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Abstract. Computing probabilistic end-to-end delay bounds is an old,
yet still challenging problem. Stochastic network calculus enables closed-
form delay bounds for a large class of arrival processes. However, it en-
counters difficulties in dealing with dependent flows, as standard tech-
niques require to apply Hölder’s inequality. In this paper, we present
an alternative bounding technique that, under specific conditions, treats
them as if flows were independent. We show in two case studies that
it often provides better delay bounds while simultaneously significantly
improving the computation time.

1 Introduction

Stochastic network calculus (SNC) is a versatile framework to compute stochastic
per-flow delay bounds. Developed as a deterministic worst-case analysis in the
1990s by Cruz [6, 7], stochastic extensions of network calculus emerged quickly
thereafter. It allows for closed-form solutions for a broad class of arrival and
service processes. In [18], it has been shown that the SNC branch using moment-
generating functions [4, 11] provides tighter bounds than the approach using
envelope functions [5, 8, 12], as it leverages the independence of arrival flows.
However, many results limit the end-to-end analysis to pure tandem topologies.

Analyzing more general networks requires to consider also dependent flows
at some points in the network, as the sharing of a resource clearly has a mu-
tual impact on the flows’ output behavior. Therefore, if we want to obtain the
moment-generating function (MGF) of aggregated, yet dependent arrival pro-
cesses A1(s, t) and A2(s, t), we typically invoke Hölder’s inequality:

E
[
eθ(A1(s,t)+A2(s,t))

]
≤ E

[
epθA1(s,t)

]1/p
· E
[
eqθA2(s,t)

]1/q
,

where 0 ≤ s ≤ t, θ > 0, and 1
p + 1

q = 1, p, q ∈ [1,∞]. Hölder’s inequality is
completely oblivious of the actual dependence structure, thus it often leads to



very conservative bounds. Furthermore, it places the burden of an additional,
nonlinear parameter for each application to optimize.

Dependence of arrivals does not have to be a negative property per se. Tak-
ing advantage of the information about the dependence structure to improve
upon the bounds has been attempted before. In [9], the functional dependence is
estimated using a copula-based approach. In our work, we investigate a simpler
alternative, using the independent scenario as an upper bound. To that end, we
rely on a characteristic called negative dependence. We explain the main idea
with the help of the following, simplistic example.

Consider a single time slot assuming two arrival processes, A1 and A2, that
are multiplexed at one server. Both arrivals send one packet, each independently
with probability p ∈ (0, 1), and the server serves one packet but strictly priori-
tizes A2. Clearly, their two outputs,D1 andD2, are strongly dependent, as an ar-
rival of the prioritized flow forces the other one to wait in the queue. Simply put,
if one flow get a larger share of the server’s capacity, the other is more likely to
have less output. For the joint distribution of the output, we have by assumption
for the departures both being equal to 1, that P(D1 = 1, D2 = 1) = 0. On the
other hand, we compute for the product distribution by a simple conditioning,
that P(D1 = 1) ·P(D2 = 1) = (p · (1− p)) · (1− p) > 0. Hence, if we deliberately
forego the knowledge about the dependence structure, we only obtain an upper
bound, yet, it allows us to consider just the marginal distributions.

The rest of the paper is structured as follows. Section 2 introduces the nec-
essary network calculus definitions and notations as well as some preliminary
results. Section 3 contains the main results obtained in two case studies as-
suming a conjecture on dependence. The numerical evaluation is presented in
Section 4. Section 5 discusses the paper.

2 Definitions and Modeling Assumptions

2.1 SNC Background and Notation

We use the MGF-based SNC in order to bound the probability that the delay
exceeds a given value T . The MGF bound on a probability is established by
applying Chernoff’s bound [16]

P(X > a) ≤ e−θa E
[
eθX

]
, θ > 0.

We define an arrival flow by the stochastic process A with discrete time space
N and continuous state space R+

0 as A(s, t) :=
∑t
i=s+1 ai, with ai as the traffic

increment process in time slot i. Network calculus provides an elegant system-
theoretic analysis by employing min-plus algebra.

Definition 1 (Convolution and Deconvolution in Min-Plus Algebra [2]).
Let x(s, t) and y(s, t) be real-valued, bivariate functions. The min-plus convolu-
tion of x and y is defined as

x⊗ y (s, t) := inf
s≤i≤t

{x(s, i) + y(i, t)} .



The min-plus deconvolution of x and y is defined as

x� y (s, t) := sup
0≤i≤s

{x(i, t)− y(i, s)} .

The characteristics of the service process are captured by the notion of a dynamic
S-server.

Definition 2 (Dynamic S-Server [4]). Assume a service element has an ar-
rival flow A as its input and the respective output is denoted by D. Let S(s, t),
0 ≤ s ≤ t, be a stochastic process that is nonnegative and increasing in t. The
service element is a dynamic S-server iff for all t ≥ 0 it holds that

D(0, t) ≥ A⊗ S (0, t) = inf
0≤s≤t

{A(0, s) + S(s, t)} .

The analysis is based on a per-flow perspective. That is, we consider a certain
flow, the so-called flow of interest (foi). Throughout this paper, for the sake of
simplicity, we assume the servers’ scheduling to be arbitrary multiplexing [19].
That is, if flow f2 is prioritized over flow f1, the leftover service at a dynamic
S-server for the corresponding arrival A1 is Sl.o.(s, t) = [S(s, t)−A2(s, t)]

+.
Therefore, we require the server to be work-conserving.

Definition 3 (Work-Conserving Server [4] [11]). For any t ≥ 0 let τ :=
sup {s ∈ [0, t] : D(0, s) = A(0, s)} be the beginning of the last backlogged period
before t. Assume again the service S(s, t), 0 ≤ s ≤ t, to be a stochastic process
that is nonnegative and increasing in t with S(τ, τ) = 0. A server is said to be
work-conserving if for any fixed sample path the server is not idle and uses the
entire available service, i.e., D(0, t) = D(0, τ) + S(τ, t).

Definition 4 (Virtual Delay). The virtual delay at time t ≥ 0 is defined as

d(t) := inf {τ ≥ 0 : A(0, t) ≤ D(0, t+ τ)} .

It can briefly be described as the time it takes for the cumulated departures to
“catch up with” the cumulated arrivals.

Theorem 1 (Output and Delay Bound). [4] [11] Consider an arrival pro-
cess A(s, t) with dynamic S-server S(s, t).

The departure process D is upper bounded for any 0 ≤ s ≤ t according to

D(s, t) ≤ A� S (s, t). (1)

The delay at t ≥ 0 is upper bounded by

d(t) ≤ inf {τ ≥ 0 : A� S (t+ τ, t) ≤ 0} .

We focus on the analogue of Theorem 1 for moment-generating functions:



Theorem 2 (Output and Delay MGF-Bound [11] [3]). For the assump-
tions as in Theorem 1, we obtain:

The MGF of the departure process D is upper bounded for any 0 ≤ s ≤ t
according to

E
[
eθD(s,t)

]
≤ E

[
eθ(A�S (s,t))

]
.

The violation probability of a given stochastic delay bound T ≥ 0 at time t ≥ 0
is bounded by

P(d(t) > T ) ≤ E
[
eθ(A�S (t+T,t))

]
. (2)

In the following definition, we introduce (σ, ρ)-constraints [4] as they enable
us to give time-independent, stationary bounds under stability.

Definition 5 ((σ, ρ)-Bound [4]). An arrival flow is (σA, ρA)-bounded for some
θ > 0, if for all 0 ≤ s ≤ t

E
[
eθA(s,t)

]
≤ eθ(ρA(θ)(t−s)+σA(θ)).

2.2 Negative Dependence and Acceptable Random Variables

As we discussed in the introduction, we would like to bound the joint distribution
of two random variables by their respective product distribution. This concept
was captured in the 1960s by Lehmann and his notion of negative dependence.

Definition 6 (Negative Dependence [14]). A finite family of random vari-
ables {X1, . . . , Xn} is said to be negatively (orthant) dependent (ND) if the two
following inequalities hold:

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏
i=1

P(Xi ≤ xi) ,

P(X1 > x1, . . . , Xn > xn) ≤
n∏
i=1

P(Xi > xi) ,

for all real numbers x1, . . . , xn.

The following lemma shows how this characteristic can be used directly in
the context of MGFs.

Lemma 1 ( [13, 20]). If {X1, . . . , Xn} is a set of ND random variables, then
for any θ > 0,

E
[
eθ
∑n

i=1Xi

]
≤

n∏
i=1

E
[
eθXi

]
. (3)

In other words, treating the aggregate of ND random variables as if they were
independent yields an upper bound for the respective MGFs. Random variables
that suffice Eqn. (3) are called “acceptable” [1], but are studied in an unrelated
context.



Proving that random variables are negatively dependent is a challenging task.
Some results exist, e.g., the multinomial and multivariate hypergeometric dis-
tribution are ND, or the “Zero-One Lemma” [10], which proves the property for
X1, . . . , Xn ∈ {0, 1} such that

∑
iXi = 1. This means that the output processes

in the example in Section 1 are indeed ND. Furthermore, it has been shown
a related result in [13] that a permutation distribution, and therefore random
sampling without replacement, is ND. In our context, this provides a result for a
single time slot. In the following, we confine ourselves to conjecture this property
for intervals.

Conjecture 1. Let two independent flows with according arrival processes A1 and
A2 traverse a work-conserving server with finite capacity. Further, both arrival
processes have iid increments.

Then, we assume their respective output processes D1(s, t) and D2(s, t) to
be ND for all 0 ≤ s ≤ t.

We do not have a proof but Conjecture 1 held in all our experiments using 106

samples to estimate the joint and product (C)CDFs, respectively: For two flows
at one server, we tried over 5500 different combinations of intervals, x1, x2, (as in
the CDF), utilizations (between 0.4 and 0.9), and random packet sizes that were
drawn from either exponential, Weibull, Gumbel, or log-normal distribution.

The focus on the same interval for both process is important, as the following,
admittedly simplifying, argument suggests: Assume the high priority (HP) flow
to send a lot of packets consecutively, i.e., the low priority (LP) flow has no
output in this period and queues all its packets. Then, it is more likely for the
LP flow to have outputs when the HP flow stops sending, as it is more likely for
it to have queued packets.

3 Independence as a Bound

In this section, we investigate two case studies to show in which part of the
analysis we exploit the negative dependence.

In the following, we consider the flow f1 to be the flow of interest (foi) whose
delay we stochastically upper bound. All arrival processes Ai are assumed to be
discrete time and to have iid increments and all servers Sj are work-conserving
and provide a constant rate cj ≥ 0. To simplify notation, we denote by D(j)

i the
output of flow i at server j.

3.1 Diamond Network

In this case study, we consider the topology in Fig. 1. Assume the foi to have the
lowest priority and f3 to have the highest priority. By SNC literature [5,11], the
end-to-end service provided for the flow of interest, also known as the network
service curve, can be described by

Se2e =
[
S1 −

(((
A2 � [S4 −A3]

+
)
� S2

)
+ ((A3 � S4)� S3)

)]+
.



Fig. 1. Diamond network.

Since Conjecture 1 is made on output processes, we postpone the application of
the output bound in Eqn. (1) by keeping the exact output at first. That is, we
start with

Se2e =
[
S1 −

(
D

(2)
2 +D

(3)
3

)]+
, (4)

use then the conjecture to bound the MGF of the aggregate by their product
(Eqn. (3)), and apply the output bound in a final step.

The probability that the delay process d(t) exceeds a value T ≥ 0 is upper
bounded by

P(d(t) > T )

(2)
≤ E

[
eθA1�Se2e (t+T,t)

]
≤

t∑
τ1=0

E
[
eθ(A1(τ1,t)−Se2e(τ1,t+T ))

]
(4)
=

t∑
τ1=0

E
[
eθA1(τ1,t)

]
E

[
e
−θ
[
S1−

(
D

(2)
2 +D

(3)
3

)]+
(τ1,t+T )

]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

]
e−θc1(t+T−τ1) E

[
e
θ
(
D

(2)
2 +D

(3)
3

)
(τ1,t+T )

]
, (5)

where we used Theorem 2 in the first inequality and the Union bound in the
line below. Since the flows f2 and f3 share the server S4, their according output
processes D(4)

2 and D
(4)
3 are dependent and, as a consequence, D(2)

2 and D
(3)
3 ,

as well. However, by the conjecture above, we assume that the resource sharing
at S4 indicates that the dependence on [τ1, t + T ] is negative which, in turn, is
the reason why we upper bound their joint MGF by the product of the marginal
MGFs.

This can be interpreted as if we analyzed a new system, where the server S4

would be split into two servers. That is, one provides the same service as the



Fig. 2. The L.

original (for the high priority flow f3), and the other provides the leftover service
[S′4 −A′3]

+
, where S′4 has the same service rate as S4 and A′3 is a new arrival

process, but with the same distribution as A3.
Hence, the second factor is upper bounded by

E

[
e
θ
(
D

(2)
2 +D

(3)
3

)
(τ1,t+T )

]
≤E

[
eθD

(2)
2 (τ1,t+T )

]
E
[
eθD

(3)
3 (τ1,t+T )

]
≤E

[
eθ((A2�[S4−A3]

+)�S2)(τ1,t+T )
]
E
[
eθ((A3�S4)�S3)(τ1,t+T )

]
.

Further assuming all Ai to be (σA, ρA)-bounded yields a closed-form for the
delay bound under stability:

P(d(t) > T ) ≤e
θ((ρA2

(θ)+ρA3
(θ)−c1)T+σ1(θ)+σA2

(θ)+2σA3
(θ))

1− eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ)−c1)

· 1

1− eθ(ρA2
(θ)−c2)

· 1

1− eθ(ρA3
(θ)−c3)

· 1

1− eθ(ρA2
(θ)+ρA3

(θ)−c4)
· 1

1− eθ(ρA3
(θ)−c4)

.

For detailed calculations we refer to Appendix A.1.
In contrast, standard techniques proceed at Eqn. (5) by applying the output

Bound Eqn. (1) immediately and continue with Hölder’s inequality to deal with
the dependence.

3.2 The L

In this case study, we analyze the topology in Fig. 2. The foi has the lowest
priority and f2 the highest. Similarly to Subsection 3.1, we assume the outputs



processes of f2 and f3 to be ND, based on Conjecture 1. Here, the end-to-end
service is

Se2e =
[(

[S1 − (A2 � S3)]
+ ⊗ S2

)
−
(
A3 � [S3 −A2]

+
)]+

.

Again, we postpone the output bounding and start with

Se2e =

[([
S1 −D(3)

2

]+
⊗ S2

)
−D(3)

3

]+
. (6)

The crucial difference is that, in order to obtain the delay bound for the foi,
the so-called min-plus convolution has to be applied to the service processes of
S1 and S2 forcing us to analyze the output processes at different intervals:

P(d(t) > T )

(2)
≤ E

[
eθA1�Se2e (t+T,t)

]
≤

t∑
τ1=0

E
[
eθ(A1(τ1,t)−Se2e(τ1,t+T ))

]
(6)
=

t∑
τ1=0

E
[
eθA1(τ1,t)

]
E

[
e
−θ
[([

S1−D(3)
2

]+
⊗S2

)
−D(3)

3

]+
(τ1,t+T )

]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

]
E

[
eθD

(3)
3 (τ1,t+T )e

−θ
([
S1−D(3)

2

]+
⊗S2

)
(τ1,t+T )

]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

E

[
eθD

(3)
3 (τ1,t+T )e

−θ
[
S1−D(3)

2

]+
(τ1,τ2)e−θS2(τ2,t+T )

]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2) E
[
eθD

(3)
3 (τ1,t+T )eθD

(3)
2 (τ1,τ2)

]
,

where we used the Union bound for each application of the convolution / decon-
volution. This scenario is not covered by Conjecture 1 (see also the discussion
at the end of Subsection 2.2). Our work-around is to leverage the monotonicity
of D(3)

2 :

E
[
eθD

(3)
3 (τ1,t+T )eθD

(3)
2 (τ1,τ2)

]
≤ E

[
eθD

(3)
3 (τ1,t+T )eθD

(3)
2 (τ1,t+T )

]
.

The rest of the analysis employs similar techniques as for the diamond network.
See also Appendix A.2. Under the assumption of (σA, ρA)-bounded arrivals, we
again obtain a closed form for a bound on the delay’s violation probability under
stability:

P(d(t) > T ) ≤e
θ((ρA2

(θ)+ρA3
(θ)−min{c1,c2})·T+σA1

(θ)+2σA2
(θ)+σA3

(θ))

1− eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ)−min{c1,c2})

· 1

1− eθ(ρA2
(θ)−c3)

· 1

1− eθ(ρA2
(θ)+ρA3

(θ)−c3)
· 1

1− e−θ|c1−c2|
.
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Fig. 3. Delay bound diamond network.

4 Numerical Evaluation

We present the results of a numerical evaluation for both case studies. We ran 104

Monte-Carlo simulations to sample the parameters for different server rates and
packet sizes, the latter sampled from an exponential distribution. The scenarios
are then filtered to ensure a utilization ∈ [0.5, 1).

4.1 Quality of the Bounds

Diamond Network: This topology, after above the mentioned filtering, yields
485 remaining scenarios, of which 371 are improved. The fact that not all are im-
proved despite the avoidance of Hölder’s inequality can be explained as follows:
In the analysis, the Union bound is applied after Hölder’s inequality. The expo-
nentiation before the summing followed by a square root can have a “mitigating”
effect. A similar observation has been exploited in SNC literature before [17].

We also measured the extent of the improvement by computing the ratio of
the delay violation probability of the standard approach over the “independence
bound”. Clearly, values above 1 are desirable. Here, we obtain a median improve-
ment of 6.04. In Fig. 3, we depict the delay bounds for specific parameters.

The L: For this topology, we expect a weaker performance, as our approach
using independence as a bound requires the additional step of extending the
interval of one output process. The numerical results confirm this expectation:
Out of the 729 scenarios, only half of them (384) yield a performance gain. The
median of the improvement ratio confirms this, being relatively close to 1 (1.27).
Again, we show the delay bounds for fixed parameters (Fig. 4).

4.2 Computation Run Time

Our proposed approach does not only often substantially improve the bounds but
it also has a much lower computation complexity than the standard approach.
The reason is that the latter relies on an additional Hölder parameter. The
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Fig. 4. Delay bound in the L.

optimizations are conducted using a grid search followed by a downhill simplex
algorithm. The improvements ratios are in the median 337.5 (1.62 sec compared
to 0.0048 sec) for the diamond scenario and 458.1 for the L (1.42 sec compared
to 0.0031 sec). These improvements due to the reduction of the optimization
parameters indicates a significant potential for an analysis of larger networks, as
the optimization step in the MGF-based SNC can severely limit its scalability.

5 Discussion

In this paper, we found interesting results indicating that by using independence
as a bound, one can often times improve the delay bound while also speeding up
the run time significantly. Obviously, the crucial next step is to find scenarios in
which the conjecture can be proved rigorously. One potential technique might
be to use the coupling method [15,21], as it is can be applied to derive relations
between tail probabilities. Furthermore, more scenarios can be analyzed in which
the negative dependence can be exploited. In particular, this includes large-scale
experiments that require many invocations of Hölder’s inequality.
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A Appendix

A.1 Diamond Network

By using the conjecture, we have obtained so far that

P(d(t) > T )

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

]
e−θc1(t+T−τ1) E

[
e
θ
(
D

(2)
2 +D

(3)
3

)
(τ1,t+T )

]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

]
e−θc1(t+T−τ1) E

[
eθ((A2�[S4−A3]

+)�S2)(τ1,t+T )
]
E
[
eθ((A3�S4)�S3)(τ1,t+T )

]
.



This leads to

P(d(t) > T )

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

]
e−θc1(t+T−τ1)

{
τ1∑
τ2=0

E
[
eθ(A2�[S4−A3]

+)(τ2,t+T )
]
E
[
e−θS2(τ2,τ1)

]}

·

{
τ1∑
τ2=0

E
[
eθ(A3�S4)(τ2,t+T )

]
E
[
e−θS3(τ2,τ1)

]}

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

]
e−θc1(t+T−τ1)

·

{
τ1∑
τ2=0

{
τ2∑
τ3=0

E
[
eθA2(τ3,t+T )

]
E
[
eθA3(τ3,τ2)

]
E
[
e−θS4(τ3,τ2)

]}
E
[
e−θS2(τ2,τ1)

]}

·

{
τ1∑
τ2=0

{
τ2∑
τ3=0

E
[
eθA3(τ3,t+T )

]
E
[
e−θS4(τ3,,τ2)

]}
E
[
e−θS3(τ2,τ1)

]}
,

after applying the Union bound for each usage of the deconvolution. Further
assuming all Ai to be (σA, ρA)-bounded yields a closed-form for the delay bound
under the stability condition

ρA1
(θ) + ρA2

(θ) + ρA3
(θ) <c1,

ρA2
(θ) <c2,

ρA3
(θ) <c3,

ρA2
(θ) + ρA3

(θ) <c4 :

P(d(t) > T )

(Def. 5)

≤
t∑

τ1=0

eθ(ρA1
(θ)(t−τ1)+σ1(θ))e−θc1(t+T−τ1)

·

{
τ1∑
τ2=0

{
τ2∑
τ3=0

eθ(ρA2
(θ)(t+T−τ3)+σA2

(θ))eθ(ρA3
(θ)(τ2−τ3)+σA3

(θ))e−θc4(τ2−τ3)

}
e−θc2(τ1−τ2)

}

·

{
τ1∑
τ2=0

{
τ2∑
τ3=0

eθ(ρA3
(θ)(t+T−τ3)+σA3

(θ))e−θc4(τ2−τ3)

}
e−θc3(τ1−τ2)

}
≤eθ((ρA2

(θ)+ρA3
(θ)−c1)T+σ1(θ)+σA2

(θ)+2σA3
(θ))

·
t∑

τ1=0

eθ(ρA1
(θ)−c1)(t−τ1)

{
τ1∑
τ2=0

eθρA2
(θ)(t−τ2)

1− eθ(ρA2
(θ)+ρA3

(θ)−c4)
e−θc2(τ1−τ2)

}

·

{
τ1∑
τ2=0

eθρA3
(θ)(t−τ2)

1− eθ(ρA3
(θ)−c4)

e−θc3(τ1−τ2)

}



≤eθ((ρA2
(θ)+ρA3

(θ)−c1)T+σ1(θ)+σA2
(θ)+2σA3

(θ))

·
t∑

τ1=0

eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ)−c1)(t−τ1)

1− eθ(ρA2
(θ)−c2)

· 1

1− eθ(ρA3
(θ)−c3)

· 1

1− eθ(ρA2
(θ)+ρA3

(θ)−c4)
· 1

1− eθ(ρA3
(θ)−c4)

≤e
θ((ρA2

(θ)+ρA3
(θ)−c1)T+σ1(θ)+σA2

(θ)+2σA3
(θ))

1− eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ)−c1)

· 1

1− eθ(ρA2
(θ)−c2)

· 1

1− eθ(ρA3
(θ)−c3)

· 1

1− eθ(ρA2
(θ)+ρA3

(θ)−c4)
· 1

1− eθ(ρA3
(θ)−c4)

,

where we used the convergence of the geometric series.

A.2 The L

We have that

P(d(t) > T )

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2) E
[
eθD

(3)
3 (τ1,t+T )eθD

(3)
2 (τ1,τ2)

]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2) E
[
eθD

(3)
3 (τ1,t+T )eθD

(3)
2 (τ1,t+T )

]
.

With the conjecture, we compute

P(d(t) > T )

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2) E
[
eθD

(3)
3 (τ1,t+T )

]
E
[
eθD

(3)
2 (τ1,t+T )

]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2) E
[
eθ(A2�S3)(τ1,t+T )

]
E
[
eθ(A3�[S3−A2]

+)(τ1,t+T )
]

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2)

{
τ1∑
τ3=0

E
[
eθA2(τ3,t+T )

]
e−θc3(τ1−τ3)

}

·

{
τ1∑
τ3=0

E
[
eθA3(τ3,t+T )

]
E
[
e−θ[S3−A2]

+(τ3,τ1)
]}

≤
t∑

τ1=0

E
[
eθA1(τ1,t)

] t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2)

{
τ1∑
τ3=0

E
[
eθA2(τ3,t+T )

]
e−θc3(τ1−τ3)

}

·

{
τ1∑
τ3=0

E
[
eθA3(τ3,t+T )

]
E
[
eθA2(τ3,τ1)

]
e−θc3(τ1−τ3)

}
.



If we again assume all Ai to be (σA, ρA)-bounded, we obtain for

ρA1(θ) + ρA2(θ) + ρA3(θ) <min{c1, c2},
ρA2(θ) + ρA3(θ) <c3,

and c1 6= c2:

P(d(t) > T )

(Def. 5)

≤
t∑

τ1=0

eθ(ρA1
(θ)(t−τ1)+σA1

(θ))
t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2)

·

{
τ1∑
τ3=0

eθ(ρA2
(θ)(t+T−τ3)+σA2

(θ))e−θc3(τ1−τ3)

}

·

{
τ1∑
τ3=0

eθ(ρA2
(θ)(τ1−τ3)+σA2

(θ))eθ(ρA3
(θ)(t+T−τ3)+σA3

(θ))e−θc3(τ1−τ3)

}
≤eθ((ρA2

(θ)+ρA3
(θ))·T+σA1

(θ)+2σA2
(θ)+σA3

(θ))

·
t∑

τ1=0

eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ))(t−τ1)

t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2)

·

{
τ1∑
τ3=0

eθ(ρA2
(θ)−c3)(τ1−τ3)

}{
τ1∑
τ3=0

eθ(ρA2
(θ)+ρA3

(θ)−c3)(τ1−τ3)

}
≤eθ((ρA2

(θ)+ρA3
(θ))·T+σA1

(θ)+2σA2
(θ)+σA3

(θ))

·
t∑

τ1=0

eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ))(t−τ1)

1− eθ(ρA2
(θ)−c3)

· 1

1− eθ(ρA2
(θ)+ρA3

(θ)−c3)

·
t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2)

≤eθ((ρA2
(θ)+ρA3

(θ))·T+σA1
(θ)+2σA2

(θ)+σA3
(θ))

·
t∑

τ1=0

eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ))(t−τ1)

1− eθ(ρA2
(θ)−c3)

· 1

1− eθ(ρA2
(θ)+ρA3

(θ)−c3)

·
t+T∑
τ2=τ1

e−θc1·(τ2−τ1)e−θc2·(t+T−τ2)

≤e
θ((ρA2

(θ)+ρA3
(θ)−min{c1,c2})·T+σA1

(θ)+2σA2
(θ)+σA3

(θ))

1− eθ(ρA1
(θ)+ρA2

(θ)+ρA3
(θ)−min{c1,c2})

· 1

1− eθ(ρA2
(θ)−c3)

· 1

1− eθ(ρA2
(θ)+ρA3

(θ)−c3)
· 1

1− e−θ|c1−c2|
,

where we used again the convergence of the geometric series.


