
The Deterministic Network Calculus Analysis:
Reliability Insights and Performance Improvements

Alexander Scheffler, Markus Fögen, Steffen Bondorf
Distributed Computer Systems (DISCO) Lab, TU Kaiserslautern, Germany

Abstract—The cost of delay analysis increases fast with size
and complexity of a network. Therefore, many recent research
efforts in Deterministic Network Calculus (DNC) focused on
the tradeoff between accuracy and cost of its delay-bounding
analyses. In this paper, we present insights on reliable, repro-
ducible and performance on both branches of DNC, algebraic
analysis and optimization, as well as the tools employed by them.
We reveal circumstances causing problems for reliability and
reproducibility of DNC’s optimization analysis and we investigate
the potential to improve computational performance of algebraic
DNC. To that end, we present theoretical background on the
topic of parallelizing the DNC analyses and an implementation
in the open-source DiscoDNC tool. With our proposed approach,
we achieve a speedup of analysis times of one order of magnitude.

I. INTRODUCTION

Motivation: Deterministic Network Calculus (DNC) is a
performance evaluation methodology that derives worst-case
bounds on flow delays in communication networks. These
bounds are commonly used to verify timing constraints spec-
ified for a given network. Deriving them follows a straight-
forward procedure: first, the network is modeled with the
curves defined by the DNC modeling framework and then
an analysis derives flow delay bounds. The model must,
however, be comprehensive. DNC cannot derive permissible
topologies or parameter values. I.e., from a network design
perspective, it can only help to rank different alternatives.
Therefore, employing DNC in the design phase of a network
is restricted to design space exploration [1] where fast run-
times, good scaling behavior and accurate performance bounds
are required. DNC promises to scale well as its underlying
model – curves bounding the cumulatively resource availabil-
ity or demand for a duration of observation – is not prone
to a state space explosion. Yet, as networks grow larger and
more complex, the size and complexity of the DNC analysis
computing the desired delay bounds grows, too – in terms
of the amount of operations involved in the algebraic DNC
analysis (algDNC) [2] or in terms of linear constraints of
the optimization-based analysis (optDNC) [3]. This growth of
complexity results in long computation times. In this paper, we
contribute insights and results on reliability and computational
performance of these DNC analyses.

Background: A comparison of complexity and computa-
tional effort imposed by modern DNC analyses has been
presented in [4]. The authors provide an algebraic analysis that
exhaustively executes all permissible sequences of operations

This work was supported by the Carl Zeiss Foundation.

Network size [devices]

An
al

ys
is

 e
xe

cu
tio

n
tim

e
[h

ou
rs

]

20 40 60 80 100 120

0
25

75
12

5
17

5

● ● ●
●

●

●

●

algDNC, poor parallelization implementation
optDNC, parallel optimization
algDNC, sequential analysis

Figure 1: Parallelizing the algebraic network analysis is a non-
trivial task that can impose an expensive performance penalty.

to derive a single bound. The most beneficial combination
of DNC analysis principles is thus found (see [5] for a
comprehensive presentation of analysis principles). A potential
combinatorial explosion when combining these principles is
mitigated by two strategies: convolution of alternative in-
termediate arrival curves into a single one and caching of
these curves. Implementing both mitigation strategies, algDNC
derives competitive delay bounds when compared to optDNC
but in considerably shorter computation times. Yet, algDNC
execution times can still reach several hours. Thus, we aim
to further speed up the analysis to foster its adoption for
tasks that require accurate delay bounds in very short times,
e.g., data centers and clouds [6], [7]. It was also shown
that performance of the optDNC analysis highly depends on
the employed optimization software, yet, cannot benefit from
parallelization. Potential for parallelization of the algDNC
analysis was, however, not investigated before. Work on this
topic raises multiple questions addressed in this paper. For
example, the central cache may become a bottleneck when
parallelizing the algDNC analysis. Figure 1 depicts results of
this consideration, revealing that compromising on one of the
mitigation strategies as well as a poor choice of parallelization
strategy can slow down the analysis considerably.

Paper Organization: This paper is structured as follows:
Section II presents related work. In Section III, reliability and
reproducibility of optDNC is investigated. Section IV presents
our results on parallelizing the algDNC analysis for modern
many-core architectures and Section V concludes the paper.

II. RELATED WORK

The effort imposed by a DNC analysis has been investigated
in various ways. Two main sources of computational effort

have been addressed in the literature: complexity of the alge-
braic operations and the complexity of the network analysis.
A comprehensive complexity analysis of algebraic operations
can be found in [8] and results on the complexity of entire
network analysis, i.e., the amount of operations required to
accurately bound a flow’s end-to-end delay in a network, are
provided in [4]. Notable improvements on operations’ speed
are the theory of compacting curve domains [9], [10], duality
of min-plus and max-plus DNC to choose between equivalent
operations with different complexities [11], as well as lever-
aging modern GPGPU technology for the derivation of arrival
curves from traces [12] or to perform algDNC operations [13]
in parallel. In this paper, we are concerned with the complexity
of a network analysis. Work on reducing the (re-)computation
effort of an analysis include worst-case model transformations
to gain independence of the network topology [14], e.g.,
based on the worst-case network that is compliant with a
specification [15], as well as using different characteristics like
the amount of cross-flows multiplexed on a path [16], [17].
Technical mitigation strategies include convolution of arrival
curves and caching intermediate results [4]. We contribute the
parallelization of the algebraic network analysis to this branch
of technical performance improvements.

III. RELIABILITY AND REPRODUCIBILITY

Reliability and reproducibility of results both strongly de-
pend on the tools employed for their computation. Algebraic
DNC consists of a sequence of algebraic operations derived
from the network. These are applied to the curves that
bound worst-case data arrivals and forwarding service. The
optimization-based DNC analysis, in contrast, transforms the
network to an optimization problem. Such a linear program
tends to be large and solving it introduces an inevitable
dependency on an LP solver software. In the literature [4],
it was shown that the choice of optimization software is deci-
sive for the analysis performance. We extend these findings
by new discoveries regarding limited reliability as well as
reproducibility. For the evaluation of these aspects, we use
the same networks as in [4] and benchmark runs of algDNC’s
TMA [4] and SFA [2] against optDNC’s ULP analysis [3].

A. Reliability

The literature [18], [3] presents optDNC delay bounds
derived with the open-source software LpSolve. However,
we observed problems with its reliability: one specific flow
delay analysis reproducibly failed in the smallest network
of our evaluation (20 devices) when employing LpSolve
(version 5.5.2.0). Moreover, with increasing network size, the
amount of constraints per flow delay LP increases (see Table I)
and thus the complexity an LP solver has to cope with grows,
too. Again using LpSolve, we observed a rapidly increasing
amount of analysis failures in the 40 devices network. Figure 2
shows how the failed flow analyses’ delay bounds would
have compared to other flow delays in the network – this
information was taken from an analysis run with the reliable
IBM CPLEX solver (version 12.7.0). In our homogeneous

Flows, ordered by TMA delay bound

D
el

ay
 b

ou
nd

 [m
s]

0 25 50 75 100 125 150

0
25

50
75

10
0

12
5

15
0

|
 i

nd
ic

at
e

fa
ile

d
Lp

So
lve

 ru
ns

|

SFA

ULP ≈ TMA

(a) Network with 20 devices.

Flows, ordered by TMA delay bound
D

el
ay

 b
ou

nd
 [m

s]

0 75 150 225 300 375 450

0
25

50
75

10
0

|
 i

nd
ic

at
e

fa
ile

d
Lp

So
lve

 ru
ns

|| | | | |||| ||||| ||| |||||| |||| | || ||||| | || || |||||| |||| || ||| ||| |||||||||||| || || ||||||| ||||||||||| |||||| |||||||||| |||| ||||||| |||||| || || |||| || | |||| |||| |||||||| | || ||||

SFA

ULP ≈ TMA

(b) Network with 40 devices.

Figure 2: Executing optDNC with LpSolve: failed analyses.

networks, a large delay bound indicates a complex structure
of cross-flow entanglement that has to be resolved to a valid
scenario upper bounding worst-case interference. Using this
proxy-metric for LP complexity, we see that LpSolve fails in
a rather simple cross-traffic interference scenario in the 20
devices network (Figure 2a) – the delay bound not computed
is in the lower 10th percentile. In the 40 devices network
(Figure 2b), failed analyses are scattered over the entire range
of complexities (again indicated by delay bounds). Overall,
LpSolve not only fails often but also very unpredictably.

B. Reproducibility

We conclude our investigation of optDNC’s external tool
requirement implications with an important observation re-
garding reproducibility of results. The ULP analysis is an
optDNC heuristic that does not necessarily derive tight bounds
in general feed-forward networks. It was derived from the tight
LP analysis [3] by reducing the amount of linear programs to a
single one that also consists of less constraints than any linear
program of the LP analysis. Executing the ULP analysis with

Network size Constraints per flow
[devices] [flows] [average] [max]

20 152 3593.70 5258
40 472 54374.25 233435
60 656 201645.26 515272
80 1128 397694.01 1092231
100 1456 665333.80 1981425
120 1592 1514724.68 9005446

Table I: Network sizes and optDNC constraints per flow.

the reliable IBM CPLEX solver, we observed deviations of a
single flow’s delay bound of up to 0.3h . The machine epsilon
of double-precision floating-point values is, however, no more
than 2�53 ⇡ 2.22 · 10�16 and should impact results at most
once per operation. As the ULP analysis might be tight, such
a small deviation can already invalidate the derived bound.
Further investigation revealed that the deviations are caused by
varying order of constraints in the linear program as well as
the solving strategy (i.e., primal simplex or dual simplex). For
the smallest network alone, the flow requiring most constraints
will have 5258! > 6.5 · 1017282 permutations, not accounting
for permutations of the terms defining each linear constraint.
Thus, an exhaustive approach searching for the worst among
all permutations’ results is not feasible.

Last, note that algDNC does not suffer from this repro-
ducibility issue. We can report reproducible results across the
latests major DiscoDNC versions (v2.2.8, v2.3.5, v2.4.0) for
equal analyses applied to the networks in Table I. That is,
the maximum deviations observed between results of these
versions is less than 3 · 10�16, i.e., well within the expected
impact of double-precision floating point rounding errors.

IV. PARALLELIZING THE ALGDNC NETWORK ANALYSIS

This section first presents the theoretical background on
parallelizing an algebraic DNC network analysis. We then
explore different technical approaches for parallelization and
also integrate the caching of intermediate arrival bounds in a
parallelized DNC network analysis based on the very recent
and very accurate Tandem Matching Analysis (TMA) [4].

A. Potential for Parallelization

Any algDNC analysis starts with the flow whose delay is to
be bounded. Its cross-flows are identified and their arrivals are
bounded at the locations of interference. To do so, they in turn
become the flows to be bounded in a subsequent analysis step.
I.e., a recursive procedure is executed that terminates when
there is no further cross-flow interference (this termination
condition is guaranteed in a feed-forward network). The effort
required by this procedure is maximized by the TMA – this
algDNC analysis results in the tree structure visualized in
Figure 3. Starting at the roots at the top, each intermediate
recursion level branches several times in order to test each
algDNC analysis principle for superiority over the others.
While all computations consist of algebraic operations that
can be parallelized as shown in the literature, we aim to
parallelize entire sequences of operations. They are depicted
as connections between adjacent recursion levels in Figure 3.

The white circles depict synchronization requirements. In
terms of a network analysis, they correspond to arrival bounds,
i.e., arrival curves for cross-flows at some location in the
network. Being arrival curves, all alternatives computed by
the branches immediately below the circle can be convolved
into a single arrival curve that can also be cached for reuse.

B. Approaches: Technical Details and Evaluation

We present alternative parallelization implementations and
evaluate their impact on a multi-core system with a low

Figure 3: AlgDNC Recursion Tree [4]. (Sub-)Paths from
(intermediate) roots to leaves are parallelizable, but caching
requires synchronization at every subtree root (white circles).

number of cores but fast single-thread performance (2x Intel
Xeon E5420, 8 threads in total) and on a many-core system
with a high number of cores but considerably slower single-
thread performance (1x Intel Xeon Phi 7210, 256 threads).

For the evaluation, a set of example networks with 20 to
max. 260 devices from [4] are analyzed. We compute the delay
for each flow in each of the networks and measure the overall
computation time to bound all flow delays with TMA.

We use the open-source DiscoDNC [19] that is written in
Java and thus the parallelization alternatives explored in this
section are tied to concepts of this programming language.
Yet, most competing closed-source DNC tools are written in
Java, too. Most notably, the real-time calculus backend of the
MPA Toolbox [20], RTaW Pegase [21], and WOPANets [22]
are all written in Java. Thus, our findings are relevant for a
wide range of DNC tools.

1) Parallelization of Java 8 Code: Java source code is
compiled into bytecode that is then run on a Java Virtual
Machine (JVM). In contrast to programming languages that are
compiled into machine code, we can leverage the capabilities
of the JVM for parallelizing the DiscoDNC network analysis.
Alleviating the need to implement comprehensive thread han-
dling in the DiscoDNC itself, two alternatives are available:
using the common fork/join pool or separate fork/join pools.

Using the JVM’s Common Fork/Join Pool without Caching

Java 8 introduced the concept of parallel streams that allows
parallelization of loops with minimal changes to the original
code by replacing for(element:collection){. . .} with

collection.parallelStream().forEach(element){. . .},

i.e, reformulating independent sets as parallel streams. This
approach distributes the operations triggered by elements in
the collection over the available threads in the pool. All threads
are added to the already existing common fork/join pool of the
JVM. Unfortunately, this parallelization technique comes with
a drawback. By default, the size of the thread pool equals the
number of available (virtual) CPU cores – a number that is
determined during the start of the JVM. Other applications
on the system that were started later may thus be negatively
effected and vice versa. To avoid this situation, the dual-Xeon
machine (8 threads) only ran the Ubuntu operating system in
addition to our experiments. The JVM determined the number

Network size [devices]

An
al

ys
is

 e
xe

cu
tio

n
tim

e
[h

ou
rs

]

20 40 60 80 100 120

0
2.

5
5

7.
5

● ●

●

●

●

●
●

TMA seq
TMA para, cap 7
TMA para, cap 16

Network size [devices]

140 160 180 200 220 240 260

1
10

1
10

2

●

●

●

●

●
●

●

Figure 4: Execution times for sequential mode and common
fork/join pool caps of 7 threads (default) and 16 threads.

of available CPUs to be 7. However, defining a custom cap
of the common thread pool in terms of number of threads is
possible. Note that this cannot be done during runtime of a
Java program. Instead, the entire JVM must be initialized with

-Djava.util.concurrent.

ForkJoinPool.common.parallelism=n

where n denotes the maximum number of threads.
TMA is a compositional feed-forward analysis of DNC that

aims to aggregately bound flows in order to obtain a high
degree of accuracy. I.e., it consists of two fundamental steps:

1) Given a set of flows, TMA finds the longest tandem of
servers these flows cross together. They can be aggre-
gated on this tandem and the flows’ available service
will be computed using the results of step 2.

2) Arrivals of cross-flows on this tandem are bounded. This
step involved defining subsets of cross-flows, according
to the servers they cross on the tandem. These flow sets
will then be bounded in invocations of step 1.

The entire procedure terminates in the cycle-free feed-forward
network when all flows have been traced to their entry point to
the network. In addition, TMA exhaustively cuts the tandems
into all alternative sequences of subtandems. These are then
analyzed individually. Therefore, TMA exhibits the most po-
tential for synchronization among all DNC analyses, filling
the common fork/join pool easily. Yet TMA also imposes the
highest demand on synchronization of all DNC analyses.

Figure 4 shows the impact of using parallelStream

on the TMA analysis, run on the dual-Xeon machine where
the default number of JVM threads is 7. We observe that
this setting is not optimal. The parallelized TMA requires
more time than its sequential counterpart; except in the 60
devices network where it is a negligible 34.5 seconds faster.
Most notably, the 180 devices network takes an additional
5.95 hours to analyze. Thread handling and synchronization
seems to impose a penalty that outweighs parallel execution of
subtasks. To further investigate this, we increased the amount
of threads in the common pool to 16, hoping that the benefit

Network size [devices]

An
al

ys
is

 e
xe

cu
tio

n
tim

e
[h

ou
rs

]

20 40 60 80 100 120

10
−2

10
−1

1
10

1
10

2
10

3
10

4

●

●

●

●

●

●

●

TMA, parallel, sep fj pool, no cache
ULP, parallel
TMA, sequential, no cache
TMA, sequential, cache

Figure 5: Execution times of the TMA in sequential mode as
well as parallelized with separate fork/join pools. Parallel ULP
optimization for comparison. Sequential TMA with an arrival
bounds cache outperforms any parallelization.

of parallelization increases faster than the thread handling and
synchronization penalty. Indeed, we achieve TMA execution
times that are slightly below those of the sequential variant.
Interestingly, the 180 devices network that performed worst
with less threads in the pool benefitted largely from the
increase. The new cap of 16 results in a speed-up of 1 hour.

Next, we investigate a parallelization alternative that vastly
increases the amount of threads created by the JVM.

Separate Fork/Join Pools without Caching

Another alternative to avoid the aforementioned search for
the best pool size (number of threads) is to use a separate
fork/join pool for each parallelStream. This is achieved
by creating a new ForkJoinPool instance with an own
submit-method to add the respective parallelStream.
With this approach, we can still set an explicit cap per fork/join
pool, yet, we cannot cap the amount of fork/join pools. A
large number of pools is to be expected given the branching
visualized in Figure 3 and therefore we ran experiments on
the 256-thread Xeon Phi machine. A level of parallelism per
pool of 1 resulted in more than 7000 threads (i.e., pools).
A level of parallelism of 2 caused more than 9000 threads,
indicating that only a fraction of pools were filled with two
threads. This high number of threads and pools imposes a large
management and synchronization overhead on the JVM that is,
in contrast to the common fork/join pool, vastly outweighing
the benefits of parallelism. Our evaluation results show a
seven-fold increase of analysis execution time compared to the
sequential computation (see Figures 1 and 5). Thus, we aim
at cutting back the need of such expensive synchronization.

C. Creating a Thread-safe and Fast Arrival Bounds Cache

In this Section, we investigate the DiscoDNC’s arrival
bounds cache that aims to increase the performance of the ar-
rival bounding task by reuse of already computed results. Fig-
ure 5 shows that caching outperforms parallelization. There-
fore, we aim to create a thread-safe and fast cache in order to
benefit from both improvements simultaneously. Yet, this aim
imposes the need for a synchronized data structure. Access to

it needs to be synchronized between all threads running the
arrival bound calculations in parallel and may thus create a
bottleneck slowing down the entire computation. To provide a
fast and thread-safe caching solution, we discuss implementa-
tion details, cache access as well as synchronization costs and
show resulting performance improvements using experimental
measurements. The benefit from the cache depends on the
cache hits during the arrival bounding tasks. However, because
of the size and recursive nature of the arrival bounding this is
given (see [4]), especially in large networks.

a) Implementation Details: When the arrival bounds
have to be computed for a set of flows, it is checked first
if those are already in the cache. To do this in an efficient
manner, our advanced cache makes use of hashed maps,
i.e., Java’s HashMap implementation, instead of searching in
the set of all entries as the previous proof of concept [4].
In general, hashing can be quite useful when it comes to
searching for an entry in a collection since some specific
value related to the search term can be used, so only entries
with the same value need to be considered, resulting in a
significant reduction of the search space. An example would
be the server at which the arrival bounds have to be computed
for the respective flows we want to bound. Our new arrival
bounds cache implementation has two different HashMap

instances, one holding arrival bounds at servers and one storing
arrival bounds for flows crossing a specific link. For brevity,
we restrict our presentation to the HashMap used for arrival
bounds at servers since the other one is similar in nature.
We map a server instance to another HashMap which, in
turn, maps a string to a list of entries that store the arrival
bounds. The string contains information about the analysis
configuration, among others, the number of the flows to be
bounded as well as the multiplexing discipline (e.g., FIFO),
in order to further reduce the search space.

Since several threads might be involved in the arrival
bounding task, the cache needs to be accessed in a thread-
safe way. The main idea is to allow multiple threads to read
the respective HashMap if it is currently not updated, i.e.,
several read threads are allowed when there is no thread
changing the respective HashMap. This has the advantage
that read threads do not block each other which should,
on average, yield a higher performance compared to using
standard mutex locks. On the other hand, one has to con-
sider the possibility that a thread might want to update a
HashMap while other threads continue getting hits on that
map, i.e., just reading it which would mean that the write-
thread could be blocked for an arbitrary long time. We use
read-write locks to achieve this kind of thread-safety – more
precisely, the class ReentrantReadWriteLock from the
java.util.concurrent.locks package – as these
locks provide the relevant benefits. The default mode of the
framework that we use does not provide a writer preference.
Yet, it supports a fair mode which uses an approximately
arrival-order policy to avoid the issue mentioned above.

Before discussing details of our implementation, we first
introduce a notation for the examples that will follow: w1r0w0

is to be interpreted as the sequence of queries for which the
write lock w0 is older than the query for the read r0 and write
lock w1, respectively. Suppose that the lock is fully released,
i.e. a writer thread released the lock or the last reader thread
that had the lock released it. If the longest waiting thread wants
to write, it will get the write lock. The following example
illustrates this:

. . . r2r1w2w1r0w0 ! w0 gets the write lock

In the other case, there is a set of threads that want to read and
all of those wait longer than the longest waiting write thread.
Then, the respective read threads will get the read lock at once:

. . . r4w2w1r3w0r2r1r0 ! {r0, r1, r2} get the read lock

One might ask what happens if some readers currently have the
lock and a new read-query occurs: If there is already a waiting
write thread then the thread associated with the read-query will
not acquire the lock until the oldest currently waiting writer
thread got the lock and released it. As a result of this, our
implementation ensures that read threads cannot block write-
queries for an arbitrary long time.

b) Performance Costs Consideration and Evaluation:

The motivation behind the cache was already mentioned above
but we also have to consider the inherent additional perfor-
mance costs. For now, consider only the sequential arrival
bounding – thus ignoring synchronization costs. We have costs
for the lookup in the cache as well as when updating the
cache, i.e., when adding a new entry. Concerning the lookup,
we aimed for an efficient search using HashMap instances
as described above. At first, there will be many updates to
the cache since it is almost empty but after some time we
will get more and more hits – a simple lookup replaces an
entire recursive arrival bounding shown in Figure 3. Thus,
the inherent additional performance costs for cache misses
are negligible, especially for larger networks. Our evaluation
results (shown in Figure 5) clearly show that it is worth
caching the arrival bounds, even for a network size of 20 –
compare TMA sequential no cache and cache.

When several threads are involved in the arrival bounding
computation, we also have to consider the synchronization
costs of accessing the respective HashMap. As described
above we used read-write locks allowing several read threads
to access the data when there is no update queued at this
instance of time. Similar as above, at first we have plenty
updates, thus mostly write threads, so the parallelism does
not fully come into play yet but after the network analysis
progressed, the cache hit ratio will increase and the update
frequency decreases simultaneously. Having mostly cache hits
for some period of analysis execution time means that the
pooled threads can work independently since our implemen-
tation supports parallel read-access to the cache’s HashMap.

Our evaluation results already showed that the performance
of caching is higher than parallelizing the arrival bound
computation alone (without caching). The reason for this is
the following: At first we have again a lot of cache misses,

Network size [devices]

TM
A

ex
ec

ut
io

n
tim

e
[h

ou
rs

]

20 40 60 80 100 120 140 160 180 200 220

10
−4

10
−3

10
−2

10
−1

1
10

1
10

2
10

3

● ●

●

●
●

●

● ●
● ●

●

●

parallel, no cache
sequential, cache
parallel, cache

Figure 6: Execution times of the TMA using common-
fork/join-pool parallelization, sequential analysis with an ar-
rival bounds cache and our new combination of both.

so the parallel version is expected to be faster (since several
threads are involved in the computation) but the cache catches
up rather quickly since the cache hits per cache queries will
also increase fast due to the recursive nature of the arrival
bound computations. After a considerable part of the network
has been analyzed, the cached version will mostly just reuse
arrival bounds already stored in the cache whereas the previous
parallel version still fully computes the bounds (again). As we
can see in Figure 6, for the analyzed network of size 100 the
parallel version needs more than one hour for the computation
(measured on the 256-thread Xeon Phi machine) whereas the
sequential cache version is one order of magnitude faster.
The deviation between these two versions tends to increase
with the network size. E.g., for the network of size 220,
the parallel analysis needs more than 100 hours whereas the
cached version finishes after less than 1 hour.

Finally, we investigated if the combination of both, caching
and parallelism, can further benefit the DNC network analysis
performance. Figure 6 shows that this is indeed the case.
As mentioned before, we have synchronization costs which
decrease fast over time due to an increased cache hit ratio.
Hence, after some time the threads can work independently
since we mostly have read queries which do not block each
other. For example, for the analyzed network of size 140, the
computation time using sequential cache is about 6 minutes
whereas using the parallel cache just takes about 36 seconds.
Overall, for networks > 20 devices, we can observe a perfor-
mance increase of another order of magnitude with our now
thread-safe arrival bounds cache.

V. CONCLUSION

In this paper, we investigated DNC network analyses
regarding reliability and performance. We show that the
optimization-based branch of DNC can suffer from reliability
and reproducibility issues due to the optimization software
that needs to be employed. In contrast, the algebraic DNC
analysis is reliable and results are reproducible. Thus, we

further improved its performance by parallelizing the anal-
ysis procedure. The combination of parallelism and caching
of intermediate results turned out to be a non-trivial task.
Yet, where other alternatives fail, our implementation of this
combination results in a speedup of one order of magnitude.

REFERENCES

[1] B. Cattelan and S. Bondorf, “Iterative design space exploration for
networks requiring performance guarantees,” in Proc. of the 36th

IEEE/AIAA Digital Avionics Systems Conference (DASC), 2017.
[2] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-

ministic Queuing Systems for the Internet. Springer, 2001.
[3] A. Bouillard, L. Jouhet, and E. Thierry, “Tight performance bounds in

the worst-case analysis of feed-forward networks,” in Proc. of IEEE

INFOCOM, 2010.
[4] S. Bondorf, P. Nikolaus, and J. B. Schmitt, “Quality and cost of deter-

ministic network calculus – design and evaluation of an accurate and
fast analysis,” Proceedings of the ACM on Measurement and Analysis

of Computing Systems (POMACS), vol. 1, no. 1, pp. 16:1–16:34, 2017.
[5] ——, “Catching corner cases in network calculus – flow segregation can

improve accuracy,” in Proc. of GI/ITG MMB, 2018.
[6] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.

Ganger, “PriorityMeister: Tail latency QoS for shared networked stor-
age,” in Proc. of the ACM Symposium on Cloud Computing (SoCC),
2014.

[7] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message latency in the cloud,” in Proc. of ACM SIGCOMM, 2015.

[8] A. Bouillard and E. Thierry, “An algorithmic toolbox for network
calculus,” Journal of Discrete Event Dynamic Systems (JDEDS), vol. 18,
no. 1, pp. 3–49, 2008.

[9] K. Lampka, S. Bondorf, and J. B. Schmitt, “Achieving efficiency without
sacrificing model accuracy: Network calculus on compact domains,” in
Proc. of IEEE MASCOTS, 2016.

[10] K. Lampka, S. Bondorf, J. B. Schmitt, N. Guan, and W. Yi, “Generalized
finitary real-time calculus,” in Proc. of IEEE INFOCOM, 2017.

[11] J. Liebeherr, “Duality of the max-plus and min-plus network calculus,”
Foundations and Trends in Networking, vol. 11, no. 3-4, pp. 139–282,
2017.

[12] G. Carvajal, M. Salem, N. Benann, and S. Fischmeister, “Enabling rapid
construction of arrival curves from execution traces,” IEEE Design &

Test, 2017.
[13] N. Luangsomboon, R. Hesse, and J. Liebeherr, “Fast min-plus convolu-

tion and deconvolution on GPUs,” in Proc. of EAI ValueTools, 2017.
[14] A. Charny and J.-Y. Le Boudec, “Delay bounds in a network with

aggregate scheduling,” in Proc. of Quality of Future Internet Services,
2000.

[15] J. W. Guck, A. Van Bemten, and W. Kellerer, “DetServ: Network models
for real-time QoS provisioning in SDN-based industrial environments,”
IEEE Transactions on Network and Service Management, vol. 14, no. 4,
pp. 1003–1017, 2017.

[16] I. Chlamtac, A. Faragó, H. Zhang, and A. Fumagalli, “A deterministic
approach to the end-to-end analysis of packet flows in connection-
oriented networks,” IEEE/ACM Transactions on Networking, vol. 6,
no. 4, pp. 422–431, 1998.

[17] J.-Y. Le Boudec and G. Hébuterne, “Comments on “a deterministic
approach to the end-to-end analysis of packet flows in connection
oriented networks”,” IEEE/ACM Transactions on Networking, vol. 8,
no. 1, pp. 121–124, 2000.

[18] A. Kiefer, N. Gollan, and J. B. Schmitt, “Searching for tight performance
bounds in feed-forward networks,” in Proc. of GI/ITG MMB & DFT,
2010.

[19] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a comprehensive
tool for deterministic network calculus,” in Proc. of EAI ValueTools,
2014.

[20] E. Wandeler and L. Thiele, “Real-time calculus (RTC) toolbox,”
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[21] M. Boyer, J. Migge, and M. Fumey, “PEGASE - a robust and efficient
tool for worst-case network traversal time evaluation on AFDX,” SAE
Technical Paper, 2011.

[22] A. Mifdaoui and H. Ayed, “WOPANets: A tool for worst case perfor-
mance analysis of embedded networks,” in Proc. of the IEEE CAMAD

Workshop, 2010.

