , 𝑗 +𝑚. Consequently, its delay process 𝑑 (𝑡) is larger in S
than in S (in a stochastic ordering sense). However, the speculation

is, that the delay bound is smaller in S.
The illustrative example in Figure 1 shows the result of a flow

prolongation. The foi’s delay in this transformed network is always

at least as large as in the original system, as the interference at more

hops can only worsen the situation [3]. However, the delay bound

obtained by a network calculus analysis can yield an improvement.

One can see in Figure 1 that it enables us to consider the aggregate of

the cross-flows rather than bounding them individually. However,

this obviously is only feasible as long as this transformation in

Figure 1(b) does not cause the servers 𝑆2 or 𝑆3 to become unstable.

Compared to its deterministic counterpart, the impact of flow

prolongation can be stronger in the stochastic network calculus, as

computation of operations like leftover service or deconvolution

requires several stochastic inequalities, i.e., it can be more beneficial

to circumvent them. Assuming the 𝑆𝑖 to be constant rate servers,

we can also benefit from the efficient convolution of deterministic

processes 𝑆1 ⊗ 𝑆2 ⊗ 𝑆3, whereas applying the leftover operation

before the convolution transforms the service processes into a

random one which necessitates inaccurate stochastic inequalities
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Figure 2: Overlapping tandem (dashed line indicates a flow
prolongation).

(see Example 3.2). Further, as we see in the following, it can be used

to avoid the usage of Hölder’s inequality.

3.3 Maximum Service Output Bound
The intuitive idea behind this technique is that the output of a

server is upper bounded by its maximum capacity. With the nota-

tion of a maximum dynamic 𝑆-server, we can make this intuition

mathematically rigorous.

Definition 3.3 (Maximum Dynamic 𝑆-Server). Let 𝑆 (𝑠, 𝑡), 0 ≤ 𝑠 ≤
𝑡 , be a stochastic process that is nonnegative and increasing in 𝑡 .

The service element is a maximum dynamic 𝑆-server if for all 𝑡 ≥ 0

it holds that

𝐷 (0, 𝑡) ≤ 𝐴 ⊗ 𝑆 (0, 𝑡) .

In other words, it is a dynamic 𝑆-server, where “≥” in Equation (1)
is replaced by “≤”.

Proposition 3.4. Assume an arrival process 𝐴 and a server that
is a dynamic 𝑆-server and maximum dynamic 𝑆-server. Then, for
0 ≤ 𝑠 ≤ 𝑡, it holds that

𝐷 (𝑠, 𝑡) ≤ 𝑆 ⊘ 𝑆 (𝑠, 𝑡) . (4)

We would like to remark that this bound basically provides a

generalization of a similar result for greedy shapers [21]. A proof

of this output bound is given in Appendix A.1.

If 𝑆 and 𝑆 coincide, a simple consequence follows for constant

rate servers. In this case, if the server has capacity 𝑐 , then the output

in the interval [𝑠, 𝑡] is upper bounded by

𝐷 (𝑠, 𝑡) ≤ 𝑐 · (𝑡 − 𝑠) . (5)

In contrast to the standard output bound from Theorem 2.4,

𝐷 (𝑠, 𝑡) ≤ 𝐴 ⊘ 𝑆 (𝑠, 𝑡), Equation (5) has the advantage of providing a

deterministic bounding process. The subsequent goal is to avoid the

dependence by exploiting this determinism. However, it is obvious

that this upper bound is inaccurate, the more underloaded a server

is.

4 CASE STUDIES
In this section, we derive the end-to-end service using the standard

approach as well as the proposed techniques and show how to use

less stochastic inequalities in the analysis. For our case studies, we

use two canonical networks from deterministic network calculus

literature, the overlapping tandem [27], and the square network

[7].

Figure 3: Square network (dashed line indicates a flow pro-
longation).

4.1 Overlapping Tandem
In this topology (see Figure 2), there are two options for PMOO: sub-

tract 𝑓3 and convolve 𝑆1 and 𝑆2, or subtract 𝑓2 and apply the convo-

lution to the last two servers. We assume the priorities 𝑓1 ≤ 𝑓2 ≤ 𝑓3 .

It follows a leftover computation with the remaining cross-flow

and a convolution with the residual server. We compute the bounds

for both options and take the tightest. This exhaustive analysis

has been shown to improve bounds in the deterministic network

calculus significantly [5]. For instance, opting for convolving 𝑆1

and 𝑆2 first yields

𝑆PMOO

e2e
=

[ (
𝑆1 ⊗ [𝑆2 −𝐴3]+

)
−𝐴2

]+ ⊗ [𝑆3 − (𝐴3 ⊘ 𝑆2)]+ .
However, we observe that𝐴3 appears twice which requires Hölder’s

inequality when applying the outer convolution.

The flow prolongation, extending 𝑓2 to traverse 𝑆3, yields

𝑆FP

e2e
=

[ (
𝑆1 ⊗ [(𝑆2 ⊗ 𝑆3) −𝐴3]+

)
−𝐴2

]+
.

Hence, due to the prolongation, we do not have to consider de-

pendencies anymore, as each process appears only once in the

end-to-end service.

The maximum service output bound, since it is based on the

PMOO analysis, also considers two cases. As for the PMOO, we

discuss only the first option. Let the capacity of server 𝑆2 be 𝑐2 .

Then, we can use it to replace the output bound 𝐴3 ⊘ 𝑆2:

𝑆MSOB

e2e
=

[ (
𝑆1 ⊗ [𝑆2 −𝐴3]+

)
−𝐴2

]+ ⊗ [𝑆3 − 𝑐2]+ .
As for the FP, the MSOB avoids consideration of dependencies in

the analysis.

4.2 Square Network
Consider the topology in Figure 3 and assume the priorities 𝑓1 ≤
{𝑓3, 𝑓4} ≤ 𝑓2 . Here, both cross-flows, 𝑓2 and 𝑓3 need to be subtracted

so that the servers can be convolved:

𝑆PMOO

e2e
=

[
𝑆1 −𝐴3 ⊘ [𝑆3 −𝐴2]+

]+
⊗

[
𝑆2 −𝐴4 ⊘ [𝑆4 − (𝐴2 ⊘ 𝑆3)]+

]+
.

In comparison, prolonging flow 𝑓3 results in

𝑆FP

e2e
=

[ [
𝑆1 ⊗

[
𝑆2 −𝐴4 ⊘ [𝑆4 − (𝐴2 ⊘ 𝑆3)]+

]+]+
−𝐴3 ⊘ [𝑆3 −𝐴2]+

]+
.
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Here, similar to the PMOO analysis, in both end-to-end service

processes, arrival process 𝐴2 appears twice.

The maximum service output, due to the appearance of two

output bound calculations, needs to distinguish two cases:

𝑆MSOB

e2e
= [𝑆1 − 𝑐3]+ ⊗

[
𝑆2 −𝐴4 ⊘ [𝑆4 − (𝐴2 ⊘ 𝑆3)]+

]+
and

𝑆MSOB

e2e
=

[
𝑆1 −𝐴3 ⊘ [𝑆3 −𝐴2]+

]+ ⊗ [𝑆2 − 𝑐4]+

which avoids the need to consider stochastic dependencies in the

analysis.

5 NUMERICAL EVALUATION
For our numerical experiments, we used three different arrival

classes. Let 0 ≤ 𝑠 ≤ 𝑡 :

• D/M/1 Exponentially distributed packet sizes with parame-

ter _:

E

[
𝑒\𝐴(𝑠,𝑡 )

]
=

(
_

_ − \

)𝑡−𝑠
, 0 < \ < _.

As the packets arrive with constant inter-arrival times, for

a single server system this would correspond to a D/M/1-

queue.

• M/D/1 Arrivals follow a Poisson process with parameter _:

E

[
𝑒\𝐴(𝑠,𝑡 )

]
= 𝑒_ (𝑡−𝑠)

(
𝑒\−1

)
, \ > 0.

Because of the continuous-time assumption of the Poisson

process and our usage of the Union bound, it needs to be

discretized in the analysis, e.g. by using techniques like in

[10].

• Continuous Markov-Modulated On-Off (MMOO) The
trafficmodel is governed by a continuous-timeMarkov chain

with two states, 0 and 1, and transition rates ` and _. In state

0, no traffic is sent, and in state 1, a constant peak rate 𝑏 is

sent. Its MGF is upper bounded by

E

[
𝑒\𝐴(𝑠,𝑡 )

]
≤ 𝑒\𝜔 (\ ) ·(𝑡−𝑠) , \ > 0,

where

𝜔 (\ ) =
−𝑑 +

√
𝑑2 + 4`\𝑏

2\

and𝑑 = `+_−\𝑏 [14]. Again, we have to apply discretization
in the analysis.

All these traffic classes are (𝜎, 𝜌)-bounded and therefore, they yield
closed-form solutions for all network calculus operations and per-

formance bounds. With regard to the service, we always use work-

conserving constant rate servers.

Further, since the results highly depend on the chosen parameter

values for the arrivals’ packet sizes and service rates, we sample the

parameter spaces in a Monte Carlo-type fashion. I.e., we used uni-

formly distributed random parameters and compared their bounds

for the standard analysis with the two proposed alternatives, FP and

MSOB. Since we are only interested in higher loads with significant

queueing, we only considered networks with a utilization of at least

70%. This results in 6216 analyzed scenarios for the overlapping

tandem and 4850 for the square network.

In all experiments, we optimize \ and the Hölder parameters

numerically.

Metric Share

Standard bound: share of finite bounds 92.6 %

MSOB: share of finite bounds 9.1 %

FP: share of finite bounds 74.3 %

MSOB: improvement over standard 7.4 %

FP: improvement over standard 63.4 %

Table 1: Numerical results for the overlapping tandem.
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Figure 4: Histogram of the relative improvement of the sto-
chastic delay bound (overlapping tandem).

5.1 Overlapping Tandem
For the overlapping tandem as in Figure 2, a brief summary of our

numerical evaluation can be found in Table 1. The evaluation is

conducted using sampled parameters for all three traffic classes.

For the flow prolongation (FP), we observe that in 63.4% of the

cases, it is capable of improving the standard technique. The maxi-

mum service output bound (MSOB), on the other hand, only pro-

vides a finite bound in 9.1% of the scenarios. However, 7.4% yield a

tighter delay bound than the state of the art. Considering only the

improved bounds, a histogram of the relative improvement, i.e.,

Standard Bound − New Bound

Standard Bound

∈ [0, 1)

is depicted in Figure 4. If only the new technique yields a finite delay

bound, the improvement is set equal to 1. Here, we observe that

the relative improvement of the FP has a peak at roughly 40% and

at 100%, when a finite bound is provided even though the standard

technique does not.

For MMOO traffic, examples of different parameter sets are visu-

alized in Figure 5. At first, we look at the stochastic delay bound for

different violation probabilities (Figure 5(a)). The FP and the MSOB

provide tighter bounds than the standard analysis. In Figure 5(b),

we take a different perspective and increase the arrivals 𝐴3, which

in turn increases the utilization at 𝑆2. Here, we see that the gap

between the standard techniques and the new ones increases.

Last, but not least, run times are dominated by the number of

parameters to optimize. Since both new techniques, FP and MSOB,

do not have to consider any Hölder parameters to optimize, their

run times are 159 and 138 times, respectively, faster on average.
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Figure 5: Stochastic delay bounds for the overlapping tan-
dem with MMOO traffic.

Metric Share

Standard bound: share of finite bounds 68.2 %

MSOB: share of finite bounds 58.1 %

FP: share of finite bounds 36.5 %

MSOB: improvement over standard 51.1 %

FP: improvement over standard 27.6 %

Table 2: Numerical results for the square network.

5.2 Square Network
A summary of our numerical experiments for the square network

containing all three traffic classes is given in Table 2. While the

flow prolongation improves the standard analysis in 27.6% of the

scenarios, the maximum service output bound yields an improve-

ment in roughly 51% of the cases. Further, if the MSOB obtains an

improvement, this usually also yields the best delay bound. Looking

only at the improved delay bounds, we observe that, while FP only

leads to small improvements in most cases, the MSOB significantly

improves the delay bound and often even provides finite delay

bounds as the only approach (see Figure 6).

Again, we depicted in Figure 7 the square delay bounds for some

exemplified parameter sets. For instance, if server 𝑆3 has a high

utilization while having a rather moderate capacity, the maximum

service output bounds can give significantly better delay bounds
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Figure 6: Histogram of the relative improvement of the sto-
chastic delay bound (square network).
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Figure 7: Stochastic delay bounds for the square network
with MMOO traffic.

(Figure 7(a)). If we increase the arrivals 𝐴3, and therefore increase

the utilization at 𝑆3,we observe constant delay for the server bound

but increasing bounds for the other techniques (Figure 7(b)).

As expected, run times of the standard technique and FP are very

similar in this case. The MSOB, on the other hand, is on average

roughly 75 times faster, as it avoids the consideration of dependen-

cies, and therefore Hölder’s inequality, in the analysis.
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6 CONCLUSION
In this paper, we have proposed two new techniques to improve

the delay bound computation in the stochastic network calculus

by using less stochastic inequalities. The first, called flow prolon-

gation, adds more pessimism by extending cross-flows to make

the analysis more tractable (and consider less dependencies), The

second technique, called maximum service output bound, assumes

a server to run at maximum capacity. While this again leads to a

more conservative analysis, it introduces more determinism that,

in turn, can improve the bounding in the analysis by avoiding

dependencies as well. Numerical evaluations clearly indicate that

both techniques, despite being based on simple insights, can lead

to largely improved stochastic delay bounds. Furthermore, run

times are significantly improved when we have to invoke Hölder’s

inequality less frequently.

Taking into account the crucial role of dependencies in the net-

work analysis, we believe that this paper made a significant step

towards an accurate end-to-end analysis in the stochastic network

calculus. However, this area still leaves room for future work; in

particular, we plan to investigate the impact of both techniques on

the analysis of large-scale networks.
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A APPENDIX
A.1 Proof of the Maximum Service Output

Bound (MSOB)
Proof. Since 𝐴 ⊗ 𝑆 ≤ 𝐷 ≤ 𝐴 ⊗ 𝑆 , we obtain

𝐷 (𝑠, 𝑡) ≤𝐷 ⊘ 𝐷 (𝑠, 𝑡)
= sup

0≤𝜏≤𝑠
{𝐷 (𝜏, 𝑡) − 𝐷 (𝜏, 𝑠)}

≤ sup

0≤𝜏≤𝑠

{
𝐴 ⊗ 𝑆 (𝜏, 𝑡) − (𝐴 ⊗ 𝑆) (𝜏, 𝑠)

}
= sup

0≤𝜏≤𝑠

{
inf

𝜏≤𝑢≤𝑡

{
𝐴(𝜏,𝑢) + 𝑆 (𝑢, 𝑡)

}
− inf

𝜏≤𝑣≤𝑠
{𝐴(𝜏, 𝑣) + 𝑆 (𝑣, 𝑠)}

}
.

In the first inequality, we used that 𝐷 (𝑠, 𝑡) is included in

sup

0≤𝜏≤𝑠
{𝐷 (𝜏, 𝑡) − 𝐷 (𝜏, 𝑠)}

for 𝜏 = 𝑠 . Let 𝑣∗ ∈ [𝜏, 𝑠] be the solution of

inf

𝜏≤𝑣≤𝑠
{𝐴(𝜏, 𝑣) + 𝑆 (𝑣, 𝑠)} .

https://disco.cs.uni-kl.de/discofiles/publicationsfiles/NSC19-1_TR.pdf
https://disco.cs.uni-kl.de/discofiles/publicationsfiles/NSC19-1_TR.pdf
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By choosing 𝑢 ∈ [𝜏, 𝑡] ⊇ [𝜏, 𝑠] to be equal to 𝑣∗, we obtain the

upper bound

𝐷 (𝑠, 𝑡) ≤ sup

0≤𝜏≤𝑠

{
inf

𝜏≤𝑢≤𝑡

{
𝐴(𝜏,𝑢) + 𝑆 (𝑢, 𝑡) −𝐴(𝜏, 𝑣∗) − 𝑆 (𝑣∗, 𝑠)

}}
(set 𝑢=𝑣∗)

≤ sup

0≤𝜏≤𝑠

{
𝑆 (𝑣∗, 𝑡) − 𝑆 (𝑣∗, 𝑠)

}
=𝑆 (𝑣∗, 𝑡) − 𝑆 (𝑣∗, 𝑠)
≤ sup

0≤𝑟 ≤𝑠

{
𝑆 (𝑟, 𝑡) − 𝑆 (𝑟, 𝑠)

}
= 𝑆 ⊘ 𝑆 (𝑠, 𝑡) .

In the last inequality, we used that 𝑣∗ is in [0, 𝑠], therefore the

difference at 𝑣∗ is upper bounded by the supremum. □

Since a work-conserving constant rate server is a dynamic 𝑆-

server as well as a maximum dynamic 𝑆-server with

𝑆 (𝑠, 𝑡) = 𝑆 (𝑠, 𝑡) = 𝑐 · (𝑡 − 𝑠),
the proposition also yields the output bound

𝐷 (𝑠, 𝑡) ≤ 𝑆 ⊘ 𝑆 (𝑠, 𝑡) = 𝑐 · (𝑡 − 𝑠) .
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