
Planning the Trajetories of Multiple MobileSinks in Large-Sale, Time-Sensitive WSNsTehnial Report No. 381/11Wint Yi Poe, Mihael Bek, Jens B. ShmittDistributed Computer Systems Lab (DISCO), University of Kaiserslautern, GermanyAbstrat. Creating an opportunity from hallenges generated by mo-bility in WSNs prolongs the lifetime of WSNs by reloating the sinksto avoid a hot-spot problem. Suh evidene makes a great impat onenergy-onstrained WSNs. It, however, produes an undesirable infor-mation transfer delay. Often the maximum allowable message transferdelay must be bounded in order to enable time-sensitive appliations ofWSNs, hene, it is ruial to develop a mobile enabled WSNs that min-imize the worst-ase delay without the loss of a lifetime degradation. Todo so, multiple mobile sinks are designed, in partiular, for the sink tra-jetory. In fat, sink trajetory in mobile enabled WSNs is a disrete formof stati sink plaement in traditional WSNs. In this report, we proposea geometrially prinipled heuristi for �nding good trajetories of mul-tiple mobile sinks in large-sale, time-sensitive WSNs. First, we disussthe high analytial hallenges of optimally planning the trajetories ofmultiple mobile sinks. Based on this, we relax the problem by transform-ing it into a geometri design problem, whih, subsequently, is solved inlosed form. The analytial results are ompared with Java-based simu-lation results. The polar grid-based trajetory e�etively minimizes theworst-ase delay and maximizes the lifetime as, for example in a WSNwith 500 nodes and 20 sinks, it has in the order of 50 % lower worst-asedelay and 300 % higher lifetime than a random walk trajetory. Heneplanning the sink trajetories arefully really pays o�.Keywords.Wireless Sensor Networks, Sink Trajetory, Worst-Case De-lay, Lifetime.1 IntrodutionResearh ativity and appliation area of wireless sensor networks (WSNs) hasbeen inreasing sine the last deade. Existing state-of-the-art hardwares andprotools enable testing of the real world appliations and provide their sub-stantial researh. A de�ient energy supply of WSNs drives most of the researhtowards energy awareness in WSNs. Obviously, energy is a ritial issue thatis essential in the optimization of the lifetime prolongation of WSNs. In all as-pets, suh as designs and protools, numerous energy-aware methods have beenproposed and others already de�ned as the state-of-the-art tehnology. Amongthe distint features of WSNs, a time-sensitive nature is a notieable problemfor appliation-spei� WSNs. The worst-ase message transfer delay plays a



vital role in as, for example, intrusion detetion appliation. Therefore, it be-omes very interesting to built WSNs suh that lifetime and delay goals are metsimultaneously.So, the question is how to design a performane-aware WSN under mini-mizing the worst-ase delay and maximizing the lifetime. In a multi-hop WSN,delay signi�antly relies on the path length (in hops) from the soures to thesink. Intuitively, the geographi positions of sinks play a vital role in minimizingdelay in WSNs. In order to solve the problem of minimizing the worst-ase delay,two possible solutions are proposed. One solution is to use a diret ommunia-tion to the sink by assuming that sensors have enough energy supply. However,beause of the limited battery life, this expensive solution is not always feasiblein pratie, as it results in the loss of overage. It is only feasible if a sensor isintelligent enough to distinguish the priority of the message. Another solutionis to deploy multiple sinks to allow sensors to onnet to the nearest sink. Byutilizing multiple mobile sinks, the information transfer delay redues e�etively.The latter solution is adequate and preferable for the de�ient energy supply ofsensor nodes. In order to prolong the lifetime, mobility is a solution. In fat,mobility is a mixed blessing for WSNs. On one hand, the degree of network dy-namis indued by mobile nodes or sinks may aggravate the design of networkingprotools and distributed algorithms. On the other hand, ontrolled mobility alsoreates opportunities [10℄. One of the suessful ways to apply ontrolled mo-bility in WSNs is to use a mobile sink in order to avoid the typial hot-spotproblem around a stati sink [5, 14℄. By moving the sink throughout the sensor�eld, the burden of being a diret neighbor of the sink an be shared among allnodes of the network and the network lifetime inreases.In general, sink mobility as, for example, using random walks of multiplemobile sinks, inreases the maximum information transfer delay over that of aproper plaement of a set of stationary sinks. This is simply due to the fat thatthere is always a delay-optimal position for the sink and if the sink is moved awayfrom it the message transfer delay beomes worse. Clearly, this reates a problemfor time-sensitive WSN appliations. So, using sink mobility, we fae a on�itbetween lifetime maximization and delay bound minimization in large-sale, timesensitive WSNs. The hallenge thus beomes to �nd good trajetories for thesinks suh that lifetime and delay goals are met simultaneously. In this report,we �rst provide a multi-objetive optimization problem formulation for planningthe trajetories of multiple mobile sinks (alled OST (Optimal Sink Trajetory)).We remark that already the single objetive problem of maximizing networklifetime is known to be NP-hard [13℄. Hene, we relax the OST problem bygiving it a geometri interpretation (alled GST (Geometri Sink Trajetory)).The intuition behind this is that both, delay and lifetime, bene�t from nodesbeing loser in terms of Eulidean distane to their assigned sinks. So the twoobjetives are amalgamated into one. Furthermore, the GST lends itself to asolution based on the kernel insight that, for a single sink, the problem is reduedto simply �nding a minimum enlosing irle, whose irumenter is the optimalposition for the sink to minimize the maximum Eulidean distane. Extendingthis insight we propose a geometrially prinipled approah using a polar grid todivide the sensor �eld into areas of similar size, eah of whih is the responsibilityof a single sink. The sinks are moved synhronously (e.g., one a day) along aninner and an outer orbit. The optimal size of the inner and outer orbit as well as



the optimal number of sinks on inner and outer orbit are derived in losed formusing geometri arguments.The rest of the report is organized as follows. Setion 2 provides an overviewof related work. Setion 3 desribes the network model and, in order to revealthe struture of the problem, provides the original problem formulation for theOST. Next, the GST and its derivations are presented in Setion 4. We introduethe MICAz-based energy model in Setion 5. The performane of the polar grid-based trajetory for multiple sinks is evaluated and ompared against severalalternatives using simulations in Setion 6. We onlude the report in Setion 7.2 Related WorkThree types of mobile elements have been introdued in WSNs: mobile node,mobile relay, and mobile sinks. The use of mobile nodes an be seen in [4℄ wherethe authors introdue the heterogeneous mobile sensors to ahieve full overage.Some related work of mobile relay an be found in [17, 11, 3, 8℄ where mobileelements at as relays for information gathering. In literature, a number of worksrise to the hallenge of using multiple mobile sinks [9, 7℄, yet often not delvinginto the optimal planning of their trajetories. This setion reviews a mobile sinkapproah and related issues, suh as type of sink trajetory and performaneissues.In general, the type of sink trajetory an be ategorized as a random, state-dependent, and prede�ned. The use of the random walk trajetory an be foundin [15, 6, 7℄. In [7℄, mobile sinks perform a random walk and ollet the datafrom the sensors of their assigned lusters onstruted by load balaning andlifetime maximization. With the random walk trajetory the hot-spot problemis eliminated by distributing the random tra�. It, however, is likely to max-imize the worst-ase delay in WSNs. Reently, [5, 21℄ address state-dependentmobility for maximizing the lifetime of WSNs. In their approah, the sink tra-jetory is a funtion of a partiular network variable, suh as, e.g., the state ofnodes' batteries; the sink moves either grid-based [5℄ or following a straight line[21℄. Though the lifteime performane of suh trajetories is good, the methodsassume knowledge of global and dynami information for determining the opti-mal paths and sojourn times, whih is a very strong assumptions in large-saleWSNs.The prede�ned trajetory is fully deterministi where the sink is expeted toappear on the same path periodially [9, 11, 22℄. In [9℄, a data olletion shemeuses a multi-hop ommuniation for multiple mobile sinks to maximize through-put and to minimize energy onsumption. To ollet data the mobile sink movesperiodially with onstant speed along the straight lines. In [11℄, by �xing thetrajetory to be a straight line at the middle of eah equal region of the networkarea (i.e., a retangular �eld shape), the authors try to balane the number ofsensor nodes for eah mobile element servies. Intuitively, this model an min-imize energy onsumption and thus extend the lifetime of WSNs. It, however,does not guarantee a delay optimization. In [22℄, the authors present a trajetoryat the periphery of the network as the best strategy over other �xed trajetoriessuh as mid-periphery, diagonal ross, and mid-ross for load balaning in WSNs,by proving the orretness of [14℄. An interesting thing is [20℄ onsidered a �xed



trajetory along onentri irles separated by 2rtx, where rtx is the transmis-sion range of node, for the entire network with the purpose of minimizing totalenergy onsumption. Suh trajetory looks similar to our polar grid trajetorybut ours is for multiple mobile sinks in whih lifetime and delay goals are metsimultaneously.In ontrast to a periodial movement, the work in [14℄ proposes a prede�nedsink trajetory that appears just one round. Here, the movement of a sink isthe sequene of a stati sink plaement like [23, 15℄, and the sink veloity andsojourn time are omputed aording to the expeted lifetime of WSNs. At eahsojourn along a given trajetory, the sink broadasts its urrent loation andollets data that are forwarded to it through multi-hop ommuniation. In [15,14℄, the improvement of lifetime prolongation by using joint mobility and routingmethod is presented. In [15℄, the authors present the problems of determiningsink sojourn times at eah random sink loation and the authors in [14℄ addressa modi�ed periphery sink trajetory with a better routing design that uses aombination of round routes and short paths. Most of these studies are onernedwith the lifetime prolongation of a WSN, often restriting to the single mobilesink ase.In our work, we takle the problem of �nding good trajetories for multi-ple mobile sinks suh that we keep the maximum message delay low and stillahieve a long lifetime. So, delay and energy are traded o� against eah other.Along similar lines, [21℄ optimizes this trade-o�, too, designing a trajetory fora �data mule� whih ollets the data from eah sensor node diretly [17℄. Inorder to minimize delay, the speed of �data mule� and its improvement, whihombines multi-hop ommuniation for those nodes that are far from the sink,are both ontrolled. Sine the �data mule� �rst ollets the data from the rootnodes losest to the sink and later transfers all the data to the sink, it is notommuniate diretly to the sink. Yet, the data mule approah inurs long laten-ies and is generally not appliable in time-sensitive WSNs. Almost all mobileenabled multi-hop WSNs mentioned above use the shortest path routing exeptsome additional modi�ation in [14, 21℄.In [23, 15, 13℄, the movement of a sink is abstrated as a sequene of a statisink plaements assuming that the time sale of sink mobility is muh largerthan that of data delivery; we follow this assumption in our work. Followingsimilar geometri arguments, [13℄ fouses on minimizing the average distanebetween sink and assigned sensor nodes. The reasonable assumption is that in amulti-hop network, the energy ost of transmitting a message from the node tothe sink is linearly proportional to the Eulidean distane between them. Suh adistane-related assumption is also at the heart of our work but with additionalonsideration of the message transfer delay, whih is why we set out to minimizethe maximum distane.3 Network Model and Problem StatementIn this setion, we �rst provide our network model along with some basi as-sumptions and, next, state the problem of planning sink trajetories for multiplemobile sinks as a multi-objetive optimization problem. Here, the intention isto shed light on its basi mathematial struture without providing a solutionapproah yet.



3.1 Network Model
V is the set of sensor nodes with |V | = N ; S is the set of sinks with |S| = K.We model the WSN as a direted graph, G = (V , E), where V = V ∪ S. For all
a, b ∈ V , ∃(a, b) ∈ E if and only if a and b are within a dis-based transmissionrange rtx.� We assume that the sinks' movement is synhronous, i.e., all sinks move atthe same time. Further, sink movement takes plaes on relatively long time-sales (e.g., one a day), muh larger than the time-sale of the messagetransfer delay from sensors to sinks (e.g., on the order of seonds). Therefore,we neglet the time periods when the sinks are atually moving (or beingmoved) and the sink mobility is abstrated as a sequene of sinks' loations.At eah loation the sinks stay for an equal amount of time, further on alledepoh n = 0, 1, 2, . . . In partiular, we also assume that all data is �ushedfrom the WSN before a sink movement takes plae, i.e., there is no datadependeny between epohs.� The sensor nodes are assumed to be homogeneous: They send L(n) datapakets in eah epoh n and have the same initial energy budget E available.We fous on the energy onsumption for transmitting and reeiving data,sine the energy onsumption by other units is relatively the same for allnodes and, as suh, an be taken as a onstant. Also, the sensor nodes arestationary.� We de�ne the loations of sink s in epoh n as ls(n) ∈ R

2, and by l(n) ∈
R

2×K we denote the sinks' plaement in epoh n.� For node to sink assignment, we de�ne xv,s(n) as a binary variable whih isset to 1 if node v is alloated to sink s in epoh n and 0 otherwise. Hene,the overall assignment X(n) in epoh n is a binary matrix:
X(n) := (xv,s(n))v∈V,s∈S ∈ {0, 1}N×K.� For a ertain assignment X(n) we an de�ne a routing as follows:

PX(n) :=
⋃

v∈V,s∈S : xv,s(n)=1

Pv,swhere, Pv,s is a path from node v to sink s whih is desribed as the set ofedges lying on this path under the assumption of multi-hop ommuniation.� We all a sequene of triples
(

l(n), X(n), PX(n)

)

n∈N =: Sna strategy.� We de�ne the network lifetime by the timespan until the �rst node dies dueto battery depletion.3.2 Optimal Sink Trajetory: Problem StatementBased on these de�nitions, we formulate the optimization problem of �ndingsink trajetories for multiple sinks in a WSN with the aim of minimizing the



maximum delay and maximizing the network lifetime T of the network:
min
Sn

max
v∈V, n∈N

Dv(n)
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Sn

Tsubjet to: ∀n ∈ N, ∀v ∈ V , ∀s ∈ S
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 ≤ E (4)where δ−(v) = {e ∈ E|e = (v, n), n ∈ V} and δ+(v) = {e ∈ E|e = (n, v), n ∈ V}.The funtion fn : E → R
+ desribes the amount of data sent over an edgein epoh n. Equations (1) and (2) are �ow balane equations to ensure thatno additional data is produed or any data is lost at the nodes. Equation (3)enfores that a sensor node is assigned to exatly one sink in epoh n. The energyonstraint for eah node v ∈ V is de�ned in Equation (4); here, the total energyonsumption for reeption Ercv(e, fn(e)) and transmission Etx(e, fn(e)) up toepoh T , the lifetime of the WSN, must not exeed the initial energy E for anynodes.The delay funtion Dv(n) represents the end-to-end delay harateristis forthe message transfer from node v to its assigned sink in epoh n. At this point,we still remain abstrat about whether, e.g., an average delay over an epoh orthe maximum delay experiened is taken. However, later on (in the simulationsas presented in Subsetion 6.4), based on sensor network alulus [16℄, we use abound on the maximum end-to-end delay to instantiate Dv(n). In any ase, thedelay funtion Dv(n) is a very omplex funtion, whih does not only depend onthe path from the node v to its sink, but also on all other paths interfering with it.Hene, di�erenes in hoosing a path for just one node-sink pair, in general, a�etmultiple end-to-end delays. Similarly, we also remain abstrat about the energyfuntions Ercv and Etx, whih are also omplex funtions, thus aggravating theproblem further. A last but not least hardness of the problem stems from thetwo objetive funtions and their on�iting nature.4 Geometri Sink Trajetory (GST)Due to its fundamental hardness, we relax the OST problem, whih is basiallya graph problem, into a geometri one, alled the Geometri Sink Trajetory(GST) problem. Basing on the assumption of a large-sale WSN with a more orless uniform node distribution we abstrat from nodes as suh. For the geometri



shape of the sensor �eld we assume it to be a irle, a somewhat arguable, butoften made assumption on this level of abstration [13℄. We brie�y ome bak toa disussion about the irular shape in Setion 7.Under these abstrations for the GST, the objetive of minimizing the max-imum delay is redued to the objetive of minimizing the maximum Eulideandistane dv,s(n) = ‖ls(n) − pos(v)‖2 from sink s ∈ S to node v ∈ V in epoh n;here, pos(v) refers to the position of sensor node v in the Eulidean spae. Some-what more indiretly, we ater for the lifetime maximization by partitioning thesensor �eld into areas of similar size (per epoh), eah of whih is under the re-sponsibility of a single sink. The rationale of this being that eah sink is roughlyassigned a similar number of sensors thus leading towards a good balaning ofthe forwarding load between areas.Interestingly, for the single sink ase, we remark that by simply substitutingthe delay funtion by the Eulidean distane, and negleting the energy issues,the OST problem beomes a well-known minimum enlosing irle problem [18℄(we point out, though, that with K irles the problem remains hard). Thisproblem and its solution by a minimum enlosing irle is illustrated in Figure1. The enter of suh a irle is the optimal plaement for a sink in terms ofminimizing the maximum distane between sink and sensor nodes. We reur tothis basi insight several times further on, when we look for optimal positions ofsinks in their respetive area.
Fig. 1. An example of a minimum enlosing irle.Our framework to onstrut sink trajetories l(n) based on solutions to theGST onsists of the following steps:1. We assign areas of similar sizes to the sinks (→lifetime maximization). Infat, there are di�erent possibilities to ahieve this and we disuss them inthe following subsetion.2. After that we alulate the optimal plaement of the sinks, suh that themaximal distane of any point in these areas to its sink is minimized (→delayminimization).3. Finally we de�ne the sink trajetory for eah sink by speifying its movementto the next position.



4.1 The Area Assignment ProblemThe area assignment problem is: How to partition a irular network of radius
R in order to ahieve areas of similar size with respet to a given number ofsinks K? A �rst and exat solution is an equal setorization whih has a niesalability property in terms of handling an inreasing number of sinksK withoutompromising the equal size of eah setor. No matter how large K is, equalsetorization ahieves equally sized areas by alulating the enter angle of eahsetor as Φ = 2π

K
. Figure 2(a) shows an example of equal setorization for a 14sinks network. Due to its symmetrial nature, it is su�ient to �nd a minimumenlosing irle for one of the irular setors. Although, the equal setorizationahieves bene�ial properties like salability, ongruity, and simpliity, the areaof eah irular setor beomes inreasingly narrower for a growing number ofsinks K, whih results in relatively large maximum distanes to a sink. In fat,the maximum distane for a point to its sink in a irular setor is boundedfrom below by R
2 . This implies that the delay performane does not improvesigni�antly any more after a ertain number of sinks is reahed even if moresinks are available.

(a) (b)Fig. 2. Sinks assignment in (a) an equal setorization, and (b) a polar grid.Therefore, we introdue an alternative way of partitioning the sensor �eld,whih is designed to improve on minimizing the maximum distane for a growingnumber of sinks K. The idea is to have two onentri irles of radii r and R,as illustrated in Figure 2(b). By dividing the irle into two di�erent parts, themaximum distane between any point to its sink an be redued e�etively andthe resulting sheme still an ahieve a balaned area assignment. The resultingpartition is usually alled a polar grid. The following setion desribes how to�nd the optimal sink distribution in a polar grid, i.e., how many of the sinksto plae in the outer ring together with the optimal value for the radius of theinner irle r.4.2 Optimization of the Polar Grid Area AssignmentAs shown in Figure 2(b), sinks are assigned in the inner irle and in the annulusof the outer irle to reate a polar grid. We de�ne Kin and Kout as the number ofsinks for the inner irle and the annulus of the outer irle, respetively. Figure



2(b) provides an example for 14 sinks with Kin = 4 and Kout = 10. Let us de�ne
din and dout as the minimal radii of enlosing irles for the setor and annularsegments, respetively, given r, Kin and Kout. Then, the polar grid-based areaassignment problem an be formulated as follows:

min
0<Kin≤K

min
0≤r≤R

max {din, dout} (5)We alulate din and dout from the orresponding minimum enlosing irles.In the following we assume Kin, Kout ≥ 3 to avoid degenerate ases.Formulation of din and dout There are two types of ells in the polar grid-based assignment sheme: a setor in the inner irle and an annular segment inthe annulus of the outer irle. The optimal values of Kin and Kout are likelyto be unequal in general, whih implies two di�erent enter angles θ1 and θ2 forsetor and annular segment, respetively. This is also illustrated in Figure 3(a)and (b).

(a) (b)Fig. 3. Cirumsribed irles of polar grid ells: (a) a setor in the inner irle, and (b)an annular segment in the annulus.We �nd the minimum enlosing irle and its radius by approximating eahpolar grid ell by an easier shape. In partiular, we determine the minimumenlosing irles for the isoseles triangle and isoseles trapezoid for the respe-tive polar grid ells. In Figure 3(a) and (b), the minimum enlosing irles forthe isoseles triangle △ABO and the isoseles trapezoid ABDE are depited,whih, in this ase, are the irumsribing irles of the triangle and trapezoid,respetively. In the following we denote by h the height in the triangle △ABOand by x the distane between the point E of the trapezoid and the enter ofthe line AB.The minimal distanes din and dout are alulated from the respetive ir-umsribed irles formulation. Given r, R, α and β (see Figure 3 and 4), the



following equations haraterize din and dout:
din =

{

r
2 sin β

for |AB|
2 ≤ h

r cosβ for |AB|
2 ≥ h

(6)
dout =

{
√

(R−r)2+4rR cos2 α

2 sin α
for |AB|

2 ≤ x

R cosα for |AB|
2 ≥ x

(7)

(a) Setor Segment (b) Annular SegmentFig. 4. Optimal sink plaement inside a setor and an annular segment with large |AB|
2

.Note that for angles 0 ≥ θ1, θ2 ≥ π
2 we always have to onsider the �rst asesof Equations (6) and (7).The following proofs show the orretness of Equations (6) and (7).Claim 1: For |AB|

2 ≤ h, the enter of the irumsribed irle of the isose-les triangle △ABO minimizes the maximum distane of the setor ABO (referFigure 3(a)).Proof: Denote the enter of the irumsribing irle by C, its radius by dand the irle itself by Cd. Sine |AB|
2 ≤ h the minimum enlosing irle is Cd.Sine △ABO is a subset of the setor, this means that the minimum enlosingirle for the setor has at least radius d. Hene it is su�ient to show that thesetor lies inside the irle Cd. Again from |AB|

2 ≤ h we know that C lies insidethe triangle, so d ≤ r. Obviously C 6= A, B and by this even d < r holds. Denotenow by ABO the ar between A and B with its enter in O. It is su�ient toshow that any point lying on this ar has distane not bigger than d to C. Denoteby D the intersetion between the ar ABO and the line through O and C (seeFigure 3(a)). Then by the triangle-inequality (for the triangle △ACO) holds:
2d ≥ r = |OD| = |OC| + |CD| = d + |CD|



leading to:
d ≥ |CD|Suppose now there would exist a point D′ on ABO with d < |CD′|. This wouldonly be possible if there exists a point D′′ on the ar ABO whih also lies on Cd.Together with A and B this point would be a third intersetion point betweenthe irles Cd and Or, leading to the equality of the two irles, espeially to

d = r, whih is a ontradition to the already established inequality d < r. Heneall points of the ar, and by this the whole setor, lie inside the irle Cd .Claim 2: For |AB|
2 ≤ x, the enter of the irumsribed irle of the isose-les trapezoid ABDE minimizes the maximum distane of the annular segment

ABDE (refer Figure 3(b)).Proof: As in the previous proof we know, by the assumption that |AB|
2 ≤ x,that the irumsribing irle Cd of the trapezoid is the minimum enlosing irleof the trapezoid and its enter lies in the trapezoid. We proeed in the same wayas in the previous proof, however here it is not as easy to see that the radius dof the minimum enlosing irle of the trapezoid is smaller than R. For that wedenote by F the intersetion of the angle bisetor of θ2 with the line |DE| (seeFigure 3(b)). The triangle △AFO has its largest angle at F , whih is for r < Rlarger than π

2 hene:
R = |OA| > |AF |A similar argument leads to |AF | > |DF | = |EF |, hene we an �nd an enlosingirle for the trapezoid around F with radius |AF | < R and by this the minimumenlosing irle also has a radius d smaller than R. Now denote again by ABOthe ar between A and B with enter in O and by G the intersetion between thisar and the line through O and C, where C denotes the enter of the minimumenlosing irle. Then again by the triangle inequality:

|OC| + |CA| = |OC| + d ≥ R = |OC| + |CG|hene:
d ≥ |CG|By the same ontradition as in the previous proof, one an show that the om-plete ar ABO lies inside the minimum enlosing irle of the trapezoid.Claim 3: For |AB|

2 ≥ h, the line segment AB of the triangle △ABO is thediameter of the minimum enlosing irle (refer Figure 4(a)).Proof: In the triangle △ACO we have at C a right angle, hene: d < r.Denote again by D the intersetion of the ar ABO and the line through O and
C, then by the triangle inequality we have:

|OD| = |OC| + |CD| ≤ |OC| + |CA|Knowing that |CD| ≤ |CA| = d we an onstrut the same ontradition as inthe previous proofs to see that the whole ar ABO lies inside Cd. By this weknow that Cd is an enlosing irle. Sine |AB| = 2d we also know that anyenlosing irle has at least radius d, thus Cd is a minimum enlosing irle.



Claim 4: For |AB|
2 ≥ x, the line segment AB of the trapezoid ABDE is thediameter of the minimum enlosing irle (refer Figure 4(b)).Proof: The proof works like the previous one replaing r by R and G takingthe role of D.Optimal r and sink distribution Kin vs. Kout Based on the mathematialformulations for din and dout, we are able to evaluate expression (5). One seesthat for a �xed Kin and Kout din is a stritly inreasing funtion in r and

dout is a dereasing funtion in r. So we have to ompute the intersetion ofthe two funtions din and dout, whih gives us the optimal value for r, given aombination of Kin and Kout. The global minimum of dout is equal to R cosαand is ahieved at all r ≥ R − 2R cos2 α. So to �nd the intersetion of din and
dout we need to know, where the funtion din intersets with the funtion givenin the �rst ase of Equation (7). The neessary omputations for the ase we usethe �rst ase of Equation (6) for din are as follows:

r

2 sinβ
=

√

(R − r)
2

+ 4rR cos2 α

2 sinα

⇒ r1, r2 =
−b ±

√
b2 − 4ac

2awhere
a =sin2 α − sin2 β,

b =2R sin2 β(1 − 2 cos2 α),

c = − R2 sin2 β.By evaluating max{din, dout} at the minimum of the points [r0]+, r1 and r2 wean �nd the minimum for this ase.For the ase where we use the seond ase of Equation (6) we proeed simi-larly:
r1, r2 =

−e ±
√

e2 − 4df

2d

r0 = R − 2R cos2 α,where
d =4 sin2 α cos2 β − 1,

e =2R − 4R cos2 α,

f = − R2.Again by evaluating max{din, dout} at the minimum of the points [r0]+, r1 and
r2 we an �nd the minimum of max{din, dout}.For a given K and R, we an now exhaustively searh for the optimal valuesof r trying all possible ombinations of Kin and Kout (the size of the searhspae is just K − 1). Among all ombinations, we selet the best on�gurationof Kin and Kout with respet to the minimum distane of din and dout (usingthe best r), thus implementing Equation (5).



4.3 Designing the Sinks' TrajetoriesNow, we know the optimal points (i.e., the enters of the minimum enlosingirles for setor and annular segments) whih produe the optimal din and dout.Based on these points, we design irular mobile sink trajetories. Let rin and
rout denote the distanes from the enter of the network to the enter of theminimum enlosing irles for the setor and annular segment, respetively, asillustrated in Figure 5. The formulas for determining rin and rout look like thefollows:

rin =

{

r
2 sin β

for 0 ≤ θ1 ≤ π
2

r sin β for π
2 ≤ θ1 ≤ π

(8)
rout =

{
√

(R−r)2+4rR cos2 α

4 sin2 α
− r2 cos2 α + r sin α. for r ≤ R − 2Rcos2α

R sin α. for r ≥ R − 2Rcos2α
(9)

Fig. 5. An example of polar grid_based trajetory for a 14 sinks network.The trajetories of the sinks basially result from rotating the whole polargrid in an attempt to keep both, message transfer delay and load per sink,balaned. Clearly, an interesting parameter is how far we rotate the polar grid,i.e., whih step size we use for eah sink when going from one epoh to theother. Results onerning this step size and a deeper disussion of its in�ueneare provided in Setion 6.4.4 Analytial Evaluation of the Geometri Sink TrajetoryBefore we delve into a detailed simulative study of our approah, we �rst ana-lytially ompare the equal setorization and polar grid-based area assignmentshemes with eah other. Figure 6(a) and (b) show the maximum distane dis-tributions of an equal setorization- and a polar grid-based area assignment for
R = 100 m and a varying number of sinks K up to 30. Apparently, a polar grid
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(a) (b)Fig. 6. The maximum Eulidean distanes distribution of (a) an equal setorization,and (b) a polar grid-based area assignment shemes.area assignment e�etively redues the maximum distane as K grows. Notethat for K ≤ 8 the equal setorization is in fat superior to the polar grid. Thereason lies in the restrition of having Kin, Kout ≥ 3, otherwise the polar gridshould always be superior, sine equal setorization an be onsidered a speialase of a polar grid (with Kout = 0 and r = R). The results are based on theoptimal hoie for r and the optimal sinks distribution for Kin and Kout.We further show the orresponding optimal sink distribution Kin and Koutin Figure 7.
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Starting from K = 13, the value of Kin is ⌊

K
3

⌋ and onsequently the value of
Kout beomes ⌈

2K
3

⌉. Therefore, the optimal ratio of Kin

Kout
beomes 1

2 . In general,the optimal sink distribution is about one third of the sinks for the inner irleand about two-thirds for the annulus. Furthermore, the alulation shows thatthe optimal r is onverging to half of the radius R.We remark that, in general, the polar grid does not ahieve a perfetly equalarea assignment. Nevertheless, the di�erenes are not too large and as disussedin the following setion the polar grid performs favorably with respet to bothobjetives, lifetime maximization and delay minimization.Aordingly, the optimal rin and rout are shown in Figure 8(a). Figure 8(b)shows the orresponding optimal r distribution for Figure 6(b).
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(a) (b)Fig. 8. (a) An optimal distribution of rin and rout, and (b) The optimal radius rdistribution.5 Energy ModelA sensor node is omposed of a sensing unit, a proessing unit, a transeiver unit,and a power unit. Eah unit onsumes a di�erent energy level. Usually, the mainonsumers of energy are the transeiver unit and the proessing unit. The sensingunit onsumes energy for a variety of sensors and for ADC onverters. Theproessing unit requires energy to aggregate data, ompute routing, and maintainseurity, et. Sine the purpose of the transeiver unit is to both transmit andreeive data, it is no doubt that it onsumes quite a lot of energy. If a WSN allowsdiret ommuniation from a node to a sink, then this will be very expensive.For this reason, we onsider multi-hop ommuniation in WSNs, and thus energyonsumption by transmitting and reeiving a message has to be analyzed basedon a hop-by-hop ommuniation sheme.



In fat, a highly aurate energy estimation is desirable. However, this wouldneed to be investigated starting from the transistor level, taking into onsidera-tion leakage, et. We take a more abstrat view and de�ne a simple energy modelfor the assessment and performane omparison of sink trajetory in WSNs.We make assumptions that the model mainly highlights the energy onsump-tion of the transeiver unit, sine the energy onsumption of the proessing unitis relatively the same for all nodes and, as suh, an be taken as a onstant. Thus,energy onsumption for seurity, routing, and data aggregation is not taken intoaount. Wireless signal propagation should be aware of a path loss. Typially,the path loss exponent, τ , varies from 2 to 6. If the environment is a free spae,then τ = 2 is onsidered based on the Friis free spae model. Otherwise τ = 5to6an be onsidered for shadowed areas and obstruted indoor senarios [12℄.The model onerns total energy onsumption of a data paket sent from allnodes to their nearest sinks whenever the sinks move to the next position. Ashas been mentioned in Subsetion 3.1, we de�ne the lifetime of the WSN as thetime span until the �rst sensor node depletes its battery. In order to apturethis event we need to keep trak of the battery levels of eah sensor node. Tothat end, we de�ne a simple, yet fairly realisti model mimiking the energyonsumption of MICAz motes [2℄. We fous on the energy onsumption of thetranseiver unit. The formulation of the total energy onsumption for all datatransmissions from the nodes to their assigned sinks up to epoh n, is denotedby En
total; it is the sum of total energy onsumption of all nodes:

En
total =

∑

v∈V

En
v (10)where the energy onsumption for a node v in epoh n, En

v , is given in aordaneto Equation (4) as:
En

v =
∑

e∈δ−(v)

Etx(e, fn(e)) +
∑

e∈δ+(v)

Ercv(e, fn(e)),with
Ercv(e, fn(e)) =Ercv(fn(e)) = Prcv · trcv(fn(e)), (11)
Etx(e, fn(e)) =Ptx(e) · ttx(fn(e)). (12)In (11), we see that the energy onsumption for reeiving the data fn(e) is justthe time needed to reeive the data trcv(fn(e)) multiplied by the power on-sumption Prcv of the reeiving unit; this is independent of the distane betweenthe sending and reeiving node. In (12), the energy onsumption for sendingdata is again the time needed to send the data ttx(fn(e) times the power on-sumption of the sending unit Ptx(e), whih, however, now is dependent on thedistane between the ommuniating nodes. Taking the values from the MICAzdata sheet [2℄, we an alulate the power onsumed by the reeiver eletron-is Prcv. Basially, Ptx depends on the transmitted output power setting whihagain depends on the distane and the seleted modulation sheme. There aretwo omponents that onsume energy in the transmitter part. The formula is



desribed in Equation (13). The �rst part represents power used in transmittereletronis, PtxElec, while the remaining part is expressed as transmission powerof RF signal generation, Pamp.
Ptx = (PtxElec + Pamp) (13)

Pamp = V · Itx (14)Basially, PtxElec an be assumed as a onstant, whereas we de�ne Pamp inEquation (14). Let us disuss the seond omponent in detail. Although it lookssimple, the hoie of a urrent onsumption depends on the transmitted outputpower setting that relies on the distane and the seleted modulation sheme. Itis impossible to diretly use a typial urrent beause with MICAz it does notreport a onnetion between them. Therefore, we must hek the relationship(in dB) between RF power, Ptx, and the reeived signal power at distane d, Pd.We express the transmission model that is based on the spei�ations ofthe CC2420 RF transeiver of a MICAz mote [1℄ using referene [19℄. First, westudy the e�et of a path loss variation over distane between two nodes. Thepath loss ours due to the dissipated power at transmitter op-amp and hannelpropagation. For general analysis of the system design, the transmission poweris built upon the mean path loss whih is measured in dB, as shown in Equation(15). The mean path loss, PL(d) an be omputed using the mean path loss atreferene distane d0, PL(d0), and the path loss exponent,τ1.
PL(d) = PL(d0) + 10τlog10(

d

d0
) (15)Based on a free spae radio propagation environment, Equation (16) is usedto ompute the value of PL(d0).

PL(d0) = 20log10(
4πd0

λ
) (16)where,

λ = c/f

c := speed of light
f := frequency of the transmitted signal.We now ompute the reeived signal power at a distane d based on thetransmitted signal in dB with the following Equation (17).

P (d) = Ptx − PL(d) + σ (17)Based on the above equation, a distane-dependent orresponding power levelfor MICAz mote is introdued to hek a satisfatory power level for a givendistane, d, in [19℄. By referring to the Chipon CC2420 output power settingfor the MICAz mote, we get the typial urrent onsumption, and thus Pamp.
P (d) =

{

Ptx − 40.2 − 20log10(d), d < 8m

Ptx − 58.5 − 33log10(
d
8 ), d > 8m

(18)1 A wide range of 1km is onsidered for ellular system and a short range of 1m isonsidered for WLANs [12℄.



Note that transmitting uses less energy than reeiving even at the highestoutput power of the transeiver hip. The reason is that the reeiver onsumesa onsiderable amount of power due to idling in the reeive mode. So, a dutyyle is a good way to ontrol energy onsumption of a reeiver.6 Performane EvaluationIn this setion, using disrete event simulations, we evaluate the performaneof the polar grid-based solution to the GST under the assumptions of the orig-inal OST problem formulation. In partiular, we ompare it to a number ofalternative sink trajetories with respet to delay and lifetime performane. Fur-thermore, we analyze fators like the number of sensor nodes, the number ofsinks, and the movement step sizes of the sinks.6.1 Competitors
(a) (b) () (d)Fig. 9. Competitors: (a) a random walk, (b) an outer periphery, () a star, and (d) anequal setorization trajetory.We seleted four ompeting sink trajetories whih are illustrated in Figure9(a), (b), (), and (d). Supposedly as a lower bound among the trajetories, usinga random walk (with a �xed step size) for eah of initially randomly plaed sinksis seleted. Clearly, this is a very simple strategy whih shall serve as a referenein how far investing more e�ort in the planning of sink trajetories is justi�ed.The next ompetitor is based on an insight by Luo for the single sink ase(see Claim 7 in his thesis [13℄): using the outer periphery for the sink is atuallyoptimal with respet to lifetime (under mild assumptions about the symmetryof the trajetory). We simply extend this into having multiple sinks irulatingin equal distanes from eah other in the outer periphery.We onstrut a star like trajetory as presented in Figure 9 (). The detail ofstar trajetory an be seen in the Algorithm 1. In the �rst step, the network isequally setorized by the number of sinks. In the seond step, we ompute λ todeide whih verties are onneted to form a star like trajetory. (For example,in a K = 6 sinks network, λ = K

2 − 1 = 6
2 − 1 = 2 then every 2 hops verties areonneted to form a line trajetory.) After that, we initialize the sink for eahtrajetory. To be able to balane the load and minimize the worst ase delay,



Algorithm 1 Construting a star trajetory.Given: Number of sinks to be plaed |S| = K, a irular network COR �eld of radius
R, step size ω1. The network is equally setorized by K2. Compute λ to deide whih verties are onneted for the line trajetoryif((K%2) == 1) {λ = K

2
}else {λ = K

2
− 1}3. Initialize the sinks for the orresponding trajetoriesfor all sinks j ∈ S,ase 1: plae sink sj = (xj , yj) at periphery, where j%2==0ase 2: plae sink sj = mid (sj , sj+λ) at periphery, where j%2==14. Perform the task5. Compute the next sinks' positionsfor(j=0; j<K; j++) {while( sj∈ COR) {ompute sj = (xj , yj) by inreasing step size ω along the trajetoryrepeat 4 and 5}go to 3}6. Repeat 5 until the network diessome sinks are initialized at the periphery while others are put at the middle ofthe assigned trajetory.As a last ompetitor, Figure 9(d) illustrates an equal setorization trajetorywhih, in fat, is onstruted exatly as the inner irle of the polar grid-basedtrajetory mentioned in Figure 5.Apart from the random walk trajetory, all other trajetories are prede�nedso that the sinks move along the orresponding trajetory repeatedly until thenetwork dies. We investigate the performane of the polar grid trajetory andother ompetitors under worst ase delay and lifetime.6.2 Delay PerformaneWhile an average delay analysis is ertainly useful for some WSN appliations,for time-sensitive WSNs being able to bound the worst-ase delay is generallymore important. To that end, we evaluate the delay performane of the thedi�erent sink trajetories using the framework of sensor network alulus (SNC)[16℄. This requires to speify bounds on the arrival and servie proesses, alledarrival and servie urves, their atual settings are given in Subsetion 6.4.6.3 Lifetime PerformaneThe Algorithm 2 shows the evaluation of lifetime for a given sink trajetorywith respet to total number of epohs until the �rst node dies. In our model,eah node has the initial energy of E joule and sends a data paket to its near-est sink along the shortest path whenever the sinks move to the next epohs



synhronously. In eah epoh, the algorithm keeps trak of the battery levels ofeah sensor node and update the total epohs whih has been traversed so far.The algorithm terminates if one of N nodes depletes its energy and returns thelifetime as m epohs.Algorithm 2 Lifetime evaluation for a given sink trajetory.Given: Sensor nodes |V | = N , sinks |S| = KInitialization: Set initial energy, ev
residual = E for all v ∈ V and initial epoh m = 0loop: In eah epoh, ∀v, v′ ∈ V ,while (ev

residual >0 || ev′

residual >0) {1. ompute the shortest path P m
v =

S

1≤k≤l
ek(v, v′),

∀v ∈ V , v′ ∈ V ∪ S, l :=#hops in Pvase 1: ek(v, v′) = ev
tx + ev′

rec, where v′ /∈ Sase 2: ek(v, v′) = ev
tx, where v′ ∈ S2. update ev

residual− = ev
txwhile (v′ /∈ S) {update ev′

residual− = ev′

rec }3. update the number of epohs m + +and go to loop}return m6.4 ResultsThe primary fators in our simulative experiments are: the number of nodes,the number of sinks, and the step sizes (i.e., the Eulidean distane betweentwo onseutive epohs). In all senarios, nodes are uniformly distributed overa irular �eld with radius R. The respetive network radii are hosen suhthat a node density of 1
50 m2 is ahieved. A 16 m dis-based transmission range isused. Furthermore, sink assignment is done aording to the minimum Eulideandistane between nodes and sinks, whereas shortest path routing is used forpath seletion. For all experiments, we performed 10 repliations for eah fatorombination and present the average results from these. For the large majorityof results, we obtained non-overlapping 95% on�dene intervals, so we do notshow these in the graphs for reasons of legibility.For the SNC omputations, the popular token-buket arrival urve and rate-lateny servie urves are used. In partiular, for the servie urve we use arate-lateny funtion that orresponds to a duty yle of 1%. For the 1% dutyyle, it takes 5 ms time on duty with a 500 ms yle length whih results in alateny of 0.495 s2. The orresponding forwarding rate beomes 2500 bps.For the lifetime evaluation, the nodes are set to an initial battery level of

0.1 joule. The paket size is assumed to be 100 bytes. Based on τ = 2 for thefree spae propagation, we apply Equation (18) in order to get the urrent on-sumption. In all senarios a paket transmission inurs a urrent onsumptionof 8.5 mA with−25 dBm for distanes up to 12.5 m, and 9.9 mA for distanes2 The values are alulated based on the TinyOS �les CC2420AkLpl.h andCC2420AkLplP.n.



between 12.5 m and 23 m with −20 dBm. Here, a transmission data rate of
250 Kbps is used, whih takes ttx = 3.2 ms for a 100 byte paket. A onstant volt-age of 3 V is used to transmit and reeive modes. We use a urrent of 19.7 mAfor the onsumed power by the reeiver eletronis with a 1 % duty yle forreeiving a data paket. With these assumptions, we apply Equations (10) to(18).Experiment 1: Varying the number of nodes and sinks under a �xedstep size The simulation results of the worst-ase delay for the di�erent om-petitors over 20 epohs are shown in Figure 10(a) and (b) for a 200-nodes-10-sinks and 500-nodes-20-sinks WSN, respetively. Here, the step size of the equalsetorization trajetory resulting from a movement by a enter angle of 10 de-grees is used as a referene for the step sizes in the polar grid, outer periphery,star, and random walk trajetories.In both senarios, the polar grid trajetory ahieves signi�antly lower worst-ase delays than its ompetitors (espeially in the 500 node network). On average,the polar grid ahieves about 50 % lower delays than the random walk and theouter periphery and roughly 20 % lower delay than the equal setorization andthe star. As we expeted, the random walk trajetory provides a high worst-asedelay. At �rst glane surprisingly, the outer periphery performed even worsethan the random walk, though, due to the fat that the sinks are rather far awayfrom some of the nodes this is not unreasonable. The star trajetory produes abetter delay bound than the equal setorization for the growing amount of nodesand sinks. An interesting thing is the star trajetory an ompete the polar gridat some epohs of the trajetory. The equal setorization produes fairly gooddelays in the smaller network but annot stay lose to the polar grid in the largerone. So we validated its lesser salability in terms of delay performane as it wasalready indiated in the analytial evaluation in Subsetion 4.4.
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(a) (b)Fig. 10. The worst-ase delay omparisons of (a) 200 nodes with 10 sinks network, and(b) 500 nodes with 20 sinks network.
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(a) (b)Fig. 11. The lifetime omparisons of (a) 200 nodes with 10 sinks network, and (b) 500nodes with 20 sinks network.The results for the lifetimes of the �ve ompetitors are shown in Figure 11(a)and (b). Here, the x-axis represents the lifetime of the WSN (in number ofepohs). The y-axis indiates the perentage of the total energy onsumption ofthe whole network during the lifetime of the WSN. As an be observed, the polargrid trajetory strongly outperforms the other trajetories in both senarios. Onaverage, the polar grid ahieves a 440 %, 450 %, 100 %, and 330 % higher lifetimethan the random walk, outer periphery, star, and equal setorization trajetories,respetively. From Figure 11 it beomes lear that this is mainly for two reasons:(1) it requires less total energy per epoh and (2) it drains the energy fromthe sensor �eld in a more balaned fashion (indiated by having a higher totalenergy onsumption when the network dies). We an see suh e�ets in the startrajetory although it ahieves 50 % lifetime of the polar grid trajetory. It maybe noteworthy that the equal setorization atually performs worse than therandom walk in the 500 node network indiating that it does not sale well withrespet to lifetime due to a high energy onsumption per epoh as well as notbeing suessful in avoiding hot-spot problems. Similarly, the outer peripheryperforms worse than the random walk in the 500 node network. This is evena bit more surprising than its inferior delay performane, as single sink outerperiphery trajetory maximizes lifetime. So, this indiates that the multiple sinkstrajetory problem is quite di�erent from its single sink ounterpart.Experiment 2: Varying sinks under the same network In the next exper-iment, the e�et of the number of sinks for eah of the ompetitors is evaluated.Apart from varying the number of sinks, we use the same settings as for Ex-periment 1. Figure 12 provides the results for the delay bounds under di�erentnumber of sinks in a 500 node network. As an be seen, the trajetories that arereally able to exploit a growing number of sinks to redue the delay signi�antlyare the polar grid and the star; the outer periphery and the equal setorizationare atually quite insensitive to it, the random walk exhibits a rather haoti
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Fig. 12. Delay bound omparison under di�erent numbers of sinks in a 500 node net-work.behavior (20 sinks are worse than 10 sinks). You may note that in the 6 sinksase the equal setorization outperforms the polar grid. In this senario, the startrajetory is even better than polar grid trajetory. For the growing amount ofsinks, the delay bounds of equal setorization trajetory do not di�er too muhand the polar grid is signi�antly better than others. This, as already disussedin Subsetion 4.4, is due to the artefat that Kin, Kout ≥ 3 disables an e�e-tive optimization of the polar grid trajetory for this small number of sinks.In a ertain sense it shows that an unoptimized polar grid an also performunfavorably.Experiment 3: Varying step sizes under the same network From Exper-iment 1 and 2, we an learly see that the polar grid trajetory is a promisingheuristi for minimizing the worst-ase delay and maximizing the lifetime oflarge-sale WSNs. In this last experiment, we now investigate the e�et of vary-ing the step size of the polar grid trajetory. For this, we fous on the lifetimeperformane for di�erent step sizes as the delay performane is not partiularlysensitive to these. Figure 13(a) and (b) show the lifetimes of the polar grid tra-jetory for di�erent step sizes in a 200 node network with 10 sinks (here (b)provides a zoom-in for an interesting range of (a)). The orresponding total en-ergy onsumption of Figure 13(a) is presented in Figure13(). The interpretationof the x-axis for Figure 13(a) and () is as follows: based on the enter angleof an annular segment θ2 = 2π
Kout

, the di�erent step sizes are omputed as θ2

n
,where n represents the value of the x-axis; this means the x-axis runs from largestep sizes to very small ones. More spei�ally, the optimal value of Kout in thisexperiment is 7 (out of 10 sinks) and thus θ2 = 2π

7 and the step size is varied byletting n = 2k for k = 0, ..., 9.



From this experiment, we an see that the step size has a signi�ant e�etin prolonging the lifetime. In partiular, it is neither good to move too muh ortoo little, but there is a step size that optimizes the lifetime. For omparison,we also show the performane of a stati polar grid-based sink plaement, whihbasially provides the baseline lifetime performane. Hene, this shows anothertime that sinks mobility pays o�, but most if the trajetory is designed arefully(in fat, random walk and equal setorization performed worse than the statipolar grid). A zoom-in for the interesting range of n between 8 and 32, wherethe optimum step size lies for this experiment, is shown in Figure 13(b). As anbe observed, the lifetime behavior is rather haoti in this range, whih hints atthe di�ulty of obtaining a losed form for the optimal step size under the polargrid, whih we leave for future work.
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Fig. 14. Delay bounds under three senarios of di�erent step sizes in 500 nodes with
10 sinks network.Varying step size does not di�er too muh for the issue of minimizing themaximum delay as presented in Figure 14. The �gure shows the delay bound of
500 nodes with 10 sinks network under three senarios: (1) step size equivalent tothe enter angle 5 degree, (2) step size equivalent to the enter angle 12 degree,and (3) step size equivalent to the enter angle 16 degree. As shown in Figure14, the delay performane is not sensitive under varying step size and the resultremains the same for too muh or too little step sizes.7 ConlusionIn this report, we addressed the problem of �nding good trajetories for multiplemobile sinks in WSNs with respet to both, minimizing worst-ase delay andmaximizing the lifetime of the network. Due to its fundamental hardness, weresorted to a geometri interpretation of the problem for whih we introduedand optimized a polar grid trajetory. The simulation results exhibited a verypromising delay and lifetime performane for the polar grid trajetory whenompared to other trajetories.As the design spae for possible sink trajetories is huge it is tempting toontemplate a bit about extensions as well alternatives to the polar grid traje-tory. An obvious extension of the two orbit model used by our polar grid is touse n orbits. Going to n orbits, however, will be harder to optimize by enumera-tion as the searh spae for distributing K sinks over n orbits grows as (

K−n−1
n−1

)(allowing orbits to be empty). Apart from applying heuristis for that searh,one ould strive for a losed-form expression over the maximal distanes in the
n-orbit polar grid to avoid this ombinatorial explosion. While this seems hardit would onstitute an important step in the general understanding of onentritrajetories.
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