
Quality of Availability: Replica Placement
for Widely Distributed Systems

Giwon On, Jens Schmitt, Ralf Steinmetz
Multimedia Communications Lab (KOM), Department of Electrical Engineering and

Information Technology, Darmstadt University of Technology, Germany
Tel.: +49-6151-166150, Fax: +49-6151-166152

Email:{Giwon.On,Jens.Schmitt,Ralf.Steinmetz}@KOM.tu-darmstadt.de
http://www.kom.e-technik.tu-darmstadt.de/

1 Introduction
Even though there are many significant research results, technology advances and
solutions in Quality of Service (QoS) in the last 20 years [1,2], their application to
commercial products or systems has not been so successful in comparison with their
attention in the research arena. One probable critical reason is that, as pointed out in
[3], the main research focus for QoS was to control transmission characteristics like
bandwidth, delay, and loss. This is because Internet applications which typically
assumed the need for QoS support, such as video-on-demand (VoD) and Internet
telephony, strongly motivated the development of QoS technologies. While for these
the control of the transmission characteristics is certainly important it seems likely by
now that, on the one hand, for them this may not be the most pressing need with regard
to QoS requirements, and on the other hand that there are other applications having
quite different requirements. Indeed, the perceived QoS may be much more influenced
by how available a certain service and its data are. In the context of QoS, availability
as an issue has so far seldom been mentioned, and there is no work known to us which
tries to treat availability as a controllable QoS parameter.
Concerning (service) availability support, while most research efforts in high
availability and fault-tolerant systems areas focus on achieving the so-called ‘five

Abstract. In this paper, we take an availability-centric view on Quality of Service
(QoS) and focus on the issues of providing availability guarantees for widely dis-
tributed systems such as web servers and peer-to-peer (P2P) file sharing systems.
We propose a concept called Quality of Availability (QoA) in which the availabil-
ity is treated as a new controllable QoS parameter. The newly refined fine-
grained availability definitions and QoA metrics enable the specification and
evaluation of the different level of availability for different users and applica-
tions. We tackle specifically the replica placement (RP) problem where our focus
is on choosing the number and location of replicas while (1) meeting different
availability QoS requirement levels for all individual users and (2) taking the
intermittent connectivity of system nodes explicitly into account. We decompose
the RP problem into two sub-problems: (1) improving QoA and (2) guaranteeing
QoA. We investigate a number of simulations - for full and partial replication
models and static and dynamic placements - to compare and evaluate the
achieved availability QoS of the developed RP algorithms. Our proposed QoA
concept and model can be used as a base mechanism for further study on the
effectiveness of realistic replication schemes on both availability and perform-
ance QoS for widely distributed systems.

nines’ (99.999%) availability [4], there is a demand for service differentiation from
service consumers and providers due to costs and competitive nature of the market
space, which derives for the mechanisms that support different levels of services and
their availability.
The work in this paper is strongly motivated by the two aspects mentioned above -
importance of service availability and differentiation of service classes and availability
requirements. As a consequence, we take an availability-centric view on QoS and
focus on the issues of providing availability guarantees in widely distributed systems
and services. For this purpose, we propose a concept called quality of availability
(QoA) where the availability is treated as a new controllable QoS parameter. Based on
the QoA concept, service providers and consumers can specify and check the target
levels of service availability that they offer and require, respectively, in a fine-grained
form. To enable these features, we first refine the traditional availability definitions
which are limited to reasonably quantify achieved availability of widely distributed
systems. This is because the traditional definitions are mostly used to specify the
service uptime of tightly-coupled or clustered distributed systems. Thus they are
neither suited to explicitly capture the supplying availability of individual system
components nor to cover failures of communication links between peers.
We then tackle the replica placement (RP) problem where the main goal is to choose
the number and location of replicas to satisfy (and eventually guarantee if required)
different level of availability QoS requirement for all individual users while taking the
intermittent connectivity of system nodes explicitly into account. We decompose the
RP problem into two sub-problems: (1) improving QoA and (2) guaranteeing QoA.
For improve QoA, we take simple ranking-based heuristics which calculate the
supplying availability for all service hosting nodes and select the nodes with higher (or
highest) availability values as replica nodes on which the replicas are placed. To
guarantee QoA, we develop an exact method state enumeration which enumerates all
possible placements without skipping any solution case. The algorithm can actually
guarantee QoA but has exponential run-time complexity. Thus, we develop an
additional algorithm called admission-controlled placement which also offers a QoA
guarantee but has significantly low run-time complexity.
To quantitatively study the effectiveness of the proposed placement algorithms, we run
and analyse a number of simulations - for full and partial replication models and static
and dynamic placements. For the dynamic placement we develop an event-driven
simulation model which captures the data access model as well as systems’ dynamic
behaviour. Simulation results show that (1) even simple heuristics can achieve
reasonably high availability QoS, but they cannot give any guarantee for their
achieved availability QoS, (2) the state enumeration algorithm guarantees the
availability QoS with its placement results, but the run-time complexity is exponential,
and (3) satisfying availability QoS requires more replicas than only increasing the
performance, e.g., increasing hit rate.
The rest of this paper is organized as follows. In Section 2, we describe the proposed
refinements of availability definitions, the QoA concept and its metrics which are used
for specifying and evaluating the quality of replication. Section 3 presents the replica
placement problem. We details our target system and replica placement model and the
proposed algorithms. In Section 4, we present the simulation study and results. Section
5 discusses related work and Section 6 concludes the paper.

2 Availability Refinement and QoA Metrics
2.1 Traditional Definitions
Availability is one of the most important issues in distributed systems. Traditional
definitions of availability are typically based on (a) how reliable the underlying system
is, (b) whether the system has any built-in features of failure detection and recovery,
and (c) whether the system has any redundancy for its individual system components
([5]). In traditional distributed systems, service availability is usually defined as the
percentage of time during which the service is available (Equation 1).

 where (1)

MTBF = MTTF + MTTR
failure means no distributed service
MTBF is the mean time between failure
MTTF is the mean time to failure
MTTR is the mean time to repair

However, these traditional availability definitions cannot explicitly capture the
availability of individual system components or the reachability of any data required
by the system, in particular when all these individual system components which affect
the quality of supplying service availability have different failure levels. For example,
an availability value of 99% does not indicate whether it is due to the failures of any
disks or system nodes. Furthermore, since these definitions are mostly used to specify
the availability values for tightly-coupled or clustered distributed systems, especially
when they are applied to widely distributed systems, they do not cover failures of
communication links between system nodes. In Section 2.2 we propose three
availability refinements, fine-grained, decoupled and differentiated availability.

2.2 Refining Availability Definition
While we keep the traditional availability definitions as a basis for our availability
study, we refine them to enable the specification of all the individual availability
requirement levels between different users, as well as to quantitatively evaluate the
reached availability of widely distributed systems.

2.2.1 Fine-Grained Availability
We refine the traditional availability definition as follows:

 with (2)

 and (3)

 (4)
This fine-grained availability definition captures the following:
• a service is available when both its data and the system on which the service is run-

ning are available.
• a data is available when it is reachable at access time.
• a system is available, when both nodes and communication links are available.
• a link is available when it does not fail and there are enough resources which can

be allocated for transmitting the requested data for the demanding application.

Availability MTTF
MTTF MTTR+
---------------------------------------=

AvailService AvailData AvailSystem×=

AvailSystem AvailNode AvailLink×=

AvailNode AvailNodeDynamics AvailNodeIntrinsics×=

• a node is available when it is up, i.e. not disconnected from the network, and its
intrinsics can be allocated for processing the service request. Resources such as
memory, CPU cycle, and storage spaces are examples of such intrinsics.

2.2.2 Decoupled Availability: Demand versus Supply
We distinguish between availability levels which the service (or the underlying
system) supplies from the availability levels which users (or applications) request and
perceive. This refinement enables one to check whether the service system maximizes
availability, as well as whether the service system satisfies the requested availability.
For specifying demand availability, we re-use the availability definition where
availability is defined as a ratio of successful accesses to totally requested accesses.
For example, demand service availability of 99.99% means that a user expects to have
an availability level of at least 99.99 % of the whole successful service access requests.
The demand availability levels can be specified directly by users at service access time
or by means of Service Level Agreements (SLAs) which may be a service contract
between users and service providers. In comparison to the demand availability, the
supply service availability can be calculated by using Equation (2)-(4).

2.2.3 Differentiated Availability
In widely distributed systems where several multiple applications are hosted, the
availability levels required by different applications may usually vary, i.e. not all
applications require the highest availability level of ‘five nines’, but instead an
appropriate level which satisfies the application specific requirements. A similar
phenomenon can be observed within a single application in which individual users
demand different levels of availability due to resource or cost limitations. We now
summarize some selected motivations for differentiating availability levels:

• Different users require different availability levels.
• Different services and contents have different importance priority levels.
• Availability levels are affected by the time of day.

Figure 1 shows the three refined availability definitions proposed above.

Figure 1: Illustration of the refined availability definition. The left side, ‘demand availability’
can be easily mapped to a single service usage scenario in which the different availability lev-
els (A0 - A2) are affected by the time of day (9 am, 3 pm and 6 pm).

Service

Data System

Node Link

user3

user4

user1

user2

A0: as high as possible
A1: high available

A1

A0

A1

Fine-Grained AvailabilityDifferentiated Availability

Demand Availability

A2

A1

A2

A2: extremely high available

A0

A0

dynamics intrinsics

Supply Availability

2.3 The Concept of Quality of Availability (QoA)

2.3.1 Basic Idea and Goals
The basic idea of the QoA concept is that the availability can be defined as a new
controllable, observable QoS parameter. Indeed, we move the focus of the objective
function for the resource and performance optimization problems of the QoS field
from satisfying transmission-dependent characteristics such as minimizing
transmission delay, jitter, and/or loss to satisfying the availability requirements such as
minimizing failure time of service systems and their components and to maximizing
the total time in which the required service functions as expected and its data are
reachable.
The goal of our work is to understand and satisfy quality of availability (QoA), i.e. to
maximize service systems’ requested service time and to control and guarantee QoA.
Given a set of different levels of availability requirements and a network topology with
a finite number of possible replica locations, we are then interested in how many
replicas are needed, where should they be placed, whether their placement on the given
topology satisfies the individually required availability QoS and how they affect the
overall service availability quality. In the following section we define QoA metrics.

2.3.2 QoA Metrics
To compare and evaluate the achieved availability among the proposed replication
strategies in this work, we define and use the following QoA metrics (see Table 1):
• satisfiedQoA - this indicates for each demanding peer how much the availability

requirement has been fulfilled by the selected placement R. For example, if the
required and supplied availability values are 95% and 94%, respectively, the satis-
fiedQoA is 0.99.

• guaranteedQoA - it indicates for how many demanding nodes the selected place-
ment R satisfies the QoA requirement.

Table 1: QoA Metrics: V is set of entire system nodes of a widely distributed system
and R is set of replica nodes (i.e. a placement) where . |V| and |R| are
cardinality of the node sets V and R, respectively.

Parameter Notation Definition E.g.

satisfiedQoA the ratio of supplied availability to
demanding availability for node v

0.95,
1.05

minSatQoA min { : } 0.9

avgSatQoA ,
where n = (|V| - |R|)

0.95

guaranteed-
QoA(v)

for each demanding node v, availability
guarantee: , if

1 or 0

guaranteed-
QoA

the ratio of to , where
 = set of nodes with

0.9

R V⊆

QoAsat v()

QoAmin QoAsat v() v∀ V\R∈

QoAavg 1 n⁄ QoAsat v()∑() v∀ V\R∈

QoAgua v()
AR v() 1= QoAsat v() 1≥

QoAgua
Vsat V

Vsat
QoAsat v() 1≥

3 Replica Placement in Widely Distributed Systems
3.1 System Model

3.1.1 Target System Features and Basic Assumptions
We take peer-to-peer (P2P) systems as the target distributed system of this work. Some
selected characteristics of the P2P systems, which are considered in this paper are:

• Peers go up/down independently of each other. They are connected to a P2P net-
work for a while and become disconnected after doing some service-related oper-
ations, e.g., downloading or uploading contents.

• Peers demand and supply different levels of service availability. The fact, whether
a peer has launched the P2P program and whether the peer has still enough storage
capacity or access link bandwidth, affect strongly the supplied availability.

• The availability level, that peers demand at service access time, differs between
peers; some peers may expect extremely high available access, while others may
be happy with ‘best-effort’ QoA level.

We assume that the P2P system runs over an overlay network where each peer’s
physical connection link can be mapped to a logical link in the overlay network.
Furthermore, each peer, like a single Autonomous System (AS) and BGP router of the
Internet, has the ability to manage multiple routing paths to any destination peer to
access service contents, either the original or replicas. Thus, when the destination peer
or any peer among the path crashes or the (sub)path goes down, it can see other
operational paths and choose the best one to continue its service access.

3.1.2 Modelling P2P Service Systems as Stochastic Graphs

P2P systems that consist of peer nodes and interconnection links between them can be
modelled as an undirected graph, G(V,E), where V is the set of nodes and E the set of
connection links. This graph is dynamic if the members and the cardinality (|V| and |E|)
of V and E change else it is static. The graph is said to be stochastic when each node
and link are parameterized, statistically independently of each other, with known
availability or failure probabilities. For all of our simulation, we model the target P2P
system as a undirected stochastic graph where the placement can be made in both
static and dynamic modes.

Figure 2: A distributed service modeled as a stochastic graph G(V,E), with example figures.

98

98

96

99

0,5

3

4

2

0

97

95

96

92
90
97

0,40,1
0,2

0,7

0,1

node uptime probability 50

70

25

55

95

1 100

demand availability

link failure probability in %

link resource availability

supply availability

100node resource availability

In this graph, we assign the availability values to every node of the graph, where the
demand and the supply availability are decoupled for each node: the demanding
availability value is assigned at the graph creation time, while the supplying
availability value is calculated by Equation (4). Furthermore, in a dynamic graph, the
nodes change their state between up and down according to the given probability
distribution function. The scope of dynamics that we capture in this work are peers’
state (up/down) which causes the change of the number of total peers being up, their
connectivity and their available storage capacity. Concerning a peer’s state and the
availability of contents located on the peer, we can assume that the contents on the
nodes are unavailable, when the peer goes down. In our P2P model, we treat the up/
down probability of each peer as (a) given as a prior knowledge or (b) unknown.
Figure 2 illustrates an example stochastic graph that models a distributed system such
as P2P system.

3.1.3 Replication Model
Replication is a proven concept for increasing the availability for distributed systems.
Replicating services and data from the origin system to multiple networked computers
increases the redundancy of the target service system, and thus the availability of the
service is increased. In this paper we capture both full and partial replication models.
In the full replication model, the entire data of an origin (server) system is replicated to
other nodes located within the same network. Mirroring is a typical case of the full
replication model. In the partial replication model, the individual data is replicated
from its original system location to other systems, independently of each other.
Important decisions for these replication models, which affect strongly the achieved
QoA are:

• what to replicate? - replica selection. Selecting target replicas depends on the pop-
ularity and importance of content, which can be gained by tracing users’ access
history. To build a realistic access model, the Uniform and Zipf-like query distri-
butions [6,7] are adopted for our simulation study of the dynamic placement
mode. As content access type we assume read-only access. This is generally the
case in P2P file-sharing systems such as Gnutella [8] and KaZaA [9]. In this case,
we do not address the consistency issue.

• how many to replicate? - replica number. In addition to the popularity and impor-
tance of contents, the storage capacity and access bandwidth of peers affect
strongly the decision of the number of replicas. In this work, we also capture the
number of replicas under replication, i.e. the number of peers that have a particu-
lar content. To fix the number of replicas during the initial placement phase of our
simulation runs, we will use the static replica distributions, Uniform and Propor-
tional, as given in [6].

• where to place the replicas? - replica location. As [10] shows, the location of rep-
licas is a more relevant factor than the number of replicas for achieving high QoA.
Furthermore, to find a ‘good’ placement we should take not only contents’ popu-
larity or peers’ storage/link capacity into account, but also the availability of indi-
vidual peers, e.g. the number of up peers which may have the original content or
its replicas to be accessed. Our replica placement model consists of two phases,
proactive and on-demand placement. The proactive placement is done at service
initialization time before any content access query is issued, while the on-demand
placement occurs during service run time. We model the proactive placement to
be performed with/without a prior knowledge about the content popularity and

the network topology. In case of the on-demand placement, some new replicas are
created if the set of currently reachable replicas (including the original content, if
available) does not satisfy the demanding availability value of the querying peer.
Additionally, some existing replicas may be replaced by new replicas, if there is a
storage capacity problem at peers on which the created replicas should be placed.

3.2 Problem Statement
We formulate replica placement as an optimization problem as follows. Consider a
P2P system which aims to increase its service availability by pushing its content or
replicating the content to other peers. The problem is to (dynamically) decide where
content is to be placed so that some objective function is optimized under the given
access model and resource constraints. The objective function can either minimize the
total number of replicas on the whole peer systems or satisfy all individual peers’ QoA
requirement levels. For example, we have a stochastic graph G (V, E) as input and
eventually a positive integer number k as a maximum number of replicas for each
content.
The objective of this problem is to place the k replicas on the nodes of V, i.e. find R
such that a given target condition O(|R|, R, QoA_condition) is optimized for given
availability requirements of the service demanding nodes. How well the target
condition is optimized depends on the size of |R| and the topological placement R.
Because the main goal associated with placing replicas on a given network in our work
is satisfying QoA which can be required in different levels, we take the availability and
failure parameters as our key optimization target, i.e. O(|R|, R, satisfiedQoA) or O(|R|,
R, guaranteedQoA) for the two RP sub-problems, improving QoA and guaranteeing
QoA, respectively.

3.3 Replica Placement Algorithms
The RP problem can be classified as NP-hard discrete location problem [11]. In
literature, many similar location problems are introduced and algorithms are proposed
to solve the problems in this category. In this section we propose two algorithms that
can be classified according to the two conditions described in Section 3.2.

3.3.1 Ranking-based Heuristics for Improving QoA
To improve QoA, we take some basic heuristic algorithms. We note however not
different variants of these heuristics and improvement techniques can be used with
small modifications to enhance the efficiency and performance of our basic heuristics.
A short description of each of the used heuristics is as follows:
• Random (RA). By using a random generator, we pick a node v with uniform proba-

bility, but without considering the node’s supplying availability value and up prob-
ability, and put it into the replica set. If the node already exists in the replica set, we
pick a new node, until the given number reaches k.

• HighlyUpFirst (UP). The basic principle of the UP heuristic is that nodes with the
highest up probability can potentially be reached by more nodes. So we place repli-
cas on nodes of V in descending order of up probability.

• HighlyAvailableFirst (HA). For each node v, we calculate its actual supply availa-
bility value by taking all the availability values of its data, intrinsics and of all its
adjacent edges into account. The nodes are then sorted in decreasing order of their
actual availability values, and we finally put the best k nodes into the replica set.

The use of the UP and HA heuristics assumes that we have a prior knowledge
about the network topology.

• HighlyAvailableFirst with HighestTransitNode (HA+TR). This method is a combi-
nation of the HA algorithm with TransitNode concept. The basic principle of the
TransitNode concept is that nodes with the highest (in/out) degrees, i.e., the
number of connection links to adjacent nodes, can potentially reach more nodes
with smaller latency. So we place replicas on nodes of V in descending order of (in/
out) degree.

• Combined (HA+UP). This method is a combination of the HA and UP algorithms.
For this algorithm, we first calculate the average values of uptime probability and
supplying availability for all peers. We then select those nodes as replica nodes for
which both values are greater than the average values: we first check the uptime
probability value and then the availability probability value.

• Local. To create or replace a new replica during service runtime (i.e., simulation
runtime), the peer places a new replica on its local storage. The replica replacement
policy bases either on least recently used (LRU) or on most frequently used (MFU)
concept.

3.3.2 Exact Method - State Enumeration for Guaranteeing QoA

Guaranteeing QoA is likely to satisfy a certain, required QoA value with a guarantee.
This means we have to always offer a replica set which fulfils the given QoA
requirements for all demanding nodes in any case. In comparison to the problem of
improving QoA described above in Section 3.3.1, this problem requires a solution
which exactly tests all possible placements and finds the optimum, i.e. a placement
that offers a QoA guarantee with a minimal number of replica nodes. Some similar
work is described in the literature, which are devoted to the problem of network
reliability [12]. The methods that provide an exact reliability are called exact methods,
in contrast to the heuristic methods which provide an approximate result. From some
exact methods we adopt the state enumeration method [12] and modified it for our
problem.
In the state enumeration method, the state of each node and each edge are enumerated:
the state value is either 1 when it functions or 0 when it fails. Indeed, there are

states for a graph G = (V,E), i.e., partial graphs for G. We then
check the QoA for all partial graphs with all instances of replica sets.

4 Simulation
4.1 Simulation Methodology
We built an experimental environment to perform an event-driven simulation study for
the replica placement problem addressed in Section 3. For our availability evaluation,
we conducted simulations on random network topologies. By using the LEDA library
[13] several random topologies in different sizes can be generated at run time. The
simulation program was written in C/C++ and tested under Linux and Sun Solaris.

We ran a number of simulations - both for full and partial replication models and static
and dynamic placement approaches. The dynamic placement consists of the proactive
and on-demand placement phases, while the static placement considers only the
proactive placement. We then compared and evaluated the achieved QoA of the
developed RP algorithms using topologies of different sizes as well as parameter
values shown in Tables 2 (for the static approach) and 3 (for the dynamic approach).

2 V E+ 2 V E+

The demanding and initial data availability values of the nodes, as well as the up
probability values of the nodes are assigned randomly, from a uniform distribution. To
evaluate the QoA offered by our replication schemes, we used the QoA metrics
defined in Table 1 of Section 2.3.2.

4.2 Improving QoA - Static Approach
In this simulation study, we evaluate the achieved QoA by our simple heuristics. As
replication model, we assumed full replication. We further assumed that the failure
probabilities of nodes and links are known. To calculate the supplying service
availability, we considered only the system’s availability and assumed that the data is
available when the system is available. The baseline for our experiment is an initial
placement which is obtained by randomly selecting k nodes from V. We then
compare the achieved QoA of each heuristic to this baseline and present the relative
QoA improvement obtained with each heuristic.

4.2.1 Effects of Number (|R|) and Location (R) of Replicas on Achieved QoA
We experimented to find good locations of a replica set R with |R| = k for given graphs
G with maximal replica number k. The conditions that we assumed for this problem
were: (1) minSatQoA > 0.9, 0.95, and 0.99, respectively, and (2) avgSatQoA > 1.0. In
this case, there was no constraints on the topological location of the replicas and
replicas may be placed at any node v in G.
Figure 3 shows the results from this experiment with G2. We plot the number of k on
the x-axis and the reached QoA on the y-axis. In each graph, we plot different curves
for different heuristics and different ranges for required availability values. From
Figure 3, we can see that the heuristics HA and HA+TR, although they are very simple,
reach significantly higher QoA in comparison to the baseline placement. For example,
at the placement with 10 replicas, our both heuristics achieved ca. 100% higher
satisfied QoA in average than the Random method. On the other hand, even though the
improvement of 12% QoA guarantee rate with replicas 5 to 25 (totally, 20% of the
whole nodes are replicas) may not seem much, it is important to note that the number
of replicas is really a relevant factor for improving QoA: the lager the replica number
is, the better is the reached QoA.

4.3 Guaranteeing QoA - Static Approach
The goal of this second simulation study is to find optimal selection with a guaranteed
QoA for all demanding nodes. We take the same assumptions to the simulation study
of Section 4.2: full replication model, the failure probabilities of nodes and links

Table 2: Simulation parameters and their value ranges: these values are used for the
simulation runs in the static placement mode in Sections 4.2 and 4.3. The data
availability for a given node is 1, if the node contains the original data or its replica.

Type Parameter Value

Graph node and edge size G1(20:30), G2(100:300)

Edge edges’ failure probability 1 ~ 10%, 0%

Node nodes’ demanding availability 90~99%, 50~99%, 50-90-99%

Data data availability 1 or 0

R0

known as a prior information, and the same service availability scope for supplying
availability.

In this experiment, we used the state enumeration algorithm. Due to the exponential
growing run-time complexity and the memory requirements with growing graph sizes,
we limited our experiments for the state enumeration to a small graph, the test graph
G1 with |V| = 20 and |E| = 30. We started the routine with a replica degree of 1, i.e.,
k=|R| = 1, and selected each node as replica node. We then incremented the replica
degree, until we reached the guaranteedQoA = 1.0 (a QoA with guarantee). Table 3
shows the achieved QoA values at each k (k=1,2,3). Figure 4 plots the reached QoA
that the state enumeration algorithm calculated exactly with each instance for the
given k. Figure 4 shows significantly how the achieved QoA varies, and how big the
gap between good and bad QoA rates reached by the instances is.

Table 3: A test result from state enumeration algorithm with G1, failure probability:
0%, and req. availability range: 90-99%. ‘QoA value’ means the guaranteed QoA value
in average.

|R| Best
QoA
value

Worst
QoA
value

Mean
QoA
value

Instances achieved the best QoA
value

1 0.80 0.10 0.3345 {0},{8}

2 0.95 0.15 0.8078 {0,11},{0,18},{8,11},{8,18},
{11,13},{12,16},{13,16}

3 1.00 {0,11,16},{0,16,18},{8,11,16},
{8,16,18},{11,12,16},{11,13,16}

Figure 3: Achieved QoA values by our heuristics. y-axis means the satisfied QoA in average.

Avg. Satisfied QoA: demand QoA: 50-99%, link failure probability: 0-10%

Number of replicas

4.4 Improving QoA - Dynamic Approach

The main goal of this simulation study is to choose dynamically a ‘good’ placement
which increase/maximize the satisfied QoA for a given replica number. We developed
an event-driven simulation model which captures the data access model as well as
peers’ dynamic behaviour, e.g., going up or down, etc. As replication model, we
assumed the partial replication. However, we did not assume any a prior knowledge
more for the failure probabilities of nodes and links. Furthermore, we used the whole
scope of the service availability definition (Equation 4) to calculate the supplying
service availability. We modelled the dynamic placement in two phases: proactive and
on-demand. The proactive placement is likely the static placement of Sections 4.2 and
4.3, while the on-demand placement means a replica replacement that is done by each
demanding peers, i.e., content access query issuing peers, when the supplying QoA
does not satisfy the demanding QoA. Thus, the dynamic placement is a decentralized
and on-line placement. As placement algorithms, we used Random, HA, UP,
combined HA+UP and Local-LRU. Table 4 summarizes the simulation parameters
with their values used for the simulation study in this Section. The simulation starts by
placing k distinct contents randomly into the graph without considering peers’ up
probability. Then the query event generator starts to generate events according to the
Uniform process with average generating rate at 10 queries per simulation time slot.
For each query event, a peer is randomly chosen to issue the query. As search method,
we use a multi-path search algorithm which finds all redundant paths from the
querying peer to all peers that have the target content (either the original or a replica).
4.4.1 Effects of Initial Replica Selection on Satisfied QoA

In the first experiment we compared the two replica selection schemes - Uniform and
Proportional which decide, for a given fixed number of k, the target replicas among
original contents at the service initialization phase. In this experiment we placed the k
replicas on randomly chosen peers which do not contain the original content of the
corresponding replica. Furthermore, the peer contains only one replica for each

G
ua

ra
nt

ee
dQ

oA

0

Figure 4: Achieved QoA checked exactly by the state enumeration algorithm. x-axis
means the number of instances of R with different k = |R|: sorted by QoA decreasing order.

original content. As Figure 5 shows, the Proportional scheme offers higher satisfied
QoA than the Uniform scheme for the Zipf-like access query model.

Table 4: Simulation parameters and their value ranges for the simulation runs with the
dynamic placement.

Parameters Values

peer up probability 0.0 - 0.9

content popularity .01 - .99

number of peers 100, 1000

number of origin contents 1000

number of query events 1000

number of simulation time slots 100

range of demand availability values .50 - 0.99

range of supply data availability .50 - 0.99

query distribution Uniform, Zipf

Figure 5: Effects of initial replica selection schemes on satisfied QoA with proactive
placement: Random, #peers=1000, peers’ up probability=0.3, and query model: Zipf.
y-axis means the satisfied QoA in average. For (a) and (b) x-axis means the number
of query counter, while for (c) and (d) it means simulation time slot.

(c)

(a) (b)

(d)

#query counter

simulation time slot

#query counter

simulation time slot

4.4.2 Effects of Placement Schemes on Satisfied QoA

In the second experiment we took different on-demand schemes that create new
replicas during the simulation run when the supplied QoA with existing replicas from
the up peers at the given time slot does not satisfy the demanding QoA. In addition to
the Local scheme, we tested the three heuristics UP, HA, and UP+HA with the
assumption that we have knowledge about the peers’ state. As Figure 6 shows, even
though the heuristic algorithms are very simple, they achieved considerably higher
satisfied QoA than the Local scheme. For example, the QoA improvement of the
replication ratio range 10-50 is about 30-70%. Figure 6(b) shows that this
improvement pattern is observable independent of the graph size: Peer100 and Peer1K
in Figure (b) are equal to the nodes size 100 (graph G1) and 100 (graph G2),
respectively.

4.4.3 Satisfied QoA versus Hit Probability

Maximizing hit probability is one frequently used goal for content replication [13]. In
Figure 7 we show a comparison between the two replication goals, i.e. satisfying
required QoA and maximizing hit probability. In this comparison the hit probability is
increased when the querying peer finds the target content, while for satisfying QoA the
peer should additionally check the supplied QoA by calculating all the reachable paths
to the peers containing the target content (or replica). We run the simulation on the test

proactive placement heuristics Random, UP, HA, HA+UP

on-demand placement heuristics Local-LRU, UP, HA, HA+UP

test graphs G1(100,300), G2(1K,5K)

Table 4: Simulation parameters and their value ranges for the simulation runs with the
dynamic placement.

Parameters Values

(b)(a)

Figure 6: Effect of placement strategies
on satisfied QoA where proactive placement: Random and peers’ up probability=0.3.
(a) average satisfied QoA from all four heuristics used. #peers=1000, (b) a compari-
son of the average satisfied QoA between Local-LRU and UP heuristic with different
graph sizes. The number of peers of Peer100 and Peer1K is100 and 1000, respec-
tively. X-axis means replication ratio, 0-100%, while y-axis means the satsfied QoA

graphs G1 and G2. The average up probability of peers is fixed again at 0.3 and we
used Random and UP placement schemes for proactive and on-demand phase
respectively. As Figure 7 shows, satisfying required QoA incurs higher cost, i.e. more
number of replicas than just maximizing hit probability. For example, when the replica
rate is 0.2, the gap between sqoa (satisfied QoA) and Found (hit probability reached) is
about 20% of achieved rate. And, to achieve the same rate of 80%, for satisfying QoA,
we need a 30% higher replication ratio.

4.5 Discussion

4.5.1 Summary of Simulation Results
The following observations could be identified from our experiment results:
• The location of replicas is a relevant factor for the availability QoS. Even though

the QoA improvement could be achieved by increasing replica numbers, replicas’
placement and their dependability affected the QoA more significantly.

• Using a heuristic method is more efficient than the exact method, at least in terms
of the runtime complexity, to find a good placement for large graphs. But, the rep-
lica degree of their placement results are in most cases higher than those of exact
methods. Furthermore, the heuristics give no guarantee for availability QoA.

• In opposite to the heuristic method, the exact method can exactly find the optimum
and give QoA guarantee with its placement results, although the runtime complex-
ity is very high: to find the optimum, we need to call the state enumeration method

 times, i.e., for all the possible replica solution sets. The algorithm complexity
is then O() to find the optimum with all possible instances.

• Satisfying availability QoS requires more replicas than only improving perform-
ance, e.g. increasing hit rate.

4.5.2 Algorithm Improvement: Admission Controlled Placement for Guarantee-
ing QoA

We investigate for new placement algorithms which reduce the exponential runtime
complexity while guaranteeing QoA. One of possible solution algorithms is using the
admission control technique [2] where the placement is controlled based on available

Figure 7: Comparison of replication cost for different replication goals: satisfying
QoA vs. maximizing hit probability. P100 and P1K mean 100 and 1000 nodes,
respectively. X-axis means replication ratio.

A
ch

iv
ed

 ra
te

 (C
D

F)

2 V

2 V 2 V E+⋅

resources of the system nodes and links: each system node (peer) checks its current
(node and intrinsics) availability and either accepts or rejects the new request based on
the check result. For this purpose, we take additional constraints on resource
capacities, e.g. storage space, load and access bandwidth capacity. We further assume
that there may be at least one replica or its original data available at any access time. In
the new placement algorithm which we call admission-controlled placement, the
replica placement can be performed in two (or more) phases: Base placement and
Optimization. In the base placement phase, we find the highest available path for each
of demanding nodes and test whether the path gives a QoA guarantee, i.e. whether the
supplied QoA achieved by the selected path is greater than the demanding QoA for the
node. If the test fails, we select a node along the path, which is closest to the
destination node (i.e. service supplying node) and has enough resource to be allocated
and fulfils the QoA requirement. The node is then added to the replica node set. After
the first placement phase, this replica node set will then give a QoA guarantee for all
demanding nodes.
The resulting replica set R guarantees QoA for all demanding nodes. However, R is
neither the optimum nor has been optimized. Thus, the second phase of our admission-
controlled placement is mainly to optimize the placement. We try to reduce |R|
determined in the first phase, while keeping the QoA guarantee. One simple approach
is to delete the replicas with lower supply QoA values. For example, each replica node
of R is taken (or hidden). We then check for the demanding nodes which are assigned
to the hidden node whether their demand QoA values can be fulfilled by supply QoA
of all other replica nodes in R. If yes, the hidden node can be deleted. This test is
repeated for all the replica nodes of R. We call this phase as Optimization phase.
The optimized placement R2, which is determined in the second phase of the
admission-controlled algorithm, offers also QoA guarantee for all demanding nodes.
However, it may still not be the optimum. Therefore, one may adopt additional
optimization techniques such as ‘Move and Update’ [21]. We used the admission-
controlled algorithm for both static and dynamic replication modes. Currently, we are
collecting simulation results of the algorithm. [19] shows a pseudo-code the base
placement module of the admission-controlled algorithm.

5 Related Work
The key ideas on which our work on QoA concept in this paper bases are (i) an
availability-centric view on QoS and (ii) satisfying different levels of QoA values
required by individual users. Since the common goals associated with replica
placement problems in existing studies are reducing clients’ download time and
alleviating server load, the main feature of the problem solving approaches for this
problem category is that they usually addressed the cost and resource minimization
issues, but not the question how to guarantee the required availability.
Kangasharju et al [14] studied the problem of optimally replicating objects in content
distribution network (CDN) servers. As with other studies [15-17], the goal of their
work is to minimize object lookup time/cost, i.e., minimize average number of nodes
visited to find the requested object. Furthermore, they assumed that all of the objects
are always available in their origin server, regardless of the replica placement.
In [18] Kangasharju et al. also studied the problem of optimally replicating objects in
P2P communities. The goal of their work is to replicate content in order to maximize

hit probability. They especially tackled the replica replacement problem where they
proposed LRU (least recently used) and MFU (most frequently used) based local
placement schemes to dynamically replicate new contents in a P2P community. As we
have shown in Figure 5, maximizing hit probability does not satisfy the required QoA
and, furthermore the two different goals lead to different results.
Lv et al. [6] and Cohen and Shenker [7] have recently addressed replication strategies
in unstructured P2P networks. The goal of their work is to replicate in order to reduce
random search times. Yu and Vahdat [20] have recently addressed the costs and limits
of replication for availability. The goal of their work is to solve the minimal replication
cost problem for a given target availability requirements, thus they tried to find
optimal availability for given constraint on replication cost where the replication cost
was defined to be the sum of the cost of replica creation, replica tear down and replica
usage. Our work differs in that our goal is to replicate content in order to satisfy
different levels of QoA values required by individual users. Furthermore, their work
does not address an availability guarantee (guaranteedQoA = 1 at least), whereas
finding the optimum in an exact way is one of the focus of this paper.

6 Conclusion
We took an availability-centric view on QoS and focused on the issues of providing
models and mechanisms to satisfy availability requirement for widely distributed
systems such as P2P systems. We developed a concept called quality of availability
(QoA) in which the availability is treated as a new controllerable QoS parameter.
Based on the QoA concept, we modelled widely distributed systems as a stochastic
graph where all nodes and edges are parameterized with known availability and failure
probabilities.
We tackled specifically the replica placement problem in which we specified different
placement problems with different QoA metrics such as satisfiedQoA and
guaranteedQoA. Our goal was choosing the number and location of replicas to satisfy
the availability QoS requirement for all individual peers, while taking intermittent
connectivity of service systems explicitly into account.
From simulation studies, we have learned that
• heuristics cannot give any guarantee on their achieved availability QoS, even when

hey achieve reasonably high availability QoS,
• the location of replica is a more relevant factor than its number for satisfying the

required QoA,
• in opposite to the heuristic method, the exact state enumeration algorithm guaran-

tees the availability QoS with its placement results, although the algorithm has an
exponential runtime complexity, and

• satisfying availability QoS requires more replicas than for only increasing the per-
formance.

Our proposed QoA concept and simulation model can be used for further study on the
dual availability and performance QoS for dynamically changing, large-scale P2P
systems, as well as on the dynamic replica placement for availability QoS guarantees.
Furthermore, for a practical use of our proposed model, one can adopt a service and
resource monitor located in each peer, which gathers periodically the necessary
availability-related information such as total service launch time and percentage of
freely available storage space.

References
[1] Zheng Wang. Internet QoS: Architectures and Mechanisms for Quality of Service.

Lucent Technologies, 2001.
[2] J. Schmitt. Heterogeneous Network QoS Systems. Kluwer Academic Pub., June

2001. ISBN 0-793-7410-X.
[3] H. Schulzrinne. “QoS over 20 Years”. Invited Talk in IWQoS’01. Karlsruhe,

Germany, 2001.
[4] HP Forum. Providing Open Architecture High Availability Solutions, Revision

1.0, Feb. 2001. document available at <http://www.mcg.mot.com/us/products/
solutions/ha_solutions.pdf>

[5] G. Coulouris, J. Dollimore and T. Kindberg. Distributed Systems, 3rd Ed.,
Addison-Wesley, 2001.

[6] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. “Search and replication in
unstructured peer-to-peer networks.” In Proc. of the 16th annual ACM
International Conf. on Supercomputing (ICS’02), New York, USA, June 2002.

[7] E. Cohen and S. Shenker. Replication Strategies in unstructured peer-to-peer
networks. In Proc. of ACM SIGCOMM’02, Pittsburgh, USA, Aug. 2002.

[8] Gnutella. http://www.gnutella.com/.
[9] KaZaA. http://www.kazaa.com/.
[10] G. On, J. Schmitt and R. Steinmetz. “On Availability QoS for Replicated

Multimedia Service and Content.” in LNCS 2515 (IDMS-PROMS’02), pp. 313-
326, Portugal, Nov. 2002.

[11] Christos H. Papadimitrio and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Prentice-Hall, ISBN 0-13-152462-3, 1982.

[12] C. Lucet and J.-F. Manouvrier. “Exact Methods to compute Network Reliability”.
In Proc. of 1st International Conf. on Mathematical Methods in Reliability,
Bucharest, Roumanie, Sep. 1997.

[13] LEDA - the library of efficient data types and algorithms. Algorithmic Solutions
Software GmbH. software available at <http://www.algorithmic-solutions.com/>

[14] J. Kangasharju, J. Roberts and K.W. Ross. “Object Replication Strategies in
Content Distribution Networks”, Computer Communications, Vol.25 (4), pp.
376-383, March 2002.

[15] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt and L. Zhang. “On the Placement of
Internet Instrumentation”, In Proc. of IEEE INFOCOM’00, Mar. 2000.

[16] S. Jamin, C. Jin, A. R. Kurc, D. Raz, Y. Shavitt. “Constrained Mirror Placement
on the Internet”, In Proc. of IEEE INFOCOM’01, pp. 31-40, 2001.

[17] P. Krishnan, D. Raz and Y. Shavitt. “The Cache Location Problem”, In IEEE/
ACM Transactions on Networking, 8(5), pp. 568-582, Oct. 2000.

[18] J. Kangasharju, K.W. Ross, and D. Turner. Optimal Content Replication in P2P
Communities. Manuscript. 2002.

[19] G. On, J. Schmitt and R. Steinmetz. “Admission Controlled Replica Placement
algorithms.” Technical Report KOM-TR-2003-7, April. 2003.

[20] Haifeng Yu and Amin Vahdat. "Minimal Replication Cost for Availability" In
Proc. of the 21th ACM Symposium on Principles of Distributed Computing
(PODC), July 2002.

[21] N. Mladenovic, M. Labbe and P. Hansen. "Solving the p-Center Problem with
Tabu Search and Variable Neighbourhood Search" July 2000. paper available at
<http://www.crt.umontreal.ca/>

