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Abstract—Reactive jammers have been shown to be a serious
threat for wireless communication. Despite this, it is difficult
to detect their presence reliably. We propose a novel method
to detect such sophisticated jammers in direct sequence spread
spectrum (DSSS) wireless communication systems. The key idea
is to extract statistics from the jamming-free symbols of the
DSSS synchronizer to discern jammed packets from those lost
due to bad channel conditions. Our contribution is twofold.First,
we experimentally evaluate new empirical models utilizingthe
preamble symbols of IEEE 802.15.4 packets, thus enabling the
accurate prediction of the packet delivery ratio (PDR). We show
that the chip error rate-based metric is superior to metrics used
in the literature, offering an accurate and reactive indicator of the
true PDR. Our second contribution is the design and evaluation
of a detection technique relying on this metric to detect reactive
jammers. We build a software-defined radio testbed and show
that our technique enables the error-free detection of reactive
jammers that jam all packets on links with a PDR above 0.3.
To the best of our knowledge, our detector is the first to detect
reactive jamming attacks targeting the physical layer header of
DSSS packets, and does not require any modifications of the
wireless communication system.

Index Terms—Jamming detection, reactive jamming, direct
sequence spread spectrum, 802.15.4, chip errors.

I. I NTRODUCTION

W IRELESS networks are built upon a shared medium,
making them vulnerable to jamming attacks. Such

attacks are accomplished by generating intentional RF interfer-
ence that does not adhere to the conventions of an underlying
MAC protocol [1]. Jamming signals interfere with the trans-
missions of legitimate transmitters at the receiver in the sense
that the signals collide and render the originally transmitted
data signals uninterpretable. In contrast to traditional security
primitives such as authentication, confidentiality, or integrity
that can be addressed with cryptographic techniques, jamming
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attacks targeting the availability cannot be fended off entirely
by conventional security mechanisms. While spread spectrum
communication techniques are able to mitigate the effect of
narrowband interference, a jammer can always disturb the
communication by emitting broadband signals that exceed the
power of legitimate signals.

Jammers may employ a wide range of strategies to dis-
turb wireless communications [1]–[5]. Among these existing
strategies,reactivejammers that become active upon detection
of transmissions over the channel have been shown not only
to be the hardest to detect, but also the most energy-efficient
approach, making them a serious threat in wireless networks.
In addition, recent work [6] has demonstrated that reactive
jammers can be implemented on inexpensive commercial off-
the-shelf (COTS) platforms such as the USRP from Ettus Re-
search, and that reactive jamming can be triggered selectively,
for example, on any field of the packet header, making it a
realistic threatfor wireless communications.

Fundamentally, jamming cannot be prevented by design,
hence it is important to understand how it works and, in turn,
how to detect its presence. This paper proposes a novel method
to detect reactive jammers in wireless communication systems.
The key idea is to use information extracted from the first few
jamming-free bits received during the signal synchronization
phase of regular packet reception to discriminate jammed
packets from packets that are lost due to natural causes such
as bad channel conditions. This problem is known to be
challenging in real-world environments [1], [7].

Our work targets direct sequence spread spectrum (DSSS)
communication systems such as the one employed in the IEEE
802.15.4 standard. We take advantage of the fact that the
first few jamming-free bits are knowna priori because they
constitute a fixed preamble intended for signal synchronization
at the DSSS receiver. Since the packet preamble represents
the start of the DSSS signal on the air, it is unlikely that a
reactive jammer jams this part of the communication because
it demands very high reactivity, low signal propagation delays,
and it prevents a jammer from making smart jamming deci-
sions according to physical, MAC, or payload based rules [6].
We therefore use these preamble symbols to estimate the link
quality reliably and provide the following contributions:

• We compare empirical models that rely either on chip
errors, symbol errors, or the received signal strength
(RSS) in the preamble to predict the packet delivery
ratio (PDR). We evaluate these models under different
environmental link conditions using measurements in
our software-defined radio testbed. Our results indicate
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that the chip error rate (CER) based metric outperforms
the alternatives across all considered environments and
estimates the PDR with a mean absolute error around
5 % for all considered conditions.

• Based upon these insights, we design a jamming detec-
tion technique that relies on the CER at the demodulator.
Jamming is detected by comparing the estimated PDR
of jamming-free preamble symbols with the actual PDR.
If the experienced PDR exceeds the one estimated by a
certain threshold, a reactive jammer is likely to be active
and we thus declare jamming.

We have implemented our detection technique on the
USRP1 software-defined radio platform and tested its perfor-
mance in a controlled lab environment with three nodes: an
IEEE 802.15.4 transmitter, an IEEE 802.15.4 receiver with our
jamming detector, and the reactive jammer from [6]. Owing
to the rich information that can be extracted from preamble
chips (up to 256 jamming-free chips per packet), our results
show that our detection scheme is able to accurately detect
reactive jammers on fading wireless links with a PDR above
0.3. The false positive and negative detection rates for jammers
that target all packets remain zero, outperforming models
that rely on RSS [1], [7]. In addition, our approach does
not require any modification to the communication system or
standard and works even when the reactive jammer targets
the synchronization phase of a packet transmission, which
prevents approaches in related work to derive accurate PDR
estimates. To the best of our knowledge, our detector is the first
to detect such sophisticated reactive jamming attacks targeting
the physical layer header of packets and does not require any
modifications or additional system requirements.

The rest of this paper is organized as follows. In the next
section, we briefly review important aspects of the IEEE
802.15.4 standard, introduce the attacker model, and describe
the experimental setup used in the evaluation. Sections III
and IV explore the feasibility to model the packet delivery
with limited information from chip errors in the preamble
and compare it with existing approaches. In Section V, we
introduce our jamming detection scheme based on the CER
metric. Section VI covers the evaluation of the detection
performance. Related work is discussed in Section VII and
Section VIII concludes the paper.

II. BACKGROUND AND ATTACKER MODEL

In this section, we briefly review important aspects of the
IEEE 802.15.4 standard, introduce the attacker model, and
describe the experimental setup used in the evaluation.

A. Background on IEEE 802.15.4

Packet transmission. Our work on jamming detection
focuses on direct sequence spread spectrum (DSSS) communi-
cation systems, and is practically demonstrated for the 2.4GHz
physical layer (PHY) of the IEEE 802.15.4 standard [8,
Section 6.5]. This PHY defines a16-ary quasi-orthogonal
DSSS modulation technique; the modulation spreads a low-
rate bit sequence to a higher-rate sequence, consisting of
so-calledchips, in the following way: binary source data is
divided into groups of4 bits (referred to assymbols) and
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Fig. 1. DSSS modulation in the 2.4 GHz physical layer of IEEE 802.15.4.

mapped to a quasi-orthogonal32-chip pseudo-noise sequence
(b0, b1, b2, b3) 7→ (c0, c1, . . . , c31), resulting in a chip rate
of 2MChips/s (as shown in Figure 1). The effect of this
spreading is an increased robustness against fading and in-
band interference: DSSS systems can tolerate a certain number
of chip errors and still receive symbols correctly.

Our proposed detection scheme relies on an estimation of
the PDR based on the observation of the packet preamble. The
preamble in IEEE 802.15.4 is a sequence of eight symbols0
with the same modulation as the following data bits of the
packet. After the preamble follows a start of frame delimiter
(SFD; symbols7 and10), a frame length field indicating the
duration of the frame, and finally the MAC protocol data unit
(MPDU). The MPDU contains a MAC header, data payload,
and ends with a frame check sequence (FCS) used to detect
transmission errors. IEEE 802.15.4 does not mandate the use
of error correction mechanisms, and any received packet with
an incorrect FCS is hence discarded. This implies that reactive
jammers can drop packets very efficiently by destroying only
one or two symbols in a packet [6].

Packet reception. To receive a packet, the receiver first
synchronizes with the preamble sequence to detect the sym-
bol boundaries, i.e., the time instants when chip sequences
start, and the carrier and baseband phase offsets. This timing
information is subsequently used to detect the SFD and frame
length field. The rest of the signal is decoded using a correlator
to map each received block of32 chips back to symbols.
It is compared to the16 predefined chip sequencesCi, i =
0, 1, . . . , 15. The received chip sequenceR may contain errors
caused by fading or interference. The receiver chooses the best
match, i.e., theCi for whichh(R,Ci) is minimal, whereh(·, ·)
is the Hamming distance (number of positions containing
differing chips) between the two arguments. However, if too
many chips are flipped (e.g., when a jammer is active), then
the expressionh(R,Ci) may be minimal for the wrong chip
sequenceCi and the receiver interprets the chip sequence as
a wrong symbol.

Example. Figure 2 illustrates the synchronization phase of
two packets schematically. In the first case, the packet is lost
due to bad channel conditions, while in the second case the
packet is transmitted successfully despite chip errors. In(a),
the sender starts to transmit the preamble sequence, the SFD,
and the corresponding length field and MPDU (denoted here as
rest of packet). During the transmission of the eight preamble
symbols of the first packet,P1,2, P1,3, P1,4 are not decoded
correctly due to a high number of chip errors. In contrast,P1,7

is transmitted successfully because, as shown in (d), only three
chips are flipped during the transmission and the maximum
error threshold to discriminate between a correct and wrong
preamble symbol is not exceeded. Finally, due to a corrupted
symbol inSFD1, the synchronization of the first packet fails
and the receiver is not able to decode this packet entirely.
Specifically, this means that the packet is not counted as a
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Fig. 2. Examples of how bad channel conditions affect chip errors in the preamble, and its relation with packet losses.

Fig. 3. Reactive jamming: an attacker jams the start-of-frame delimiter (SFD)
to disturb the synchronization of the packet at the receiver. Without SFD, the
receiver cannot synchronize with the packet and misses it entirely.

packet error because the receiver never enters its reception
mode and its FCS is not checked, making it hard to derive
statistics for jamming detection when synchronization fails.

Contrary to the first packet, the second packet is transmitted
successfully (c) because only the preamble symbolsP2,1 and
P2,5 are not correctly decoded, which allows the receiver
to synchronize to the packet and decode a valid SFD. Con-
cluding, symbol level analysis can only distinguish between
symbols above and below the chip-error threshold. Instead,
chip errors provide a richer information about the status of
the channel and its expected PDR. In Section III, we will
show that the number of chip errors is highly correlated with
the probability of successful packet reception, and that the use
of the preamble enables us to accurately derive PDR statistics
even if a receiver never enters reception mode.

B. Attacker Model

We consider jammers that aim to block the entire com-
munication over a link by emitting interference reactively
when they detect packets over the air. The jammers minimize
their jamming activity to only a few symbols per packet and
use minimal but sufficient power to remain undetected. We
assume that the jammer is able to sniff any symbol of the
packet over the air in real-time and react with a jamming
signal that flips selected symbols at the receiver with high
probability. An attacker may therefore pursue different reactive
jamming strategies [6]. It may jam(i) the MPDU, (ii) the
frame length field,(iii) the SFD, or (iv) the preamble of
the packet. Figure 3 illustrates jamming strategy(iii) that
targets the SFD. The first two strategies cause packet losses
because of resulting FCS errors, while the last two strategies
introduce synchronization failures, causing the entire packet to
be missed by the receiver. Such synchronization errors make

it hard to devise jamming detectors because often the packet
error count is used to distinguish jammed and non-jammed
situations [1], [7], which cannot be derived in this situation.
The experimental evaluation in Section VI shows that our
CER-based approach does not suffer from this restriction, and
we are able to detect all four jamming strategies.

We also assume that the attacker cannot destroy all preamble
symbols, i.e., at least a few symbols across several packets
are available as input to our detector. We denote the time
difference between the arrival of the original signal and the
jammer signal at the receiver as the jamming reaction time
τ . The minimal reaction timeτmin is bounded by the sum of
the signal propagation delay between sender and jammer, the
reaction delay of the jammer to process the incoming signal
and to make a jamming decision, and the signal propagation
delay between jammer and receiver. It is therefore safe to
assume that the minimum reaction timeτmin is greater than
the duration of one symbol (e.g.,16µs in IEEE 802.15.4).
Otherwise it would not be possible to assess the channel state
prior to jamming, i.e., not be reactive. In fact, [6] showed that
the reaction time of a realistic jamming system is significantly
larger than this minimum reaction delay because of the inher-
ent hard- and software delays to detect, demodulate, process,
and trigger jamming signals according to particular jamming
rules. While it might be technically feasible to implement
reactive devices with lower reaction delays than the duration
of one symbol (for example, by using simple power detectors
with analog parts [9], [10]), reactive jammers of that kind
are unable to use the semantics of the signals to perform
smart jamming decisions such as jamming selected packets
according to specific rules (e.g., matching packet modulation
or header properties).

C. Experimental Setup

We rely on measurements to study the performance of
packet delivery models and to evaluate the proposed jamming
detection technique. Our experimental setting considers point-
to-point data transmissions in a network consisting of three
nodes: sender, receiver, and jammer. Our experiments are
based on a software-based implementation of IEEE 802.15.4.
As hardware platform, we use the USRP software-defined
radio from Ettus Research. For the software, we use a slightly
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optimized version of the UCLA IEEE 802.15.4 implementa-
tion [11] that runs on the GNU Radio framework.

We have performed several tests in indoor lab environments,
which are referred to ascable, static, andmobile. In thecable
experiments, sender and receiver are connected by a shielded
60 cm coaxial cable with a30dB attenuator. This provides
very stable link conditions and lets us evaluate the best case
performance. In thestaticexperiments, a stationary sender and
receiver communicate using omni-directional antennas. While
providing insights into the detection performance under the
fading characteristics of indoor environments, it offers the
same stable link conditions as, for example, typical in sensor
network installations [12]. Themobileexperiments are similar
to the static scenario except that the sender is kept stationary
while the receiver is moving. The receiver is placed on a cart
and moved at a constant speed of maximumv = 1 cm/s away
from, and back towards, the sender. In this setting the PDR is
dynamic, allowing us to evaluate the convergence speed and
the stability of our detector.

In each experiment run,40,000 packets of26 bytes length
are sent during40 seconds from the transmitter to the receiver
at constant rate. Varying link conditions in the cable and static
experiments are obtained by adjusting the transmit power and
by changing the nodes’ positions. The true PDR at timet

is calculated by averaging the number of correctly received
packets in a window of100 packets centered aroundt. This
window size ensures that the true PDR is calculated over a
time window smaller than the channel coherence time when
moving the receiver at maximumv = 1 cm/s and at a
frequency of2.4GHz.1 Note that the mobility experiments
have a relatively low node speed for the sake of determining
the true PDR. We intentionally kept the node mobility low
such that the channel coherence time is larger than the window
size of100 packets that is used to calculate the true PDR. Our
results are thus relatively conservative with respect to mobility.

As a jammer, we use the reactive jammer from Wilhelm
et al. [6], which runs on the USRP2 software radio platform
from Ettus Research. It can be configured to jam according to
strategies(i) to (iv) introduced in Section II-B. The detection
and decision logic are implemented on the FPGA of the
USRP2, resulting in a minimal reaction delay ofτmin = 19µs.

III. E XPERIMENTAL ANALYSIS OF PREAMBLE-BASED

PERFORMANCEMETRICS

Our jamming detection technique is based on estimating the
PDR from the first few preamble symbols. This section pro-
vides an experimental study of different performance metrics
underlying this estimation. We consider four preamble-based
performance metrics to estimate the PDR at the receiver of a
link, which are calculated in average:

• number of decoded preamble symbols per successfully
delivered packet,

• number of consecutively decoded preamble symbols per
transmitted packet,

• number of chip errors per preamble symbol (CER),

1The coherence time is the time duration for which the channelimpulse
response is considered to be stationary and is approximately 1

4D
, whereD

is the Doppler spread.

• signal-to-noise ratio (SNR) during the preamble.

The key question we strive to answer is how well these
metrics are able to predict the actual PDR. An important
remark for the computation of the CER is the following. If too
many chips are flipped, the expressionh(R,Ci) is minimal for
the wrong chip sequenceCi, such that the receiver interprets
the chip sequence as a wrong symbol. The result is that the
symbol is discarded and ignored in the computation of the
average CER. This means that only a (potentially small) subset
of preamble symbols is used in the estimation.

We measure the correlation of these four metrics with
the PDR in various settings (cable, static, and mobile) and
determine the Pearson correlation coefficient. This coefficient
is an indicator of the linear correlation of two variables, where
values close to zero indicate a low correlation and absolute
values close to one represent a high linear dependence of two
variables.

The correlations are plotted individually in Figure 4 for
cable, static and mobile experiments. Since the environment
has apparently only little impact on the distribution of the
metrics, we compute a single correlation coefficient over all
three environments for each metric in the further analysis.The
best correlation is achieved for the CER metric (Figure 4(c))
with an absolute correlation coefficient of0.965, followed by
the SNR (Figure 4(d)) with an absolute correlation coefficient
of 0.92. The other two metrics perform significantly worse.
The number of decoded preamble symbols per successfully
delivery packet (Figure 4(a)) achieves an absolute coefficient
of only 0.559, while the number of consecutively decoded
preamble symbols per transmitted packet (Figure 4(b)) exhibits
an absolute correlation coefficient of0.762.

Given the lower correlation of the two symbol error-based
metrics, we do not consider these any further and focus in
the following on the most promising two: the CER and SNR
based metrics. As a next step, we analyze the correlation coef-
ficient over different time intervals, i.e., when the metrics are
averaged over varying window sizes. Small window sizes are
considered particularly important when the jamming detection
algorithm is expected to perform fast. Figure 5 shows how the
absolute value of the correlation coefficient of the CER and
SNR-based metrics varies with the number of packets used
for computing these metrics. As we can see the correlation is
dependent on the window size. However, for any fixed window
size, the CER-based metric outperforms the SNR-based one.
We therefore conclude that the number of chip errors in the
preamble is the best metric among those considered.

IV. CHIP ERROR BASED MODEL OF PACKET DELIVERY

We have seen in the previous section that the CER correlates
well with the actual PDR. In this section, we develop an
estimator of the PDR based on this metric. To meet the re-
quirements of accuracy and stability, our estimator operates on
two time scales. At the preamble level, chip errors of received
symbols are first averaged and fitted to a polynomial model to
obtain an estimation of the instantaneous PDR. At the packet
level, chip error statistics from multiple transmitted packets are
filtered according to a weighted moving average function to
smooth out short-term fluctuations of the estimation method.
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Fig. 4. Correlation between different preamble-based performance metrics
and PDR (average numbers).
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A. Instantaneous PDR

In a first step, we estimate the instantaneous (per-packet)
PDR after the reception of the preamble of packetk as

PDRinst(k) = g

(

∑

32

i=1

∑|Sk|
j=1

(Pk,j [i]⊕ P [i])

|Sk|

)

,

wherePk,j [i] is a vector containing the 32 chips of thej-th
received preamble symbol of packetk for i = 1, 2, . . . , 32,
P [i] denotes a vector with the expected chips of the known
preamble symbol,⊕ is the exclusive OR operator, and|Sk| is
the number of received preamble symbols for packetk. The
function g(·) models the empirical distribution of the PDR
versus CER as shown in Figure 4(c). For best results, we
use a polynomial regression function. We have experimented
with polynomials of different degrees. The root mean square
error of the fit could significantly be decreased up to a fifth
degree polynomial. Higher degrees only resulted in minimal
improvements. The fifth degree polynomial we used in this
paper is of the form

g(p) = a5 p5 + a4 p4 + a3 p3 + a2 p2 + a1 p+ a0

with the parameters of the fit beinga5 = 0.016, a4 = −0.33,
a3 = 2.41, a2 = −7.26, a1 = 8.83, a0 = −3.24. The root
mean square error for this polynomial regression function is
below 3 % across the entire range.

While PDRinst(k) provides a very fast estimate of the link
quality, it is subject to large fluctuations as shown in Figure
6(a). The figure compares the fluctuation of the instantaneous
PDR on a static link to the true PDR defined as the ratio of
correctly received packets to the total number of sent packets
for a fixed time window of 100 packets (see Section II-C). To
provide a more stable link quality metric, we need to further
average and filter consecutive instantaneous PDR estimatesas
described next.

B. Averaged and Filtered PDR

A classical approach to increase the stability of an estimator
is to weight sequential estimates in form of a weighted moving
average. For example, Woo et al. [13] use this technique
to increase the stability of estimators using packet count
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Fig. 6. Fluctuation of the instantaneous PDR estimation,PDRinst, and
filtered PDR estimation,PDRwa, on a wireless static link with a true PDR
of approximately55%.

statistics. We apply a similar approach to smooth out con-
secutive samples of the instantaneous PDR: we perform a
low-pass filtering of the weighted average in a window of
w consecutive samples. SupposePDRinst(k) is the set of the
pastℓ+1 samples of the instantaneous PDR at positionk. Let
furtherPDRinst(k−ℓ), PDRinst(k−ℓ+1), . . . , PDRinst(k−
1), PDRinst(k) ∈ PDRinst(k) be the pastℓ + 1 samples.
Then, the weighted averagewa(k) over these recentℓ + 1
samples at the positionk is calculated as

wa(k) =
ℓ
∑

m=0

βmPDRinst(k −m),

with the weighting factorsβm such that
∑ℓ

m=0
βm = 1. Using

this weighted averagewa(k), we compute the output of the
low pass filterfwa(k) (filtered weighted average) as

fwa(k) = α fwa(k − 1) + (1 − α)

(

1

wa(k)
− 1

)

,

where the parameterα ∈ [0, 1] controls the smoothness. For
example, a small factorα gives more importance to the recent
link behavior. Finally thek-th estimate is obtained as

PDRwa(k) =
1

1 + fwa(k)
.

The benefits of the averaging and filtering are illustrated
in Figure 6 (b), showing the resulting estimation error after
filtering and weighting the samples. With the parametersℓ,
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Fig. 7. Estimation error of chip error-based model of PDR.

βm, andα, the estimation window can be changed to tune the
reactivity of the estimator. In this work, we setℓ = 6, β0 =
0.3, β1 = 0.2, β2,...,6 = 0.1, andα = 0.9, as we observed that
this provides a good configuration in our experiments.

C. Performance Evaluation of the Jamming-free Packet De-
livery Estimator

Detection accuracy.We evaluate the performance of our
estimator for different link qualities and symbol estimation
windows. The results are presented in Figure 7. In Figure 7(a),
we see the mean absolute estimation error versus the PDR
for a fixed estimation window size of ten packets. The mean
absolute error remains around a remarkable 5 % on average
across all link qualities and environments (cable, static,and
mobile) compared to typical values of 3–60 % for existing
link quality estimators [14], although these exploit the entire
packet to estimate the PDR.

Detection speed.As we cannot control the reaction timeτ
of the adversary and we are not aware of the reactive jamming
strategy employed, it is in addition crucial that the proposed
model of packet delivery manages to estimate with as few
preamble symbols per packet as possible. Figure 7(b) evaluates
the mean absolute estimate error of the PDR versus a varying
number of preamble symbols used in the estimation for the
static environment. Preamble symbols can be accumulated
over multiple packet transmissions, i.e.,they do no have to be
from the same packet, hence enabling a number of preamble
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symbols larger than8. As we can see the error quickly
decreases with the number of preamble symbols, providing
a useful estimator even for a model that needs to cope with
only a few symbols.

V. CER-BASED JAMMING DETECTION

In this section, we describe our jamming detection scheme
that relies on the packet delivery model introduced in the
previous section. The basic idea is that the receiver computes
two metrics based on the incoming traffic, the observed and
an estimated PDR.

Observed PDR. The observed packet delivery ratio
PDRo(t) at time t is calculated by counting the ratio of
correctly received packets over the total number of transmitted
packets in a sliding observation window:

PDRo(t) =
# of correct packets in[t−W, t]

# of transmitted packets in[t−W, t]
.

To determine the number of correctly received packets, the
receiver checks the FCS of all received packets and, if
correct, increments a counter. Determining the total number
of transmitted packets at the receiver must take into account
that a reactive jammer might successfully jam all SFDs of
the transmitted packets, thus preventing any successful packet
synchronization at the receiver. The only reliable information
source is therefore within the preamble since the reactive
jammer is not capable to jam all the preamble symbols.
Therefore, the receiver counts the received preamble symbols
and increments its counter of transmitted packets when at least
one symbol0 is detected within a sliding time window of the
size of the preamble. Note that when facing an extremely fast
reactive jammer, i.e., one that jams close to the sender on any
power elevation over the channel without attempting to decode
the preamble signals, our method might still detect0 symbols
in the payload of packets. We do not attempt to discriminate
those symbols from the preamble symbols as they are still
useful to estimate the PDR. In this case, the attacker would
be forced to fully destroy a packet to erase all0 symbols
to mitigate our jamming detection mechanism, which greatly
sacrifices the energy and stealth benefits of reactive jamming.

The observedPDRo should be calculated over a time
window shorter than the channel coherence time, but suffi-
ciently long to capture enough packets to derive a statistically
relevant average. We have experimented with different values
in the cable, static and mobile environments. A window size
of around100 data packets has proved to be a good choice
across all environments, while not being highly sensitive to
variations of this parameter. Hence, in this paper, we use a
fixed window size ofW = 100 ms, corresponding to roughly
100 data packets at the actual transmission rate of the sender.

Estimated PDR. The second metric is an estimated PDR
based on the CER metric. As shown in Figure 8, the IEEE
802.15.4 receiver demodulates an incoming signal and at-
tempts to map each demodulated 32-chip sequence to a known
symbol. When the receiver is not synchronized yet, it attempts
to map the incoming sequences to symbol0. This is done
with hard-decision decoding, that is, the receiver checks if the
Hamming distance of the received chip sequence is smaller
than a threshold value. This threshold value (4 for our receiver)

De- 
modulation 

Chip-to-
Symbol 

Symbol-to-
Bits 

Binary Data 
To PPDU 

4 Bit 
Symbol 

32 Chip 
Sequence 

Modulated 
Signal 

250 kb/s 2 Mchip/s 

Chip Errors per Symbol 

Fig. 8. Chip errors in the preamble symbols are determined during the
chip-to-symbol mapping of the receiver.

is usually significantly below the mean Hamming distance of
the symbols to prevent the receiver to synchronize on noise.
To calculate a statistically relevant CER, the receiver averages
the Hamming distances of multiple preamble symbols. We
stress that the calculated average is not constrained to include
only preamble symbols from a single packet. For example,
when a jammer is reacting very quickly and jams symbols at
positions2 to 8 in the preamble, the received chip sequences
2 to 8 are not accounted for the statistics because, due to
chip flipping, their Hamming distance becomes larger than
the hard decoding threshold and these symbols are hence not
interpreted as0. Similarly, when the link conditions are poor, a
receiver might miss multiple symbols in a preamble. However,
we do not require to detect any other field of the packet like
the SFD or FCS, enabling our approach to detect a broader
range of jamming attacks.

After receiving enough0 symbols, the estimated PDR is
calculated as

PDRe = PDRwa,

using the weighted average PDR defined in Section IV-C.
Jamming detection.We define a heuristic hypothesis test

based on the relative difference∆ between the estimated and
observed PDR

∆ =
PDRe − PDRo

PDRe

.

Let us define the null hypothesisH0 and the alternative
hypothesisH1 as

H0 :“Normal transmission,”

H1 :“Jammed transmission.”

Then the test is as follows:

acceptH1, if ∆ > ǫ,

stay withH0, if ∆ ≤ ǫ,

where ǫ represents a tolerance level that directly affects the
false positive and false negative detection rates. LetΛ(ǫ) be
the sum of the false positive and false negative detection rates
for a given PDR:

Λ(ǫ) = P (H0 | jammer on) + P (H1 | jammer off).

For small tolerance level valuesǫ, the jamming detection is
more sensitive at the price of a higher false negative rate
P (H1 | jammer off). For higher values ofǫ, the false negative
rate may be reduced, but, in turn, at the price of a higher false
positive rateP (H0 | jammer on). We evaluate the impact of
ǫ on the jamming detection performance in more detail in the
next section.
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Fig. 9. Impact ofǫ on jamming detection performance.

VI. EVALUATION

Our evaluation focuses on quantifying the detection perfor-
mance in terms of false positives and false negatives under
realistic wireless fading channel conditions. For this purpose,
we benchmark our detection algorithm on software-defined
radios with real traffic over the air. The jammer in our
experiments reacts and hits the SFD of any transmitted packet.
This jamming strategy is of particular interest because packet
synchronization fails and thus existing detection mechanisms
are unable to detect this type of reactive jammers.

A. Impact of Tolerance Levelǫ

We first consider the impact of the tolerance levelǫ of
the hypothesis test on the detection performance. Figure 9
highlights the sum of the false positives and negativesΛ(ǫ)
for varying values ofǫ and different jamming rates. Here,
we define the jamming rate as the percentage of packets
that the reactive jammer hits with interference and causes a
packet loss. A jamming rate below 100 % may for example
occur when the jammer fails to detect some packets because
it experiences a momentary deep fade during a transmitted
signal or when the jamming signal at the receiver is too weak
to reliably destroy all packets. Figure 9(a) and Figure 9(b)
are obtained with a PDR estimation window of10 and 50
packets, respectively. After only10 packets, the hypothesis
test is capable of determining the correct hypothesis with high
probability, withΛ(ǫ) below10% given that the jamming rate
is above60%. We see that the optimumǫ, defined as the level
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Fig. 10. Comparison of jamming detection error performanceversus true
PDR (PDR estimation window size of10 packets).

at which Λ(ǫ) is minimized, is dependent on the jamming
rate but fairly independent of the estimation window size. We
also note that the minimum ofΛ(ǫ) for a given jamming
rate is reduced for larger window sizes. The robustness of
the optimumǫ when changing to otherǫ values increases as
jamming rates become higher and is very high for jamming
rates close to100%. For a window size of50, choosing a value
of ǫ around0.3, the jamming detector achieves false detection
ratesΛ(ǫ) below 8%, and regardless of the jamming rates
employed. Therefore, jamming detection is not sensitive to
the jamming rate when the parameterǫ is selected according
to this range. This result is remarkable becausethe receiver
is able to detect the jammer even if it is unaware of both the
reactive jamming strategy and the jamming rate.

B. Jamming Detection Performance

Finally, we evaluate the false positive rate for an optimal
detector that tunes the tolerance levelǫ to minimize the sum
of errors. We compare our results with an SNR-based model;
we include this model here because it is the second best metric
in our evaluation in Section III, and previous works [1], [7]
have proposed to use the SNR to detect reactive jamming. For
a fair comparison, we also apply a fifth degree polynomial
regression fit to the empirical data in Figure 4(d). We note
that we are evaluating the SNR-based detection under best
conditions when the (reactive jamming) attacker does not add
power to the symbols in the preamble, as required by the
receiver to perform jamming-free measurements of the SNR.
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Fig. 11. Comparison of jamming detection error performanceversus true
PDR (PDR estimation window size of50 packets).

Figures 10 and 11 show the results of these experiments for
packet delivery estimation window sizes of 10 and 50 packets,
respectively. Figures 10(a) and 11(a) display the error rate for
our approach using the chip error rate to estimate the PDR
while Fig. 10(b) and 11(b) show the performance observed
when relying on the SNR-based model. The horizontal axis
represents the true PDR. Our approach significantly outper-
forms the SNR-based model in terms of detection accuracy
for all the range of PDR.

In addition, we observe two major performance trends. First,
while links with a high PDR tend to provide good detection
performance, low quality links exhibit higher detection errors.
The reason is the following: the mean absolute estimation
error (of around5%, see Figure 7(a)) across all PDRs has a
relatively higher impact on links with a lower PDR. Therefore,
the relative difference∆ is reduced and estimation errors in the
PDR for low quality links are more likely to be mis-interpreted
as jamming. Furthermore, it is inherently more challengingto
differentiate between losses caused by bad channel conditions
and those by jamming since the gap between the true PDR
and the estimated PDR under jamming is greatly reduced.

The second trend relates to the jamming rate. While reactive
jammers that manage to hit all packets are detected with low
or even no error at all, jammers with a jamming rate below
100% are harder to distinguish. Again, this is due to the
problem of distinguishing jammed packets from those lost
because of bad channel conditions. This is why the false
negatives may increase up to5–10% depending on the link

channel conditions. We also note that the false positive rate is
identical for all jamming rates as it represents the errors when
no jammer is present.

We believe that these two trends are not problematic issues
in real-world applications. Low quality links tend not to
be used by higher-layer application protocols because they
provide poor system performance. Therefore, detecting jam-
ming on these links is generally not required. Furthermore,
attackers that miss to react to a high percentage of the data
traffic have limited negative impact on the communication.
For example, if an attacker jams only50% of the packets, it
means that the remaining50% are still delivered successfully.
With a retransmission mechanism in place, a jamming rate
of merely 50 % is thus not sufficient to effectively block the
communication over a link.

VII. R ELATED WORK

To the best of our knowledge, this work is the first to
provide a jamming detection scheme that can cope with
sophisticated reactive jamming attacks targeting packet syn-
chronization. Strasser et al. [7] propose a jamming detection
scheme for sensor networks that enables a per-packet detection
of reactive (single-bit) jamming. The main idea is to identify
the cause of individual bit errors within a packet by analyzing
the RSS of each received bit in the packet. A limitation of
this approach is that it relies on a successful packet syn-
chronization. Therefore it is not able to detect SFD jamming
attacks because decoded MPDU symbols are unavailable at the
receiver due to the lack of synchronization. A further challenge
is to localize bit errors in a packet. The authors propose to
either usea priori knowledge of the bit stream sent, the use
of error detecting/correcting codes, with drawbacks such as
additional overhead and transmission costs, or to acquire the
error position based on limited, short-range sensor node wiring
in the form of wired node chains. Since our approach is not
relying on error positions in a packet, it does not suffer from
these restrictions.

Xu et al. [1] propose the usage of the PDR along with either
RSS or device location information as a consistency check
for proactive and reactive jamming detection. In the first case,
jamming is detected if the PDR is low although the RSS is
high. In the second case, the PDR is low although the sender–
receiver distance is small. Unlike our work, these techniques
are not able to detect reactive jamming that targets the physical
layer header, or jammers that affect only a few bits per packet.
The reason is that the techniques require the measurement of
the RSSduring a packet, which in turn requires to detect a
packet first using the SFD. If an attacker destroys the PHY
header, the RSS value cannot be measured reliably.

Xuan et al. [15] describe a method to identify so-called
trigger nodesthat are in the vicinity of reactive jammers and
thus trigger jamming. This information is subsequently used
to exclude such nodes and route around jammed areas. The
authors assume that the detection of jamming on a per-packet
level is feasible without error, such that the challenges treated
in this work are avoided.

Chiang and Hu [16] leverage the properties of orthogonal
spreading codes to achieve jamming detection and mitigation.
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In contrast to our work, their mode of operation is CDMA
and the codes are long and confidential such that the attacker
cannot interfere with all transmissions. We assume DSSS
systems with public (or compromised) codes.

There are also approaches orthogonal to our work that
mitigate jamming attacks on higher layers. For example, Richa
et al. [17] devise and simulate a MAC protocol, ANTIJAM, to
resolve unintentional and malicious interference originated by
an adaptive jammer that can determine whether the channel
is currently idle or used. Our work differs from this approach
since it operates at the physical layer rather than the MAC.
However, works as [17] can complement our contribution,
since they would benefit from the simplicity and robustness
of our approach that can detect with high probability reactive
jammers that target the preamble symbols.

Finally, Qin et al. [18] suggest that the CER might be a bet-
ter channel quality indicator than signal power based metrics,
particularly in the presence of interference. However theydo
not propose any estimator nor do they evaluate the feasibility
to estimate the PDR from chip error measurements as we do
in our work. In our previous work [14], [19], we have shown
how chip error based models of packet delivery compare to
traditional models of packet delivery. This manuscript comple-
ments our previous works by showing how these novel estima-
tors can be used to detect reactive jamming considering only
limited information from the preamble. Preliminary results of
this work have appeared in a short paper [20]. This article is
an extension of our previous work providing more key insights
on the performance of different metrics that rely on the
information from the preamble to estimate the PDR as well as
a much more thorough analysis with additional experiments to
understand the detection performance under various parameter
configurations and environmental conditions. Additionally, we
compare the performance of our proposed detection scheme
with a scheme that relies on the RSS.

VIII. C ONCLUSIONS

We have proposed a novel approach to detect sophisticated
reactive jamming attacks that target any part of a packet
transmission. Our approach is based on an estimation of the
packet delivery probability during the signal synchronization
phase of a packet transmission, which makes it suitable to
detect even jammers that target the physical layer header of
packets. We have analyzed the accuracy of different preamble-
based metrics to predict the packet delivery probability and
have shown that the chip error rate (CER) in the received
preamble symbols is the most accurate estimator among the
ones considered. Our experiments under real-world channel
conditions have shown that it is possible to predict the PDR
using the CER derived from just a few symbols in the pream-
ble with a mean absolute estimation error of approximately
5 % across all channel conditions.

Based on this, we have developed a jamming detection
algorithm that compares the estimated delivery probability
with the observed delivery ratio to distinguish between packet
losses caused by jamming and losses due to bad channel
conditions. Our technique is able to detect reactive jammers
that jam all packets on links with a PDR above 0.3 without
any false positive or negative detection errors.
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