
Demo Abstract: Worst-Case Performance Analysis
with the Disco Deterministic Network Calculator

Alexander Scheffler, Steffen Bondorf, Jens B. Schmitt
Distributed Computer Systems (DISCO) Lab, TU Kaiserslautern, Germany

Abstract—Network calculus can derive worst-case bounds on
performance metrics in communication networks. That is, the
end-to-end delay experienced by a flow as well as the buffer
requirement of the crossed servers. This knowledge proved to be
useful for different purposes where determinism is decisive, e.g.,
certification of the safety-critical avionics systems. We provide a
tool for automated network calculus analysis, the Disco Deter-
ministic Network Calculator (DiscoDNC). In this demonstration,
we provide a representative workflow illustrating its capabilities.

I. INTRODUCTION

Deterministic Network Calculus (DNC) provides an alge-
braic framework for accurate formal worst-case performance
analysis of data networks [1], [2]. It can derive upper bounds
on two key values: 1) the end-to-end delay of a flow crossing
the network and 2) the backlog building up in crossed servers’
queues. The former bounds are used to validate against re-
porting deadlines in response-time critical systems, the latter
enables dimensioning of buffers in order to prevent packet loss
due to overflows. Most prominently, DNC was applied in the
avionics sector to model and analyze AFDX (Avionics Full
Duplex Switched Ethernet) and to certify AFDX backbone
networks as found in the Airbus A380 or Boeing 787. To fa-
cilitate network calculus-based evaluations, we have developed
and maintain an open-source tool, the Disco Deterministic
Network Calculator (DiscoDNC) [3], [4], [5].

II. DETERMINISTIC NETWORK CALCULUS BACKGROUND

The basic concepts underlying DNC are curves that bound
resource demand and availability as well as algebraic opera-
tions that transform these curves. To be precise, arrival curves
↵(d) upper bound the worst-case cumulative arrivals caused
by a data flow during any observation of duration d. Service
curves �(d) complement this concept by lower bounding the
guaranteed forwarding service provided by a server. Networks
of servers are crossed by data flows whose arrivals are usually
only bounded at their point of entry to the network. Therefore,
DNC provides (min,+)-algebraic operations that transform
arrival curves and service curves, e.g., to aggregate multiple
data flows or to derive the minimum service available to a
specific flow. A brief overview operations is given in Table I,
a detailed treatment can be found in [1].

Curve transformations within a network are subject to the
entanglement of the involved flows. Although the network
needs to be well-defined and cycle-free, there still are degrees
of freedom that permit different orders of operations. The
objective of a DNC analysis is thus to find an order that

Table I: Basic network calculus operations.
Operation Description

�1 ⌦ �2 Convolution Concatenate two servers into a single one –
assuming worst combined service provisioning

↵1 ↵ �1 Deconvolution Bound the output of a system –
create the largest output arrival curve for flow 1

�1 ↵1 Left-over Derive server 1’s minimum residual service
Service Curve curve as available to other arriving flows –

assuming worst possible multiplexing behavior
↵1+↵2 Aggregation Aggregate flows to a single one –

assuming worst entanglement of data arrivals

computes a valid and accurate delay or backlog bound. There
are various algebraic DNC analyses provided by the literature.
Most notable are Separate Flow Analysis (SFA) and Pay
Multiplexing Only Once analysis (PMOO) (none of which is
strictly best) as well as the recent generalization to Tandem
Matching Analysis (TMA) [2] that enumerates all permissible
orders of operations and is therefore strictly the best. These
analyses strive to derive a single flow of interest’s end-to-end
left-over service curve �l.o.f

e2e that is used to compute its delay
bound, subject to its cross-traffic entanglement.

s6

s0 s1

s3

s5

s2

s4

f0

f2

f1

Figure 1: Sink-tree network.

Complexity and Effort: The DiscoDNC provides implemen-
tations of all of the analyses mentioned above, necessity of
which we demonstrate in this section. The complexity of a
DNC analyses depends on the analyzed network’s size and
the flows crossing it. The rather simple SFA end-to-end left-
over service curve for flow f1 in Figure 1’s sink-tree is

�l.o.f1
e2e = �s0 ⌦ (�s1 ↵f0)⌦ (�s2 (↵f0 ↵ �s1))⌦
(�s5 (((↵f0 ↵ �s1)↵ �s2)+((↵f2 ↵ �s3))↵ �s4)))⌦
(�s6 ((((↵f0 ↵ �s1)↵ �s2)+((↵f2 ↵ �s3)↵ �s4))↵ �s5))

where ↵fn denotes the arrival curve of flow fn, n 2 {0, 1, 2},
and �si , i 2 {0, . . . 6}, is the service curve of server si. All
these are assumed to be known. Even in this small sink-tree
network with a rather simple entanglement of cross-flows f0
and f2, 20 (min,+)-algebraic operations are required. The
TMA [2] and further additions to DNC [6], [7], [8] that are
implemented in the DiscoDNC even increase this number.
Thus, fast and up-to-date tool support is essential to DNC.

III. THE DISCO DETERMINISTIC NETWORK CALCULATOR

The DiscoDNC provides a Java implementation of the
algebraic DNC framework presented in Section II – from
simple curves to complex analyses. We chose to restrict our
implementation to the practical class of piece-wise linear
curves that can represent token-bucket traffic regulation, rate-
latency service guarantees, or approximate measured traffic [9]
accurately. We provide implementations of the DNC opera-
tions of Table I tailored to this restrictions on curve shapes.
We also provide the classes to create a network and automated
procedures for the analyses mentioned above (SFA, PMOO
and TMA). Thus, a user only needs to model the network and
select the analysis to be executed. Expert knowledge about
permissible orders of DNC operations is not required. Yet,
as algebraic DNC is a modular performance analysis where
intermediate results potentially possess valuable information,
we also offer access to them. That enables, e.g., to identify
performance bottlenecks like saturated servers. The Disco De-
terministic Network Calculator is published under a permissive
open source license and its progress can be traced online [10].

Tool Usage Demonstration

The DiscoDNC provides a set of supplementary, well-
documented tests that demonstrate creation and analysis of net-
works. For instance, it includes the network shown in Figure 1.
The following code snippets illustrate the general proceeding
when creating this network manually and computing f1’s SFA
delay bound (including �l.o.f1

e2e from above) automatically:
1) Code 1 depicts the network creation.
2) Code 2 provides the steps to run the analysis:

Create an instance of the SFA for the network and
start it for flow f1.

3) Code 3 shows how to access the derived delay bound.

Network ne twork = new Network () ;

S e r v e r s0 = ne twork . a d d S e r v e r (s e r v i c e _ c u r v e) ;
S e r v e r s1 = ne twork . a d d S e r v e r (s e r v i c e _ c u r v e) ;
. . .
S e r v e r s6 = ne twork . a d d S e r v e r (s e r v i c e _ c u r v e) ;

ne twork . addLink (s0 , s1) ;
ne twork . addLink (s1 , s2) ;
. . .
ne twork . addLink (s5 , s6) ;

/ / s h o r t e s t pa th r o u t i n g from s o u r c e t o s i n k

Flow f0 = ne twork . addFlow (a r r i v a l _ c u r v e , s1 , s6) ;
Flow f1 = ne twork . addFlow (a r r i v a l _ c u r v e , s0 , s6) ;
Flow f2 = ne twork . addFlow (a r r i v a l _ c u r v e , s3 , s6) ;

Code 1: Creating the network shown in Figure 1.

s f a = new S e p a r a t e F l o w A n a l y s i s (ne twork) ;
s f a . p e r f o r m A n a l y s i s (f1) ;

Code 2: Starting an analysis.

double de lay_bound = s f a . ge tDelayBound () ;

Code 3: Accessing the delay bound.
The main purpose of this tool demonstration is, however,

to demonstrate the degree of automation we can achieve as
well as the reproducibility of results mentioned in [5]. To that

end, we present a workflow to visualize the delay bounds that
were computed during the run-time measurements presented
in [5]. It consists of instantiating an existing network taken
from [2], automatically running multiple analyses, optionally
paired with various recently proposed feature additions [7],
[8], applied to multiple flows, storing all the computed delay
bounds to the file system, and visualizing the results with
GNU R. A similar workflow to visualize the run-time measure-
ments is demonstrated as well. Results are shown in Figure 2
and reveal that length of analysis run-times and magnitude of
resulting delay bounds do not necessarily correlate.

Requirements: The DiscoDNC workflow can be executed
on a standard computer with Java 8, Java IDE and GNU R.

Flows, ordered by parallel, no cache execution times

TM
A

ex
ec

ut
io

n
tim

e
[m

in
ut

es
]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

10−5
10−4
10−3
10−2
10−1

1
101
102
103
104

parallel, no cache
parallel, cache

(a) Flow analysis run-times when executing the TMA.

Flows, ordered by parallel, no cache execution times

TM
A

de
la

y
bo

un
d

[m
s]

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0

50

100

150

200

●●●●●●
●●●●●●●●●●
●●●
●
●●●
●●●●●●
●
●●●●
●●
●

●
●
●●●
●
●
●●●
●

●
●●●●●●
●
●●●●●
●●●
●
●●
●
●
●●
●
●
●●
●
●●●●●
●

●●

●
●
●●
●

●●

●

●●●
●●

●●
●

●

●

●

●●

●●●
●
●
●
●●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●

●●●

●●

●●●
●●●

●

●●
●
●●

●

●●

●●

●

●
●●
●●
●●

●

●●●●

●●

●

●
●●
●

●

●●

●

●●

●

●

●

●

●
●●

●●●●
●
●

●

●

●●●
●●●

●

●●●●●
●

●

●

●●●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●
●

●
●

●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●●●

●
●
●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●●

●

●
●

●●●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●
●
●
●●

●

●

●

●●●

●
●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●
●

●●
●

●

●

●

●

●
●
●

●

●

●●
●●
●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●●

●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●
●●

●
●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●
●
●
●
●

●

●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●
●
●

●
●●

●

●●●●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●
●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●●●●●
●

●●

●
●

●

●

●●
●
●●●●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●●●●●
●

●
●

●

●●●

●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●
●
●●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●
●

●●●●

●
●
●

●●

●

●
●

●●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●●●

●●

●

●

●●

●
●
●

●

●

●

●
●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●●
●
●

●●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●●

●
●
●

●

●

●

●

●

●●
●

●

●●●

●

●●

●

●

●

●

●●

●●
●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●●●●

●

●

●
●●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●
●
●

●

●
●●
●
●
●
●
●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●
●●

●●

●●●●

●

●

●

●

●
●●
●●
●

●
●●●

●

●
●

●

●●

●

●●
●●

●
●●

●

●
●
●
●

●
●

●●
●

●

●

●

●

●

●●

●
●●

●

●
●
●

●●

●

●●
●
●

●●

●

●

●
●
●
●●

●●●

●●●
●

●

●

●

●

●

●●
●
●

●
●●

●

●

●
●
●●●●
●

●
●

●

●

●●●
●

●

●●●●

●●●

●
●

●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●
●

●

●
●
●

●

●
●

●

●

●●

●
●

●
●●●
●
●
●

●

●
●●●

●●●
●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●
●

●●●

●●

●

●
●

●

●●
●

●
●

●

●

●

●
●●
●
●●●
●

●

●
●

●●●
●●
●●●●●
●
●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●

●●●

●

●

●●●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●●
●
●
●

●

●

●

●
●
●●
●
●

●

●
●
●

●

●

●
●
●
●●●

●

●
●

●

●

●

●

●

●

●

●●
●
●
●●
●
●●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●●

●

●
●●

●●

●

●

●

●
●●●
●
●

●
●

●●
●●
●
●
●

●

●

●

●●

●
●
●
●

●
●
●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●
●●
●
●

●●

●
●●
●●
●

●●

●●

●

●●

●

●

●

●
●●

●
●●●●

●●
●●●●●
●

●●

●

●

●

●

●

●

●

●●
●

●

●●
●●

●●

●
●
●
●

●
●
●
●
●
●
●

●

●
●
●
●●
●
●

●
●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●
●
●

●
●
●●●
●
●
●●

●

●●●

●

●

●
●

●
●

●
●

●●

●
●
●
●
●
●●

●
●
●

●

●

●
●
●●

●

●●●

●

●●
●

●●●
●
●
●

●

●●

●
●

●●●●

●●

●●
●
●●
●
●●●●●●●●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●●●
●
●●

●

●

●

●●●
●
●
●

●

●
●●

●
●
●

●

●
●

●●●
●
●
●

●

●●

●●
●●●●

●●
●

●
●
●

●●

●

●

●

●

●
●●

●

●
●

●●

●

●
●
●

●

●

●●●●●●●●●
●●

●
●

●
●

●●●
●
●●

(b) Flow delay bounds when executing the TMA.

Figure 2: Example GLP network from [2] with 160 devices,
572 servers and 2288 flows. Code is available online [10].

REFERENCES

[1] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-

ministic Queuing Systems for the Internet. Springer, 2001.
[2] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of

deterministic network calculus – design and evaluation of an accurate
and fast analysis,” Proc. ACM Meas. Anal. Comput. Syst. (POMACS),
vol. 1, no. 1, pp. 16:1–16:34, 2017.

[3] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a comprehensive
tool for deterministic network calculus,” in Proc. of EAI ValueTools,
2014.

[4] [Online]. Available: http://discodnc.cs.uni-kl.de/
[5] A. Scheffler, M. Fögen, and S. Bondorf, “The deterministic network

calculus analysis: Reliability insights and performance improvements,”
in Proc. of IEEE CAMAD, 2018.

[6] S. Bondorf and J. B. Schmitt, “Calculating accurate end-to-end delay
bounds – you better know your cross-traffic,” in Proc. of EAI ValueTools,
2015.

[7] S. Bondorf, “Better bounds by worse assumptions - improving network
calculus accuracy by adding pessimism to the network model,” in Proc.

of IEEE ICC, 2017.
[8] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Catching corner cases in

network calculus – flow segregation can improve accuracy,” in Proc. of

GI/ITG MMB, 2018.
[9] D. E. Wrege and J. Liebeherr, “Video traffic characterization for

multimedia networks with a deterministic service,” in Proc. of IEEE

INFOCOM, 1996.
[10] [Online]. Available: https://github.com/NetCal/

