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Abstract: Aggregation of data flows has two major advantages. One is the reduction of state complexity with

network, the other is the saving of resources by statistical multiplexing between the aggregated flows. In this

we show a simple, yet effective scheme to aggregate real-time flows which require a statistical guarantee on

enced loss and a deterministic guarantee on the maximum delay on an individual basis. The focus of our agg

scheme is on the reduction of state complexity. Therefore, we try to maximize the number of flows to be aggr

by the consideration of heterogeneous flows at the cost of maximally saving resources which would require ho

nous flows to be aggregated. Our approach is to first gain insight on the buffer occupancy distribution of a singl

In practice, the buffer occupancy distribution function of a real-time flow can be considered as monotonic decre

We show that the uniform distribution, which is analytically very tractable, is always morepessimisticthan a monot-

onic decreasing distribution. This allows us to aggregate heterogeneous flows by taking the uniform distributio

worst-case bound for the individual flows’ buffer distributions and exploiting its statistical properties to save b

resources by statistical multiplexing between the individual flows of the aggregate. Finally, we discuss at whic

such an aggregate of heterogeneous flows has to be served while maintaining the statistical guarantees give

vidual flows.

Keywords: QoS, aggregation, statistical multiplexing, resource allocation, buffer occupancy distribution.

1 Introduction

1.1 Motivation

Many new applications especially in the field of multimedia requireQuality of Service(QoS) assurances in order to

satisfy users’ expectations. Examples of such applications are interactive streaming media applications, IP tel

or networked games to name only a few. They can usually be considered as soft real-time applications with fairl

gent delay requirements, yet more relaxed loss requirements. From the perspective of these applications QoS
1
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tees provided on a per-flow basis are extremely desirable. On the other hand, from the network’s perspect

currently broadly accepted general wisdom is that per-flow traffic management does not scale up to the dime

required in backbone networks of large-scale internetworks as the Internet. A straightforward solution to this di

is to aggregateflows within the network in a controlled fashion such that the individual guarantees can still be

which allows to keep state information within the backbone only for the aggregates. In the case of statistically

anteed QoS, which for many of the above mentioned applications and many usage contexts is sufficient, there

ther incentive to aggregate flows due to the potential to save resources by statistically multiplexing the indi

flows.

It is important to note here the difference betweenaggregationandmultiplexing. By aggregation we denote the

grouping of flows over a sub-network in which only aggregates can be handled. By multiplexing the local asp

sending several flows over one outgoing link is generally described. Thus, aggregation can be considered a

plexing over a link, which represents an aggregate’s path over the subnetwork, and which can be dimensioned

ically. Seemingly insignificant, the difference between multiplexing and aggregation expresses itself in the dif

goals they induce: while multiplexing only targets the efficient use of resources on a link, aggregation has as a

tional goal to reduce the number of aggregates in order to improve on the sub-networks’ scalability. As we w

these two goals of aggregation need to be traded off against each other. In particular, many good multiplexing s

only consider homogeneous flows (with respect to delay, loss, and bandwidth requirements) since this restric

lows for more efficient resource usage. Yet, from an aggregation perspective this may be prohibitive due to

tions on the number of aggregates that can be supported by a sub-network. Thus our first-order goal is to red

number of aggregates by allowing the aggregation ofheterogeneousflows and only as a second-order goal do we t

to save resources for the aggregate.

While there is a lot of basic work on controlled multiplexing to achieve statistical QoS guarantees for indiv

flows (which is discussed as related work in the next section), there is only little work on how to aggregate statis

guaranteed flows [1]. In particular, [1] focused on a class-based form of aggregation which still required the s

work to react to each individual flow request. In our work, we rather extend the topological aggregation scheme

tigated for deterministic services in [2]. This scheme is based on aggregation between flows sharing the same

and egress nodes for traversal over the sub-network.
2
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1.2 Related Work

Knightly and Shroff [3] give a very good and comprehensive overview and evaluation of different admission c

methods for statistical QoS provision. In the following, we briefly review the most important schemes following

classification:

Average / peak rate combinatorics:In these models ([4], [5]) a source is described as an on/off source. In [5],

admission control is done by computing the distribution of the aggregate arrivals at a bufferless multiplexer, in

computing the probability for a delay-bound violation for an EDF (Earliest Deadline First) scheduler.

Additive effective bandwidths: Another way to conduct statistical multiplexing ([6], [7], [8], [9]) is to assign eac

flow a bandwidth between its average rate and its peak rate. This is referred to aseffective bandwidthand is a function

of the required loss probability and the particular flow’s statistical properties (e.g., autocorrelation function, or

and average rate together with mean burst duration).

Engineering the loss curve:The loss curveis the relationship between loss probability and buffer size. In this a

proach finding a model for this relationship that best resembles experimental results is targeted. In [10], the los

is modelled as for large buffer sizes and with the histogram model from [11] for small buffer s

This is referred to ashybrid scheme.

Maximum variance (MV) approaches:MV approaches [12] are based on the observation that aggregate arriva

a node are Gaussian. This is a reasonable assumption if the number of flows to be aggregated is large.

[3] evaluates the most prominent schemes with a collection of MPEG traces from [13] and Markov modulated

sources. Only strictly homogenous sources are evaluated here, which is typical for such a study.

1.3 Outline

In the next section, we investigate the buffer occupancy distribution function for regulated real-time flows. We

that their density is typically monotonic decreasing by showing empirically that for realistically shaped traffic so

with a stringent delay constraint the buffer histogram in a simple single-server queuing system exhibits the

sponding shape. Motivated by this observation, we then propose in Section 3 the uniform distribution as a wor

buffer occupancy distribution and then show that it really can be considered as a worst-case distribution for mo

decreasing density functions. In Section 4 this result is then exploited in order to dimension the shared buffe

aggregate of heterogeneous flows via a Chernoff bound on the individual flow’s buffer occupancy distribution.

this allows to reduce the buffer requirements for the aggregate flow (apart from our first-level goal of reducin

P S z>( ) e Kz–≈
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state complexity within the sub-network / backbone), we also briefly discuss in Section 5 how this can also le

reduction of the rate for the aggregate. Section 6 then concludes our work and outlines areas of future resea

2 The Buffer Occupancy Distribution for a Single Flow

Our method is to determine the buffer distribution function for a single flow and infer from it the behaviour of a sh

buffer for an aggregate. The buffer occupancy of a single flow depends on the properties of the source and the

As mentioned above, our main goal is to provide a method which allows to aggregate as many flows as po

Of course, the more different the flows are allowed to be, the more of them can be aggregated. A flow is charac

by its average rate, buffer space, delay and loss rate. We only require the maximum delay and the packet lo

approximately similar. This is a fuzzy requirement which emerges since, after the aggregation, all flows are trea

same. In order to avoid uncontrolled QoS violations, we have to assign each flow the tightest delay and small

rate that appear among all flows that are to be aggregated. Ultimately, it comes down to an optimization proble

many aggregates are required given a set of flows with individual parameters. While this is an interesting issu

not subject of this paper, but we deal with the preceding step of how to dimension the resource allocation for

gregate here.

In order to aggregate heterogeneous flows, we need a description of a single flow that behaves worse than e

of the flows being aggregated. We refer to this as worst-case distribution. It is our strong belief that for realistic

constrained and regulated flows the buffer occupancy distribution is monotonic decreasing which makes the u

distribution appropriate for this purpose as we will show in the next section. To make our point, we empirically

that the buffer occupancy distribution of a flow with the following properties is monotonic decreasing:

1. It is (B,r) constrained.

2. The server rate is constant and higher than the average arrival rate.

3. It has a fixed delay requirement.

4. A packet that is dropped is not re-sent.

A typical example of a flow with these properties is a real-time MPEG flow. We exemplarily show such a buffe

cupancy. From the collection in [13] the movie traceterm_.IPBis taken, which was encoded using the UC Berkele

MPEG-1 encoder [14]. The trace is given in the form of a list of40.000frame sizesai. The largest frame size is

9.9 Kbyte. The next step is to fit a(B,r) token bucket on it so that no data is lost. The average frame sizeE{ai} is
4
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1.36 Kbyte. The minimum service rate isE{ai}/∆t, where∆t is 40 ms, the time between two frames. With25 frames

per second, the minimum average service rate is

(Eq. 1)

Simulations show that using this service rate requires a buffer of size1100 Kbytein a lossless system, which causes

worst-case delay of

(Eq. 2)

This, of course, is not acceptable and we will target a delayd of less than100 ms.

Next we fit a token bucket to the flow. There are many techniques to determine the parameters for a token

[15]. We do not go into detail here, but instead use a simple algorithm. In accordance with the form of the tra

model the buffer as a discrete process where

(Eq. 3)

b(k) is the current buffer occupancy,a(k) is the frame size andc(k) is the server rate per frame. Incorporating that it

bounded by0 andBmax it becomes

(Eq. 4)

Now we have to determine feasible values forB andr. Recall the relationship between buffer size, server rate a

maximum delay.

(Eq. 5)

The buffer occupancy is calculated as follows. We set the buffer size toB = max{ai} and fix the delayd = 96 ms, which

is equivalent to2.4∆t. This leads to a rate of104 Kbyte/s. The buffer variable is initially set to0 and then iteratively

calculated with Eq. 4. The resulting buffer is shown in Figure 1.

In Figure 2 the empirical buffer occupancy density function in form of a histogram with 25 bins is depicted.

that the first bin is left out of the plot. This is because the probability that the buffer is empty is0.95, which would ruin

the scale. The movie tracesmovie2.IPBandsimpsons.IPB from the same library are included as well.

As can be seen, apart from a few statistical fluctuations the functions are rapidly decreasing. Note that the o

is scaled logarithmically. Figures 3 and 4 are analogous withd = 80 ms.

Rmin

25E Ai{ }
sec

---------------------- 34
Kbyte

sec
--------------= =

d
B
R
--- 1100 Kbyte

34 Kbyte/sec
------------------------------- 32 sec= = =

b k( ) b k 1–( ) a k( ) r k( )–+=

b k( ) max 0 min Bmax b, k 1–( ) a k( ) r k( )–+{ },{ }=

r
B
d
---=
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Here, it can also be seen that the increased rate causes the density function to decrease faster. In this p

trace, the buffer never fills beyond half. This implies that rate and buffer could be optimized but that is not sub

this paper.

Our objective of this section has been to show that for realistic real-time flows, the buffer occupancy density

tion is monotonic decreasing. We have shown it for a particular case of an MPEG trace. It seems intuitive tha

the case for any flow where the server rate is considerably higher than the arrival rate. If the flow is self-simil

notice that there are long stretches which have a rate higher than the average rate. To ensure a decent real-ti

mission, the server rate has to be much higher than the average rate, which results in the buffer being rathe

most of the time.
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Figure 1:Buffer for d = 96 ms. Figure 2:Buffer occupancy density function ford =
96ms.

Figure 3:Buffer for d = 80 ms. Figure 4:Buffer occupancy density function ford =
80 ms.
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3 Worst-Case Buffer Occupancy Distribution

In this section we will prove that to assume uniform distribution is always morepessimisticthan any one that is mo-

notonic decreasing. A distribution that is more pessimistic than the actual one allows us to aggregate a large

of heterogeneous flows without worrying about the parameters of the individual distributions.

Let fx,1(x) andfx,2(x) be two different density functions for the buffer occupancy. The distribution function that

buffer is filled withB or less units, i.e. thatP(X < B), is then given by

(Eq. 6)

for i = 1,2; and withBmax being the maximum buffer size.

Definition 1: A buffer occupancy distributionFx,1(x) is morepessimisticthanFx,2(x), if the probability that the buffer

overflows givenFx,1(x) is always greater or equal than given Fx,2(x), i.e., when

(Eq. 7)

In the previous section, we argued that realistic buffer occupancies of real-time flows are monotonic decreas

Theorem 1:The uniform distribution is always more pessimistic than a distribution with a monotonic decreasing

sity function.

Proof: Let u be the sequence denoting the discrete uniform density function

(Eq. 8)

The discrete distribution is then given by

(Eq. 9)

A discrete distribution with a monotonic decreasing density function is defined as follows. Letxk, with k= 0,1, ... ,N-

1 be a sequence where for allk it applies that .

In order to be a valid density function, we have

FX i, x( )

0 for x 0≤

f X i, y( ) yd
0

x

∫ for 0 x B< max<

1 for x Bmax≥








=

1 FX 1, x( )– 1 FX 2, x( )–≥ for all x

uk
1
N
----= for 0 k N 1–≤ ≤

Uk

0 for i 0<

ui
i 0=

k

∑ k 1+
N

------------= for 0 i N 1–≤ ≤

1 for i N> 1– 
 
 
 
 
 
 

=

xk xk 1+≥
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(Eq. 10)

The distribution is then given by

Now we show thatUk is more pessimistic thanXk. In that case, according to Eq. 7,

(Eq. 11)

which becomes

(Eq. 12)

This we will prove by contradiction. Let us first look at the first points,X0 andU0.

(Eq. 13)

Now let us assume that

(Eq. 14)

whereε > 0. Since , in this case the sum over allx is upper bounded by

(Eq. 15)

which clearly is a contradiction to Eq. 10. This line of argument can be extended to the firstM points. Let

(Eq. 16)

Analogous to the case above

(Eq. 17)

which again contradicts Eq. 10.

Thus it was shown that the uniform distribution is always more pessimistic than a distribution obtained from a m

onic decreasing density function.

xi
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4 Efficiently Dimensioning the Aggregate’s Buffer via a Chernoff Bound

In this section, we present how we exploit the single flow buffer occupancy distribution to dimension the aggre

buffer efficiently by applying a Chernoff bound on the sum of the individual flow’s buffer occupancy distribution

our scheme, we substitute the actual buffer occupancy distribution by the uniform distribution as an upper

which gives us two advantages. First, it allows to aggregate a large number of heterogeneous flows irrespectiv

different shapes of their actual buffer occupancy distribution and second, the simple form of the uniform distri

makes its analytical as well as numerical treatment much more practical.

Let G be a set{g1, g2, ..., gn} of (B,r)-shaped flows. The flows are heterogeneous, i.e. each flowgi has a different

burst sizeBi and rateri. Here, we discuss the aggregation of such flows with statistical guarantees. Aggregating

ministically, we would need a buffer of the size

(Eq. 18)

According to [16], a loss probability in the magnitude of10-4 to 10-9 is targeted. If all flows act independently*, it be

comes unlikely that they will burst at the same time. From the derivation of the Chernoff bound [17] we take th

lowing equation. For any random variableY with the density functionfy(y)

(Eq. 19)

My(v) is the characteristic function offy(y).

(Eq. 20)

Recall that the density of a sum of random variables corresponds to the convolution of their density functions. F

the convolution of two functions in the time domain corresponds to their multiplication in the frequency domain

now define the random variableY as the sum of the instantaneous buffer occupancies.

(Eq. 21)

Therefore, the density function ofY is the convolution of all density functionsbi. The characteristic functionMy(v) is

then the product of the characteristic functions of the individual buffer occupancies.

(Eq. 22)

* Even though this assumption may be arguable, it is made in all relevant approaches to statistical multiplexing known to us.

BD Bi
i 1=

n

∑=

P Y y≥( ) e vy– My v( )≤

My v( ) evw

∞–

∞

∫ f Y w( )dw=

Y bii
n∑=

My v( ) Mbi
v( )

i
n∏=
9
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Hence, the overflow probability of an aggregated bufferBs is bounded by

(Eq. 23)

Since this bound holds for allv > 0, the tightest bound is

(Eq. 24)

For the individual flow we have to assume the worst case, which is that in the event of a loss the entire buffer

flow is lost. Adding an additional layer of statistics to find a relationship between the aggregate’s loss probabili

individual loss probability is subject to further research.

In Figure 5, we show a numerical example for resource usage. The abscissa denotes the number of flows

ordinate denotes the relative buffer size compared to a buffer of size1, which is the deterministic case. I.e., this grap

shows, how large the buffer needs to be to ensure the given loss probability for a given number of flows. Eq

solved forBS, which obviously can only be done numerically. By toggling the abscissa and ordinate, i.e., solvin

24 for n, we obtain an admission control graph: how many flows can be allowed given the loss probability an

buffer size.

P Y Bs≥( ) e
vBs–

Mbi
v( )

i
n∏≤

P Y Bs≥( ) inf
v

e
vBs–

Mbi
v( )

i
n∏
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Figure 5: Numerical example.
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5 Dimensioning the Aggregate’s Rate

In this section, we briefly discuss the dimensioning of the rate with which the aggregate has to be served. Ag

first consider deterministic aggregation. Recall that we allow heterogeneous flows, i.e., flows with different dela

be aggregated. Since the flows are not handled individually after the aggregation, we must assume each flow

the minimum delay of all flows and assign it the according rate. With Eqs. 5 and 18, this is

(Eq. 25)

This rate is larger than the sum of all rates.

(Eq. 26)

This waste of bandwidth is unavoidable if the aggregate is strictly to be treated as one flow. But applying Eq.

the aggregation, we find that the minimum delay is

(Eq. 27)

This result, which states that the delay is always better than required, implies an avoidable waste of resource

tively, it seems that this can be solved by just reducing the rate so that the desired delay is obtained. But it ha

ensured that it is at least the sum of the initial rates, i.e., that not more is taken away than what was added.

(Eq. 28)

It is not clear whether this step is allowed. It is an issue that so far has not come up as it only appears when agg

flows with heterogeneous delays and requires further research.

6 Conclusion and Outlook

In this paper we showed a method to aggregate data flows with statistical guarantees while putting the emph

reducing the control complexity. We introduced the concept of a worst-case distribution which is a property t

lows many heterogeneous flows to be aggregated. The uniform distribution can be used as a worst-case distri

the buffer occupancy density function is monotonic decreasing. We believe that this is the case for all(B,r)-shaped

real-time flows, but could not generally prove it due to the vast amount of degrees of freedom in the model. W
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pointed out how some resources, namely buffer space, can be saved by applying large deviation statistics. Thi

ered the question what the required server rate is, which is subject to further research.

Several more issues which are subject to further research were revealed during this project. It is not optimal

all flows like the one with the tightest delay bound when aggregating heterogeneous flows. The relationship b

the aggregate and individual loss probability has not yet been addressed. Finally, the complexity and applicab

the method introduced in this paper have to be studied in more detail.

References

[1] J. Liebeherr, S. Patek, and E. Yilmaz. Tradeoffs in Designing Networks with End-To-End Statistical

Guarantees. InEigth International Workshop on Quality of Service (IWQOS), pages 221–230, 2000.

[2] J. Schmitt, M. Karsten, and R. Steinmetz. On the Aggregation of Deterministic Service Flows.Computer

Communications, 24(1):2–18, January 2001.

[3] E. Knightly and N. Shroff. Admission Control for Statistical QoS: Theory and Practice.IEEE Network, 13:20–

29, March/April 1999.

[4] D. Ferrari and D. Verma. A Scheme for Real-Time Channel Establishment Wide-Area Networks.IEEE JSAC,

8:368–379, April 1990.

[5] T. Lee, K. Lai, and S. Duann. Design of a Real-Time Call Admission Controller for ATM Networks.IEEE/ACM

Transactions on Networking, 4:758–765, October 1996.

[6] C. Courcobetis and R. Weber. Effective Bandwidths for Stationary Sources.Probability in Engineering and

Information Science, 9(2):285–294, 1995.

[7] A. Elwalid and D. Mitra. Effective Bandwidth of General Markovian Traffic Sources and Admission Contro

High Speed Networks.IEEE/ACM Transactions on Networking, 1:329–343, June 1993.

[8] R. Guerin, A. Ahmadi, and M. Nagshineh. Equivalent Capacity and its Applications to Bandwidth Allocatio

High Speed Networks.IEEE JSAC, 9:961–981, September 1991.

[9] G. Kesidis, J. Walrand, and C. Chang. Effective Bandwidths for Multiclass Markov Fluids and other A

Sources.IEEE/ACM Transactions on Networking, 1:424–428, August 1993.

[10] N. Shroff and M. Schwartz. Improved Loss Calculations at an ATM Multiplexer.IEEE/ACM Transactions on

Networking, 6:411–422, August 1998.
12



M

TM

RASE

ions/
[11] P. Skelly, M. Schwartz, and S. Dixit. A Histogram-Based Model for Video Traffic Behaviour in an AT

Multiplexer. IEEE/ACM Transactions on Networking, 1:446–459, August 1993.

[12] J. Choe and N. Shroff. A Central Limit Theorem Based Approach to Analyze Queue Behaviour in A

Networks.IEEE/ACM Transactions on Networking, 6:659–671, October 1998.

[13] O. Rose.Traffic Modelling of Variable Bit Rate MPEG Video and its Impacts on ATM Networks. PhD thesis,

University of Würzburg, Germany, Dept. of Computer Science, 1997.

[14] K. Gong. Berkeley MPEG-1 Encoder, User’s Guide, 1994.

[15] O. Heckmann, F. Rohmer, and J. Schmitt. The Token Bucket Allocation and Reallocation Problems (MP

Token Bucket). Technical Report TR-KOM-2001-12, http://www.kom.e-technik.tu-darmstadt.de/publicat

abstracts/HRS01-1.html, Darmstadt University of Technology, December 2001.

[16] I. Habib and T. Saadawi. Multimedia Traffic Characteristics in Broadband Networks.IEEE Communications

Magazine, pages 48–54, July 1992.

[17] L. Kleinrock.Queuing Systems – Theory. Wiley-Interscience, New York, vol.1, 1975.
13


	Aggregation of Heterogeneous Real-Time Flows with Statistical Guarantees
	Krishna Pandit, Jens Schmitt, Ralf Steinmetz Multimedia Communications Department of Electrical E...
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline

	2 The Buffer Occupancy Distribution for a Single Flow
	1. It is (B,r) constrained.
	2. The server rate is constant and higher than the average arrival rate.
	3. It has a fixed delay requirement.
	4. A packet that is dropped is not re-sent.
	(Eq. 1)
	(Eq. 2)
	(Eq. 3)
	(Eq. 4)
	(Eq. 5)
	Figure 1: Buffer for d = 96 ms.
	Figure 3: Buffer for d = 80 ms.



	3 Worst-Case Buffer Occupancy Distribution
	(Eq. 6)
	(Eq. 7)
	(Eq. 8)
	(Eq. 9)
	(Eq. 10)
	(Eq. 11)
	(Eq. 12)
	(Eq. 13)
	(Eq. 14)
	(Eq. 15)
	(Eq. 16)
	(Eq. 17)

	4 Efficiently Dimensioning the Aggregate’s Buffer via a Chernoff Bound
	(Eq. 18)
	(Eq. 19)
	(Eq. 20)
	(Eq. 21)
	(Eq. 22)
	(Eq. 23)
	(Eq. 24)
	Figure 5: Numerical example.


	5 Dimensioning the Aggregate’s Rate
	(Eq. 25)
	(Eq. 26)
	(Eq. 27)
	(Eq. 28)

	6 Conclusion and Outlook



