
End-to-End Worst-Case Analysis

of Non-FIFO Systems

Technical Report No. 370/08

Jens B. Schmitt, Nicos Gollan, Ivan Martinovic

Distributed Computer Systems Lab (DISCO), University of Kaiserslautern, Germany

Abstract. In this report, delay bounds in data flow systems with non-
FIFO service disciplines are explored. It is shown that conventional net-
work calculus definitions of a service curve are not satisfying under the
assumption of non-FIFO service. Either the definition is too strict to
allow for a concatenation and consequent beneficial end-to-end analy-
sis, or it is too loose and thus results in infinite delay bounds. Hence, a
new definition is proposed and demonstrated to achieve both finite delay
bounds and a concatenation of systems resulting in a favourable end-to-
end analysis. In particular, we show that the celebrated pay bursts only
once phenomenon is retained under non-FIFO service. This is contrary to
a finding by Rizzo and Le Boudec [20]. The reasons for this contradiction
are also discussed.
The new service curve definition preserves the min-plus algebraic ap-
proach known from network calculus at the cost of a loss of tightness
of delay bounds under certain circumstances. This is shown by devising
an alternative method that achieves tight bounds; this method departs
from the algebraic approach. Yet, despite the loss of tightness the alge-
braic approach bears a number of advantages. Most important, it allows
to deal elegantly with the frequent situation of a mixture of FIFO and
non-FIFO servers, eventually resulting in better delay bounds.

Keywords: Network calculus, non-FIFO, pay bursts only once, con-
catenation property.

1 Introduction

1.1 Motivation

Network calculus is a min-plus system theory for deterministic queuing systems
which builds on the calculus for network delay in [9], [10]. The important con-
cept of service curve was introduced in [1, 6, 11, 16, 21]. The service curve based
approach facilitates the efficient analysis of tandem queues where a linear scaling
of performance bounds in the number of traversed queues is achieved as elabo-
rated in [8] and also referred to as pay bursts only once phenomenon in [18]. A
detailed treatment of min-plus algebra and of network calculus can be found in
[2] and [7], [18], respectively.



Network calculus has found numerous applications, most prominently in the
Internet’s Quality of Service proposals IntServ and DiffServ, but also in other
scenarios like wireless sensor networks [15, 22], switched Ethernets [25], Systems-
on-Chip (SoC) [5], or even to speed-up simulations [14]. Hence, besides queueing
theory it has established as a valuable methodology.

However, with respect to a single flow it is common in network calculus anal-
yses to assume that FIFO scheduling is applied. This is restrictive, since for
many real systems this assumption cannot always be made: In several studies
of Internet traffic it has been shown that packet reordering is a frequent event
(see for example [3, 13]). According to these studies this is due to a growing
amount of parallelism on a global (use of multiple paths) as well as on a local
(device) level. In particular, for scalability reasons routers often contain a com-
plex multi-stage switching fabric which cannot ensure to preserve the order of
arrivals at its output. Furthermore, the use of link aggregation, where multiple
physical lines are aggregated into a single virtual link, may often lead to non-
FIFO behavior [4]. Also, in wireless networks, reordering of packets is a frequent
phenomenon due to the use of retransmissions and sliding window protocols to
recover from transmission failures. As a last example, let us mention wireless
sensor networks in which packet scheduling decisions may be based on the data
values contained in the packets following a data-centric paradigm. Under such
circumstances hardly anything may be assumed about the scheduling order, let
alone FIFO behaviour.

So, from an application perspective there is enough demand to warrant an
investigation on how network calculus can be extended towards the analysis of
non-FIFO systems. Immediate questions that come up are:

– Can existing network calculus concepts be carried over to the non-FIFO
case?

– Is an efficient end-to-end analysis still possible?
– What is the cost in terms of performance bounds compared to pure FIFO

systems?

1.2 Related Work

To the best of our knowledge, there is amazingly little existing work on the
treatment of non-FIFO systems in the context of network calculus. Remarkably,
in his pioneering paper [9], Cruz briefly showed how to derive a delay bound
for a single work-conserving server under a general scheduling assumption (com-
prising any non-FIFO behaviour) based on the observation that the maximum
backlogged period can be bounded given that traffic is regulated. Similar results
can also be found in [7]. Yet, the multiple node case is not treated in these.

In [17], Le Boudec and Charny investigate a non-FIFO version of the Packet
Scale Rate Guarantee (PSRG) node model as used in DiffServ’s Expedited For-
warding definition. They show that for a single node case the delay bound from
the FIFO case still applies while it does not for a specific two node case. They
leave more general concatenation scenarios for further study.

2



The most directly related work to ours was done by Rizzo and Le Boudec [20].
They investigate delay bounds for non-FIFO guaranteed rate nodes and show
that a previously derived delay bound [12] is not valid in the non-FIFO case
(against common belief). Furthermore, they derive a new delay bound based on
network calculus results. Their delay bound does not exhibit the nice pay bursts
only once phenomenon any more. Based on sample path arguments they argue
that their bound is tight and thus conclude “pay bursts only once does not hold
for non-FIFO guaranteed rate nodes”. By contrast, in this report we show that
non-FIFO systems still possess a concatenation property and that Rizzo and Le
Boudec’s conclusion is not valid in the general case (their tightness proof contains
a simplifying assumption which however is crucial and does restrict generality).

1.3 Contributions

In this work, we extend network calculus concepts, in particular the service curve
definition, such that FIFO scheduling is no longer a necessary assumption when
performing an end-to-end worst-case delay analysis. In particular, the following
contributions are made:

– We demonstrate the difficulties with existing service curve definitions under
non-FIFO scheduling.

– We introduce a new service curve definition that enables a true end-to-end
analysis for non-FIFO systems.

– We show that, contrary to literature results, the pay bursts only once phe-
nomenon still holds for non-FIFO systems.

– We discuss the tightness of the new bounds and show how to apply them in
mixed FIFO and non-FIFO scenarios.

2 Preliminaries on Network Calculus

As network calculus is built around the notion of cumulative functions for input
and output flows of data, the set F of real-valued, non-negative, and wide-sense
increasing functions passing through the origin plays a major role:

F =
{

f : R
+ → R

+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0
}

.

In particular, the input function F (t) and the output function F ′(t), which
cumulatively count the number of bits that are input to, respectively output
from, a system S, are in F . Throughout the report, we assume in- and output
functions to be continuous in time and space. Note that this is not a general
limitation as there exist transformations between discrete and continuous models
[18].

There are two important min-plus algebraic operators:

Definition 1. (Min-plus Convolution and Deconvolution) The min-plus convo-
lution and deconvolution of two functions f, g ∈ F are defined to be

(f ⊗ g) (t) = inf
0≤s≤t

{f(t − s) + g(s)} ,

3



(f ⊘ g) (t) = sup
u≥0

{f(t + u) − g(u)} .

It can be shown that the triple (F ,∧,⊗), where ∧ denotes the minimum operator
(which ought to be taken pointwise for functions), constitutes a dioid [18]. Also,
the min-plus convolution is a linear operator on the dioid (R ∪ {+∞},∧, +),
whereas the min-plus deconvolution is not. These algebraic characteristics result
in a number of rules that apply to those operators, many of which can be found
in [18], [7]. Let us now turn to the performance characteristics of flows which
can be bounded by network calculus means:

Definition 2. (Backlog and Virtual Delay) Assume a flow with input function
F that traverses a system S resulting in the output function F ′. The backlog of
the flow at time t is defined as

b(t) = F (t) − F ′(t).

Assuming FIFO delivery, the virtual delay for a bit input at time t is defined as

vd(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t + τ)} .

Next, the arrival and departure processes specified by input and output functions
are bounded based on the central network calculus concepts of arrival and service
curves:

Definition 3. (Arrival Curve) Given a flow with input function F , a function
α ∈ F is an arrival curve for F iff

∀t, s ≥ 0, s ≤ t : F (t) − F (t − s) ≤ α(s) ⇔ F = F ⊗ α.

A typical example of an arrival curve is given by an affine arrival curve γr,b (t) =
b + rt, t > 0 and γr,b (t) = 0, t ≤ 0, which corresponds to token-bucket traffic
regulation.

Definition 4. (Service Curve – SC) If the service provided by a system S for
a given input function F results in an output function F ′ we say that S offers a
service curve β iff

F ′ ≥ F ⊗ β.

For continuous functions F and β this is equivalent to the following condition

∀t : ∃s : F ′(t) ≥ F (s) + β(t − s).

A typical example of a service curve is given by a so-called rate-latency function
βR,T (t) = R(t − T ) · 1{t>T}, where 1{cond} is 1 if the condition cond is satisfied
and 0 otherwise.

A number of systems fulfill a stricter definition of service curve [18], which
is useful as it permits certain derivations that are not feasible under the more
general service curve model:

4



Definition 5. (Strict Service Curve – S2C) Let β ∈ F . System S offers a strict
service curve β to a flow, if during any backlogged period of duration u the output
of the flow is at least equal to β(u). A backlogged period of duration u at time t

is defined by the fact that ∀s ∈ (t − u, t] : b(s) > 0.

Note that any node satisfying S2C also satisfies SC, but not the other way
around. For example, nodes operating under a delay-based scheduler and guar-
anteeing that a work unit arriving at any time t will not leave the node later than
t+T for some fixed T > 0, are known to provide a service curve δT = ∞·1{t>T}

[18]. Yet, such a variable latency node does not provide δT as a strict service
curve. In fact, it does not provide any strict service curve apart from the trivial
case β = 0. On the other hand, there are still many schedulers that offer strict
service curves, for example most of the generalized processor sharing-emulating
schedulers, e.g. PGPS [19] offer a strict service curve of the rate-latency type.

Using those concepts it is possible to derive tight performance bounds on
backlog, virtual delay and output:

Theorem 1. (Performance Bounds) Consider a system S that offers a service
curve β. Assume a flow F traversing the system has an arrival curve α. Then
we obtain the following performance bounds:

backlog: ∀t : b(t) ≤ (α ⊘ β) (0) =: v(α, β),

virtual delay: ∀t : vd(t) ≤ inf {t ≥ 0 : (α ⊘ β) (−t) ≤ 0}

=: h (α, β) ,

output (arrival curve α′ for F ′): α′ = α ⊘ β.

One of the strongest results of network calculus is the concatenation theorem
that enables us to investigate tandems of systems as if they were single systems:

Theorem 2. (Concatenation Theorem for Tandem Systems) Consider a flow
that traverses a tandem of systems S1 and S2. Assume that Si offers a service
curve βi to the flow. Then the concatenation of the two systems offers a service
curve β1 ⊗ β2 to the flow.

Using the concatenation theorem, it is ensured that an end-to-end analysis of a
tandem of servers still achieves tight performance bounds, which in general is
not the case for an iterative per-node application of Theorem 1.

3 Why Conventional Network Calculus Does Not Work
Well for Non-FIFO Systems

Our goal is to depart from the FIFO assumption under which the bound on
the virtual delay in Theorem 1 can be computed. Hence, we are interested in
bounding the real delay which is simply defined as follows:

5



Definition 6. Assume a flow with input function F that traverses a system S
resulting in the output function F ′. The real delay for a bit input at time t and
output at time t′ is defined as

rd(t) = t′ − t.

Note that rd(t) can be in any relation to vd(t) (<, >, =). However, any scheduling
order other than FIFO results in an increase of the bound for the real delay
(obviously, ∀t : vd(t) = rd(t) under FIFO):

Theorem 3. (FIFO is Best-Case Scheduling) With respect to the worst-case
real delay, FIFO scheduling is the best scheduling order as there is no other
scheduling order that achieves a lower worst-case real delay.

Proof. Assume at time t0 a bit which experiences the worst-case real delay is
input to a FIFO system. Now assume we can change the scheduling order of
bits. If the bit is further delayed by scheduling bits that arrived later, then
certainly the real delay of that new scheduling order will be worse. Scheduling
that bit earlier will make the real delay rd(t0) smaller, yet, the bit which was
just ahead of the above bit is now leaving the system when the above bit would
have left, yet that bit must have arrived at time t1 ≤ t0 such that the real delay
of that bit is higher than or equal to the one from the FIFO worst-case bit, i.e.,
rd(t0) ≤ rd(t1).

So, in a certain sense it could be considered a logical break for a worst-case
analysis methodology to assume FIFO scheduling as this actually constitutes a
best-case assumption. This can be seen as a further motivation for making no
restrictive assumptions on the scheduling order.

As mentioned in the previous section, one basically has two general options
for node modelling: SC and S2C. In the next two subsections we demonstrate
that both options do not result in achieving satisfying bounds for the real delay.

3.1 Using Service Curves (SC) for Non-FIFO Systems

As the SC definition bears the advantages that many systems belong to that
class and that it possesses a concatenation property, it is worthwhile an attempt
to apply it also in the case of non-FIFO systems. Yet, the following example
shows that it is impossible to bound the real delay in non-FIFO systems based
solely on the SC definition:

Example 1. Assume a single node system S which offers a rate-latency service
curve β = β2,1 to a flow F which is constrained by an affine arrival curve α = γ1,1.
Now assume the flow to be greedy, that means F = α and the server to be lazy,
that means F ′ = F ⊗ β. Thus, we obtain

F ′ = α ⊗ β = γ1,1 ⊗ β2,1 = γ1,1 ⊗ γ1,1 ⊗ δT

= (γ1,1 ∧ γ1,1) ⊗ δT = γ1,1 ⊗ δT < γ1,1 = F.

6



Hence, ∀t ≥ 0 : F ′(t) < F (t), or equivalently, ∀t ≥ 0 : b(t) > 0, which means the
system remains backlogged at all times and a certain work unit can be forever
in the system under these circumstances. Thus, the real delay of that work unit
is unbounded. Note that using the standard FIFO assumption, we can of course
bound the virtual delay of the system by ∀t ≥ 0 : vd(t) ≤ 3

2 .

From this example, we see that the SC property is too weak as a concept for
analysing non-FIFO systems.

3.2 Using Strict Service Curves (S2
C) for Non-FIFO Systems

Since, the SC property is too weak in order to derive a delay bound without a
FIFO assumption on the system’s scheduling order, it is interesting to investigate
whether S2C can deal with that situation. In fact, as was already shown by Cruz
[9] (and can also be found in [7] (Lemma 1.3.2)), the intersection point between
an arrival and a strict service curve constitutes a bound on the length of the
maximum backlogged period and thus also a bound on the real delay for such a
system:

Theorem 4. (Real Delay Bound for Single S2C Node) Consider a system S
that offers a strict service curve β. Assume a flow F traversing the system has
an arrival curve α. Then we obtain the following bound on the real delay:

rd(t) ≤ sup{s ≥ 0 : α(s) ≥ β(s)} =: i(α, β).

So, the situation has improved in comparison to the SC case: Based on the single
node result one can conceive, for the multiple node case, an iterative application
of Theorem 4 together with the output bound from Theorem 1. More specifically,
if n S2C non-FIFO nodes, each providing a strict service curve βj, j = 1, . . . , n,
are to be traversed by an α-constrained flow then a bound on the real delay can
be calculated as

rd(t) ≤

n
∑

j=1

i(α ⊘

j−1
⊗

k=1

βk, βj).

Setting for example βj = βR,T , j = 1, . . . , n and α = γr,b this results in

rd(t) ≤
n(b + RT ) + n

2 (n − 1)rT

R − r

Here, we see the typical drawback of additive bounding methods, with the burst
of the traffic being paid n times as well as a quadratic scaling of the bound in
the number of nodes [8, 18]. The key to avoid this behaviour is to perform an
end-to-end analysis based on the concatenation theorem. Yet, as we demonstrate
in the next example S2C does not possess such a concatenation property.

Example 2. (S2C Possesses No Concatenation Property) Assume two systems
S1 and S2, both providing a strict rate-latency service curve βi = β1,1, i = 1, 2,

7



which are traversed in sequence by a flow F . Let F ′
1 and F ′

2 be the output
functions from S1 and S2, respectively. As a candidate strict service curve for
the composite system, we consider β1,2 = β1 ⊗ β2 = β1,2.

We now construct a backlogged period [t1, t2] of the composite system such
that

F ′
2(t2) − F ′

1(t1) < β1,2(t2 − t1).

thereby showing that β1,2 is not a strict service curve for the composite system:
Let t1 = 0 and t2 = 3 and assume the following behaviour of the input and

output function

F (t) =

{

ǫ 0 < t < 2
2ǫ 2 ≤ t ≤ 3

F ′
1(t) =

{

0 0 ≤ t ≤ 1
ǫ 1 < t ≤ 3

F ′
2(t) =

{

0 0 ≤ t ≤ 2
ǫ 2 < t ≤ 3

,

with any ǫ > 0. It is easy to check that the composite system is continuously
backlogged during [0, 3] as well as that each individual system is not violating
its strict service curve property. Nevertheless, for any choice of ǫ < 1 we obtain

F ′
2(3) − F ′

2(0) = ǫ < β1,2(3) = 1,

which shows that β1,2 is not S2C for the composite system (while, of course,
being SC for it). In fact, extending the example appropriately it can be shown
that the only strict service curve that can be guaranteed by the composite sys-
tem is the trivial case β = 0. This can be seen by making ǫ arbitrarily small
and alternating between backlogged and idle periods of the individual systems
sufficiently often. Another way to view this, is that the backlogged period of a
composite system cannot be bounded based on the individual systems providing
a strict service curve.

So, from this discussion we can conclude that S2C is too strict as a concept
in order to allow for tight bounds under the non-FIFO assumption, since it
possesses no concatenation property for the multiple node case.

The bottom line of this section is that we need a new node model: It should
allow for calculating a bound on the real delay and, yet, also have a concatenation
property in order to avoid loose additive bounds.

4 Introducing a New Service Curve Model:
Sufficiently Strict Service Curve

In this section, we introduce a new node model that allows to bound the delay
over a tandem of non-FIFO systems well as it possesses a concatenation property.
Central to the new service curve definition is the notion of a maximum dwell
period.

8



Definition 7. (Maximum Dwell Period) The maximum dwell period at time t,
denoted as D(t), is the length of the interval [t0(t), t], i.e., D(t) = t−t0(t), where
t0(t) is the arrival time of the oldest work unit in the system at time t under all
possible scheduling orders. If the system is empty at time t, then by definition
t0(t) = t and D(t) = 0.

For a single node with a simple buffer, the maximum dwell period at time t

equals the backlogged period at time t; consequently, t0(t) equals the start of the
last backlogged period. The scheduling order that achieves the maximum dwell
period for such a simple buffer is LIFO. However, the maximum dwell period of
more complex systems can be shorter than the backlogged period of the system,
which for complex systems is generally unbounded (see Section 3.2, Example 2).

Furthermore, note that the maximum dwell period is always within a back-
logged period of the system, even if the system is not employing the scheduling
order leading to the maximum dwell period. This can be understood by assum-
ing that each work unit is time-stamped at entrance to the system and observing
that exchanging those time stamps between work units always allows to achieve
the maximum dwell period without affecting the length of the backlogged period
of the system.

Using the notion of the maximum dwell period, the new service curve defi-
nition can be introduced:

Definition 8. (S3C) Given a system S with input function F and output func-
tion F ′, β ∈ F is a sufficiently strict service curve (S3C) if for any t ≥ 0 it
applies that

F ′(t) ≥ F (t − D(t)) + β(D(t)).

Before we apply that definition, let us discuss its relation with the other node
models.

Remark 1. (Relation with Other Node Models) We have the following implica-
tions respectively non-implications:

S2C ⇒ S3C ⇒ SC

SC 6⇒ S3C 6⇒ S2C

These relations can be readily checked:

1. S2C ⇒ S3C can be seen from the fact that the maximum dwell period is
certainly within a backlogged period of the system.

2. S3C ⇒ SC can be seen from the fact that the required existence of time s

in the definition of SC is fixed in the S2C definition to be t − D(t).

3. SC 6⇒ S3C is obvious, because it does not have to apply that s = t − D(t).

4. S3C 6⇒ S2C is obvious, because S3C makes no statement for arbitrary
backlogged periods, but only for the specific backlogged periods [t−D(t), t].

9



Since S2C implies S3C, all schedulers known to deliver strict service curves also
deliver sufficiently strict service curves. Hence, S3C is not too restricting as a
node model. Even more so, note that S3C also applies for delay-based schedulers
which guarantee any work unit to be served within a time period T after their
arrival, because such a node can be abstracted as providing a sufficiently strict
service curve δT . This can be understood by realising that at a given time t any
work unit that entered the system before t − D(t) must have left the system
again (for any scheduling order). Formally,

∀ǫ > 0 : F ′(t) ≥ F (t − D(t) − ǫ).

As we assume F to be continuous and because D(t) ≤ T according to the
guarantee of a delay-based scheduler, this translates into

F ′(t) ≥ F (t − D(t)) = F (t − D(t)) + δT (D(t)),

which constitutes δT as a sufficiently strict service curve for a delay-based schedul-
ing node. Note that the node does not have to be FIFO, though its non-FIFO
behaviour is restricted due to the delay guarantee: basically, a reordering can
actually only lead to scheduling work units ahead of their deadline. On the other
hand, if a delay-based scheduling node is abstracted as providing δT as SC, then
it must be assumed FIFO to calculate its delay bound.

As we show in the next two theorems, the S3C definition achieves for non-
FIFO systems the two attractive features known from conventional network cal-
culus with FIFO systems: a concatenation property and a bound on the delay,
yet now on the real instead of the virtual delay.

Theorem 5. (Concatenation Theorem for Tandem S3C Systems) Consider a
flow with input function F that traverses a tandem of systems S1 and S2. Assume
that Si offers a sufficiently strict service curve βi, i = 1, 2 to the flow. Then the
concatenation of the two systems offers a sufficiently strict service curve β1⊗β2

to the flow F .

Proof. Let the output function of system S1 (respectively S2) be denoted as F ′

(respectively F ′′). Let D1(t) and D2(t) denote the maximum dwell periods at
time t for S1 and S2. We look at the composite system at some time t. First, we
use the S3C property for S2, i.e., we have

F ′′(t) − F ′(t − D2(t)) ≥ β2(D2(t)). (1)

Next, we bring in the S3C property for S2 at time t − D2(t)

F ′(t − D2(t)) − F (t − D2(t) − D1(t − D2(t))) ≥ β1(D1(t − D2(t)). (2)

Adding Equ. (1) and Equ. (2) and by denoting t01(t) (respectively t02(t)) as the
arrival time of a work unit which experiences the maximum dwell period at time
t for S1 (respectively S2), we obtain

F ′′(t) − F (t − D2(t) − D1(t − D2(t)))

10



≥ β1(D1(t − D2(t)) + β2(D2(t))

= β1(t
0
2(t) − t01(t

0
2(t))) + β2(t − t02(t))

≥ inf
t0
1
(t0

2
(t))≤s≤t

{β1(s − t01(t
0
2(t))) + β2(t − s)}

= inf
0≤u≤t−t0

1
(t0

2
(t))

{β1(u) + β2(t − t01(t
0
2(t)) − u)}

= (β1 ⊗ β2)(t − t01(t
0
2(t)))

= (β1 ⊗ β2)(D2(t) + D1(t − D2(t))).

Hence, what remains to be shown to make the proof complete is that

D1,2(t) = D2(t) + D1(t − D2(t)),

where D1,2(t) denotes the maximum dwell period at time t for the composite
system. We proof this in the following lemma. So, finally we arrrive at

F ′′(t) − F (t − D1,2(t)) ≥ (β1 ⊗ β2)(D1,2(t)),

which constitutes β1 ⊗ β2 as a sufficiently strict service curve for the composite
system.

Lemma 1. For the scenario and the notations from Theorem 5 it applies that

D1,2(t) = D2(t) + D1(t − D2(t)). (3)

Proof. Let us assume there is no backlog at S2 at time t, that means D2(t) = 0
and the maximum dwell period at time t of the composite system is governed
by S1:

D1,2(t) = D1(t) = D2(t) + D1(t − D2(t)).

Hence Equ. (3) is satisfied for that case.
Now assume there is a non-zero backlog at S2 at time t, that means D2(t) > 0.

If there is no backlog at S1 at time t − D2(t), then D1(t − D2(t)) = 0 and the
maximum dwell period of the composite system is governed by S2 (since S1 can
have only newer work units at time t as the older ones were already cleared at
time t − D2(t)):

D1,2(t) = D2(t) = D2(t) + D1(t − D2(t)).

Hence Equ. (3) is also satisfied for that sub-case. Now assume S1 is backlogged
at time t − D2(t), that means D1(t − D2(t)) > 0. Thus, we can easily construct
a scheduling order such that we achieve a dwell period of D2(t) + D1(t−D2(t))
(we just need to make sure that the oldest work unit does not leave S2 before t,
this is possible no matter where that work unit is located since S2 is backlogged
at time t) and therefore

D1,2(t) ≥ D2(t) + D1(t − D2(t)). (4)

11



What remains to be shown is that

D1,2(t) ≤ D2(t) + D1(t − D2(t)). (5)

Assuming that Equ. (5) does not hold implies that there is a scheduling such
that a work unit with a dwell period larger than D2(t) + D1(t−D2(t)) is in the
composite system at time t. Assume the dwell period for that work unit to be
D2(t) + D1(t − D2(t)) + ǫ, for some ǫ > 0. Such a work unit cannot be in S2

because otherwise (since D1(t − D2(t)) > 0)

D2(t) ≥ D2(t) + D1(t − D2(t)) + ǫ > D2(t)

If such a work unit were in S1, it would obviously have to be there at t − D2(t)
already, yet this would mean

D1(t − D2(t)) ≥ D2(t) + D1(t − D2(t)) + ǫ − D2(t)

> D1(t − D2(t))

which completes the contradiction and shows that Equ. (5) must hold, so that,
altogether, for all cases it applies that

D1,2(t) = D2(t) + D1(t − D2(t)).

Next, we show how to bound the real delay for an S3C node.

Theorem 6. (Real Delay Bound for an S3C System) Consider a system S that
offers a sufficiently strict service curve β. Assume a flow F traversing the system
has an arrival curve α. Then we obtain the following bound on the real delay:

rd(t) ≤ sup{s ≥ 0 : α(s) ≥ β(s)} = i(α, β).

Proof. As above we denote the maximum dwell period at time t by D(t) and
the arrival time of the work unit corresponding to D(t) by t0(t). We can make
the following observation for the backlog of the system at time t:

b(t) = F (t) − F ′(t)

= F (t) − F (t0(t)) − (F ′(t) − F (t0(t)))

≤ α(D(t)) − β(D(t)).

Here, we used the arrival curve as well as the S3C property from the assumptions.
This relation implies that

α(D(t)) ≥ β(D(t)) + b(t).

This now allows to bound the maximum dwell period at time t, by the following
observation:

D(t) ≤ sup{0 ≤ s ≤ t : α(s) ≥ β(s) + b(t)}

≤ sup{0 ≤ s ≤ t : α(s) ≥ β(s)}

≤ sup{s ≥ 0 : α(s) ≥ β(s)}.

= i(α, β).

12



Since the bound is independent of t, it applies for all t and, furthermore, since
a bound over all maximum dwell periods is certainly a bound for all real delays,
the proof is completed.

By combining the results from Theorem 5 and 6, we can, for the multiple node
case involving n non-FIFO nodes, each providing an S3C βj , j = 1, . . . , n, which
are traversed by an α-constrained flow, derive a bound on the real delay as

rd(t) ≤ i(α,

n
⊗

j=1

βj).

Looking at the same special case as in Section 3.2, i.e., βj = βR,T and α = γr,b,
we obtain the following bound on the real delay

rd(t) ≤
b + nRT

R − r
,

which improves considerably on the additive bound based on S2C from Section
3.2. We can perceive again the pay burst only once principle as the burst term
appears only once as well as a linear scaling in the number of nodes. We provide
some more quantitative observations in Subsection 4.1.

The delay bound argues over the maximum dwell period, under more knowl-
edge about the non-FIFOness it could possibly be improved. Such an approach
should parallel the characteristic that under FIFO scheduling the horizontal de-
viation actually allows to tighten the delay bound. We leave this for further
study.

Other performance bounds besides the delay bound and further results, like
output bound, backlog bound, etc., can be carried over from conventional net-
work calculus as S3C implies SC. In fact, it is only the delay bound that is sen-
sitive on the scheduling order. However, often in applications the delay bound is
also the figure of most interest.

4.1 Numerical Experiments

To give some feeling for the improvements achievable by using the S3C-based
end-to-end analysis compared to an additive bounding based on S2C we provide
some numerical experiments. In addition, we demonstrate what cost is incurred
for releasing the FIFO assumption. For these numerical experiments we use
simple settings: as arrival curve for the flow to be analysed we assume a token
bucket γr,b where we set r = 10[Mbps] and b = 5[Mb] unless we vary the rate r

to achieve a certain utilization; for the service curves of the nodes to be traversed
we use a rate-latency function βR,T with R = 20[Mbps] and T = 0.01[s]. Unless
we use the number of nodes as a primary factor in the experiments we assume
n = 10 nodes to be traversed by the flow under investigation.

13



Comparison of Different Service Curve Models In this first set of nu-
merical experiment we investigate how end-to-end (S3C) and additive (S2C)
analysis compare to each other. In Figure 1 the two methods are shown for a
varying number of nodes (from 2 to 20). To exhibit the quadratic scaling of the
S2C-based method we also provide results for the same experiment with a larger
number of nodes to be traversed (up to 100) in Figure 2. In both graphs it is
obvious that the end-to-end analysis facilitated by the S3C definition is highly
superior and scales linearly with the number of nodes.

0 5 10 15 20

0
2

4
6

8
1
0

1
2

Number of nodes

D
e
la

y
 b

o
u
n
d
 [
s
]

S3C

S2C

Fig. 1. Delay bounds under different service curve models depending on the number
of nodes traversed.

A different view on the relative performance of S3C- and S2C-based bound-
ing methods is provided in Figure 3. Here, the acceptable utilizations for a given
delay bound are shown for both methods. This information can be used for ad-
mission control purposes. Again, as can be clearly seen, the S3C-based method
outperforms the S2C-based method by far, especially for lower delay bounds.

FIFO vs. Non-FIFO Delay Bounds In the next set of numerical experi-
ments, we investigate the cost of releasing the FIFO assumption in terms of
delay bounds. For that purpose, we vary the utilization by increasing the sus-
tained rate of the traffic flow under investigation (while at the same time scaling
the bucket depth accordingly). As we can observe from Figure 4, only for higher
utilizations there is a significant difference between the FIFO and non-FIFO de-
lay bounds (at least for the S3C case). The bottom line is that only for highly
utilized systems it is necessary to enforce a FIFO behaviour, as far as delay

14



0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

5
0

Number of nodes

D
e
la

y
 b

o
u
n
d
 [
s
]

S3C

S2C

Fig. 2. Exposing the quadratic scaling of the additive bound based on S2C.

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay bound [s]

P
o

s
s
ib

le
 u

ti
liz

a
ti
o

n

S3C

S2C

Fig. 3. Possible utilizations for a target delay bound under S2C and S3C.

15



bounds are concerned. For systems with lower utilizations, optimizations such
as for example link aggregation or multi-stage switching fabrics do not incur a
high cost in terms of worst-case delay bounds.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

0
4

0
6

0
8

0
1

0
0

Utilization

D
e

la
y
 b

o
u

n
d

 [
s
]

S3C

S2C

FIFO

Fig. 4. FIFO vs. non-FIFO delay bounds depending on the utilization of the system.

4.2 A Note on “Pay bursts only once does not hold for non-FIFO
guaranteed rate nodes” [20]

In the previous section, we established that the “pay bursts only once” phe-
nomenon also holds for non-FIFO systems. This seems to be in sharp contrast
to a literature result by Rizzo and Le Boudec [20]. They claim (in their article’s
title) that “pay bursts only once does not hold for non-FIFO guaranteed rate
nodes”. While they use a different node model which makes a direct comparison
with our bounds somewhat difficult, we argue that their claim is not valid in the
general case.

Some preliminaries are necessary: A guaranteed rate (GR) node is a server
that guarantees an upper bound on the departure time of any given packet of a
flow, depending on the packet’s arrival time and the bounds of preceding packets.
To this end, it uses the concept of a guaranteed rate clock (GRC) for any given
packet pj of length lj , where pj is the jth packet arriving at the node, A(pj) its
arrival time, and R the server’s allocated rate for the flow:

GRC(pj) =

{

0, j = 0
lj
R

+ max
{

A(pj), GRC(pj−1)
}

, j > 0

16



A GR node guarantees that any packet pj is delivered by the time GRC(pj)+ e,
where e depends on the actual packet scheduling algorithm.

Note that this definition restricts the non-FIFO behavior of a GR node.
In general non-FIFO service, a packet may remain in a server as long as that
server is backlogged. This is not possible in the GR case, since every packet gets
a finite GRC value when it is received; thus reordering of packets is limited,
potentially giving way to less pessimistic bounds than under pure service curve
considerations.

In [20], essentially an additive delay bound based on a fundamental relation-
ship between GR nodes and service curves as well as a per-node delay bound
for non-FIFO GR nodes is derived. Under a token-bucket arrival curve γr,b and
assuming a propagation delay τ i between nodes i and i+1 as well as a maximum
packet size lmax, the bound in [20] for a tandem of n servers is given as

d[20] = n
b

R
+

rlmaxn (n − 1)

2R2
+

r

R

n
∑

k=1

k−1
∑

i=1

ei +

n
∑

i=1

(

ei + τ i
)

.

As can be seen, the burst is paid n times and a quadratic scaling in n is
incurred, as it is typical for additive bounding methods. [20] claims that the
bound is tight in general and thus concludes that “pay bursts only once does
not hold for non-FIFO GR nodes”.

Yet, a counter-example on the tightness of the bound in [20] can be con-
structed by choosing the following parameters: n = 2, R = 1, ei = 0, r = 0,
b = 2, τ i = 0, and all packets being of length 1. Then d[20] = 4, however it is
fairly obvious that dtight = 3 is a valid delay bound for that scenario: In the
worst case, the two packets of the flow arrive at the same time and one is served
within one time unit and immediately transferred to the second node; the sec-
ond packet is served in another time unit while the first is served by the second
node; now the second node is free to serve the second packet in another time
unit, amounting for the second packet in 3 time units delay altogether. Changing
the order of the packets cannot matter here, as they are arriving at the same
time anyway. Any spreading of the two packets can only result in a lower delay.
This example can be generalized to a series of n ≥ 2 nodes, where the tight delay
bound dtight = n + 1, but d[20] = n b

R
= 2n. This shows that the delay bound

from [20] is not tight in the general case. In their tightness proof, Rizzo and
Le Boudec make the following assumption: “In order to simplify the notation,
we assume that r = R ...” Under this assumption their delay bound is actually
tight, yet for any scenario r < R it is not tight any more. Thus they restrict
generality by that seemingly innocent assumption.

A more comprehensive example for the untightness of the bound is shown
in Figure 5. With this example it shall be demonstrated more clearly why the
condition that ρ = r actually is necessary for the bound to be tight. This example
recreates the scenario from the original paper, but drops the assumption that
ρ = r. Instead, it uses ρ = 0.5 and r = 1. According to the original bound,
this results in d[20] = 25.5[tu]; however, the example of a worst case sample
path shown in the figure demonstrates that a packet can at most spend 22tu

17



Fig. 5. Demonstration of the untighness of the delay bound presented in [20]. Shown
are the buffers of three GR nodes over time. Numbers in brackets are the watched
packet’s (shaded) GRC. Buffer contents are only shown as long as they are relevant to
the sample path.

in the system. The construction of that sample path follows the same principle
as used in [20]: each time the watched packet pw (shaded in the figure) leaves
a server, it gets sent along with the maximum number of packets, so that the
receiving server has maximum leeway when reordering packets to maximize the
watched packet’s GRC. That value is shown in brackets. The original example
used r = R, so each server could bunch the watched packet with a full burst of
the arrival, thus fulfilling the first term of the delay bound

(

M σ
r

)

; however, in
an unsaturated system, the GRC property may force a server to send pw before
a full burst from the input can be propagated down to it:

This happens at server 2 at t = 14. The packet pw has been stamped with a
GRC of 12 when it was received, and thus is guaranteed to be sent by the time
GRC2(pw) + e = 14 (GRCi(p

j) is the GRC assigned to the jth packet at the
ith server). Note that the packet numbering is per-server. However, to pay a full
burst, the input would have to burst at t = 13, by which time it is only allowed
to send 3 full packets (assuming packetization). This means that instead of a
full burst of 4 packets, pw can only be sent along with at most 3 packets, with
all other queued packets at server 2 having already been sent due to their GRCs
having expired. This means that GRC3(pw) = 19, guaranteeing the packet’s
delivery to the output at or before t = 21, so together with the transmission
delay τ , it will be delivered after having spent at most t = 22 time units in the
system.

If the input would wait for a full burst, server 2 would have depleted its queue
by the time the first packets from the input arrived, and the same situation would
arise again.

18



Figure 6 shows a comparison between the delay bounds obtained from the
S3C-based method and [20]. Up to a very high utilization, S3C yields less con-
servative bounds than [20], although the S3C node model is much less stringent
than the GR node model. This again demonstrates the untightness of the bound
from [20] for utilizations below 1.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0

Utilization

D
e

la
y
 b

o
u

n
d

 [
s
]

S3C

[20]

Fig. 6. Comparison of delay bounds from S3C and [20]. The parameter settings are:
R = 20, T = ei = 0.01,τ i = 0, r = ρR, b = r

2
for a tandem of n = 10 servers, with ρ

being the utilization.

5 Are S
3
C-based Delay Bounds Tight?

In this section, we discuss the question whether delay bounds for non-FIFO
systems based on the S3C node model are tight. As we will see, they are not tight
in general. We demonstrate this by devising an alternative approach, called the
self-adversarial method, to compute a tight delay bound for non-FIFO systems
based on a technique we introduced in [24]. It is shown that S3C-based delay
bounds can be larger than those derived by the self-adversarial method. We
explore under what conditions this is actually the case.

It has to be noted that by using the self-adversarial method one departs
from the elegant min-plus algebraic approach of network calculus, which results
in a number of drawbacks. Maybe most important, in mixed FIFO and non-
FIFO scenarios this prohibits to benefit from the knowledge about the FIFO
behaviour of some of the nodes. As shown below, this drawback can be avoided
by adhering to the algebraic approach of network calculus with S3C. So, we are

19



facing an interesting trade-off between algebraic characteristics and tightness of
the bounds.

5.1 The Self-adversarial Method

In [24], we dealt with the problem of computing tight delay bounds for a net-
work of arbitrary (non-FIFO) aggregate multiplexers. In that work we still made
a FIFO-per-microflow assumption. Nevertheless, there is a way to exploit the
method proposed in [24] for the problem at hand by transforming the single
flow non-FIFO problem into an arbitrary aggregate multiplexing problem. More
specifically, we split the original flow (with arrival curve α) into two sub-flows:
one with arrival curve α1 = γ0,ǫ and the other one with arrival curve α2 = α−γ0,ǫ

(where we assume that ǫ > 0 is chosen such that α2 ≥ 0). Both flows traverse the
same servers as the original flow. This transformation is illustrated in Figure 7.

...

...

Fig. 7. Transformation of the single flow non-FIFO problem into an arbitrary aggregate
multiplexing problem.

Now [24] allows us to find the maximum left-over end-to-end service curve
under arbitrary multiplexing, i.e., under any possible interleaving of the two sub-
flows. To that end, the problem is reformulated as an optimization problem which
can be solved using standard methods. In [24], it is shown that this approach
achieves tight delay bounds. So, in our case we can proceed with the following
steps:

1. Computation of the left-over service curve for sub-flow 1 according to [24]:
βl.o.

1 .
2. Computation of the delay bound for sub-flow 1:

d1 (ǫ) = h
(

α1, β
l.o.
1

)

.
3. Letting the delay bound for sub-flow 1 go to the limit: d = limǫ→0 d1 (ǫ).

What is effectively done here, is to assume that a part of the flow pretends to
be an adversary to the other part of the flow when it comes to competition for
the forwarding resource. This is why we call this the self-adversarial method.
Taking this behaviour to the limit, i.e., making the adversary part as large as
possible, gives us a real delay bound as experienced by a single bit. Note that
the computation of the horizontal deviation in step 2 implicitly makes a FIFO
assumption for sub-flow 1. Yet, in the limit this is not a problem, because a flow
consisting of a single bit can obviously not experience any reordering any more.

20



5.2 S
3
C-based vs. Self-Adversarial Method

First let us investigate by a simple example when the self-adversarial method
can arrive at a better bound than the S3C-based method. Assume a token-
bucket arrival curve γr,b for the flow under investigation, which traverses two
servers providing strict rate-latency service curves βRiTi

, i = 1, 2. According to
the S3C-based method the delay bound then becomes:

dS3C = T1 + T2 +
b + r (T1 + T2)

min {R1, R2} − r
.

For the self-adversarial method we first split the flow into two sub-flows:
subflow 1 with γ0,ǫ and subflow 2 with γr,b−ǫ as arrival curves. Proceeding with
the steps as described in the previous section we obtain the following delay
bound:

1. Computation of the left-over service curve for sub-flow 1:

βl.o.
1 = β

min{R1,R2}−r,T1+T2+
b−ǫ+rT1

min{R1,R2}−r
+

rT2
R2−r

.

2. Computation of the delay bound for sub-flow 1:

d1 (ǫ) = T1 + T2 +
b − ǫ + rT1

min {R1, R2} − r
+

rT2

R2−r

.

3. Letting the delay bound for sub-flow 1 go to the limit (ǫ → 0):

dSA = T1 + T2 +
b + rT1

min {R1, R2} − r
+

rT2

R2 − r
.

A simple inspection shows that dSA < dS3C if R2 > R1. Hence, this demon-
strates that the S3C-based method is not tight under these circumstances. Sim-
ilar problems with purely min-plus algebraic methods are reported and exten-
sively discussed in [24]. These problems are inherent in using the min-plus alge-
braic approach. In particular, by the application of a min-plus convolution the
knowledge on the order of servers is lost. Yet, this order is crucial to derive tight
delay bounds.

So, with respect to the tightness of the computed bounds, the self-adversarial
method is superior to the S3C-based method. However, there are also a number
of drawbacks for the self-adversarial method:

– The computational effort for the self-adversarial method can become very
high. In particular, if arrival and service curves are piecewise linear func-
tions then a set of optimization problem needs to be solved first before the
final left-over service curve can be constructed. The cardinality of that set
grows exponentially in the number of nodes traversed and may quickly be-
come prohibitive. For details see [23]. In contrast, the S3C-based method is
computationally very cheap.

21



– The applicability of the self-adversarial method is restricted to S2C servers.
This requirement is crucial for setting up the optimization problem in [24]
and a relaxation towards only assuming S3C seems infeasible. The scope
of the S3C-based method is also larger with respect to the shape of arrival
and service curves that may be used. According to [24], the self-adversarial
method can only be applied to piecewise-linear concave arrival and convex
service curves. Such a restriction does not apply for the S3C-based method.

– The self-adversarial method is essentially a computational method rather
than an analytical method yielding closed-form expressions. Thus, if one is
interested in deriving equations for the bounds which may then be used
further on, the self-adversarial method might be difficult to apply whereas
the S3C-based method can usually provide closed-form expressions.

– As the last, but practically perhaps most important drawback, we note that
the self-adversarial method can deal with scenarios where we face a mixture
of FIFO and non-FIFO servers only by assuming non-FIFO behaviour of all
servers. In contrast, with the S3C-based method, we show in Subsection 5.3
how the knowledge of some servers being FIFO can be leveraged to provide
better delay bounds.

Besides these drawbacks of the self-adversarial method we also want to make the
point that often the S3C-based method computes the same delay bound as the
self-adversarial method or stays at least very close to it. For all cases in which
subsequent servers are not faster than their predecessors, the S3C-based delay
bound is the same as the one computed by the self-adversarial method. We now
investigate the critical case where subsequent servers become faster and faster
by some numerical experiments in more detail:

In particular, we assume for a tandem of n rate-latency servers that each
server’s rate is increased by a constant amount ∆ over its predecessors rate,
i.e. it applies that Rk = Rk−1 + ∆, k = 2, . . . , n. This constitutes a very bad
condition for the S3C-based method as the min-plus convolution swallows the
knowledge of these rate increases and consequently accounts for the burstiness
increases with the overall minimum rate instead of the correct minimum rates
of the servers that actually “see” the respective burstiness increases. By raising
the rate increase ∆ we can worsen the situation for the S3C-based method.

Figure 8 shows a comparison between the results of the self-adversarial method
and S3C for varying utilizations ρ ∈ [0.05; 0.95], with n = 10, R1 = 20, ∆ = 1,
T = 0.01, and an arrival curve α = γρR,ρ R

2
. It is clear that both methods dete-

riorate at high utilizations; however, the difference between the delay bounds is
very small.

In a further experiment, we investigate the dependence of the delay difference
on the rate increase ∆. Figure 9 demonstrates the behavior of the delay bound
difference (in % of the delay bound for the self-adversarial method) for several
rate increase values from 0.1 to 100. The fixed parameters are the same as in
the previous experiment; also shown is the analytical limit of the delay bound
difference. It can be seen that the difference is limited to well under 20%, even
under extreme rate increases and a high bottleneck utilization.

22



For the interested reader, the calculation of the limiting behavior for the
delay bound ratio ρ is as follows:

ρ(∆) =
dS3C

β,n (∆)

dSA
β,n(∆)

=
b + nT · min {Ri}

min {Ri} − r
·

1

b
R1−r

+ nT + rT

n
∑

i=1

1
Ri−r

Using that
Ri = R1 + (i − 1)∆

and

lim
∆→∞

min {Ri} = R1,

lim
∆→∞

n
∑

i=1

(

1

Ri − r

)

=
1

R1 − r
,

the limit can be calculated as

lim
∆→∞

ρ(δ) =
b + nR1T

b + rT + nT (R1 − r)
.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0

Utilization

D
e

la
y
 b

o
u

n
d

 [
s
]

S3C

Self-adversarial

Fig. 8. Investigating the untightness of the S3C-based delay bound.

23



Bottle
neck utiliz

ation

0.0

0.2

0.4

0.6

0.8

1.0

R
ate increase (log10)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

D
e
la

y
 b

o
u
n
d
 d

iffe
re

n
c
e
 [%

]

0

5

10

15

20

Fig. 9. Investigating the untightness of the S3C-based delay bound for various rate
increments. The rate increase is on a logarithmic scale, for any axis value y, the plot
shows the value for a rate increase of 10y . The dotted line in the rear plane shows the
upper limit for the delay bound as the rate increase ∆ approaches infinity.

5.3 Mixed FIFO and non-FIFO Scenarios

The goal in mixed FIFO and non-FIFO scenarios should be to exploit the knowl-
edge about some nodes being FIFO. Yet, at the same time concatenation should
be used as much as possible. Therefore, the idea is to build two sections of the
network one of which is purely FIFO and the other one purely non-FIFO. These
two sections can then be analyzed separately with respect to the delay bound:
for the FIFO section, the horizontal deviation can be used, whereas for the non-
FIFO section, the intersection point must be used. However, in general S3C

elements do not commute with each other due to the fact that maximum dwell
periods may become different under commutation, i.e., in general for a tandem
of two systems D1,2 (t) 6= D2,1 (t) (see also Lemma 1).

Fig. 10. Reordering of FIFO and non-FIFO elements. Subfigure a) shows an S3C node
followed by a variable latency node. Subfigure b) shows the situation with switched
service elements.

24



A practically important case of a mixed scenario is that we have a mixture
of non-FIFO variable latency elements and FIFO S3C elements. For this case
we have an interesting result on how these elements commute with each other:

Theorem 7. (Shifting Variable Latency Elements ahead of S3C Nodes) Let us
assume a system I as illustrated in Figure 10 a), i.e. a node a providing a S3C β

followed by a variable latency node b providing a S3C δτ . System I’s maximum
dwell period at time t shall be denoted as Da,b (t). If we now alter the order of
nodes a and b, i.e. we switch to system II (illustrated in Figure 10 b)) with
maximum dwell period Db,a (t) , then it applies that

max
t≥0

{Db,a(t)} ≥ max
t≥0

{Da,b(t)} .

Remark 2. Theorem 7 implies that it is always possible to shift a variable la-
tency element ahead of an S3C node as this only worsens the largest maximum
dwell period and thus the real delay bound. Thus shifting never compromises
the bounds, although it may loosen them. For a fixed latency element, i.e., a
node providing δτ as minimum and maximum S3C, it can be established that
Da,b(t) = Db,a(t) and thus any movement preserves the worst-case bounds.

Proof. In the proof we use the notation as illustrated in Figure 10 and further
use the system descriptors I, II as superscripts to avoid ambiguity for quantities
that play a role in both systems where it seems appropriate.

Assume the largest maximum dwell period in system II is taken on at time
tmax, i.e.

Da,b (tmax) = max
t≥0

{Da,b (t)} .

Surely, Db (tmax) = τ , since otherwise the maximum dwell period could easily
be prolonged. Hence, according to Lemma 1 we obtain

Da,b (tmax) = τ + DI
a (tmax − τ)

If we now turn to system II, we know that the input to node a satisfies the
following:

Fa (t) = F ′
b (t) ≥ Fb (t − τ) = F (t − τ) .

Now, one way to do the scheduling in node b for system II is to delay every
bit exactly by τ time units, i.e. we effectively set F ′

b (t) = Fb (t − τ), which in
turn means that

F II
a (t) = F (t − τ) = F I

a (t − τ) .

So, under this fixed latency scheduling at node b, node a in system II sees
exactly the same input as node a in system I shifted by τ time units. This then
implies that

DII
a (t) = DI

a (t − τ) ,

25



and thus (using the fact that, if node b has work at time t then Db (t) = τ ,
as well as Lemma 1)

Da,b (tmax) = τ + DI
a (tmax − τ)

= τ + DII
a (tmax)

= DII
a (tmax) + Db

(

tmax − DII
a (tmax)

)

= Db,a (tmax) .

So, under the assumption of node b providing a fixed latency, which represents
one of its possible scheduling options, we have created a schedule for system II

that achieves the largest possible maximum dwell period in system I. In fact,
by using the higher degree of freedom we have for scheduling at node b, i.e.
scheduling some data ahead of its deadline, we can worsen the situation for node
a in system II by providing more data items for reordering at node a. Such a
higher reordering potential can achieve a higher maximum dwell period, which
justifies the inequation in the statement of the theorem.

A practically very relevant incarnation of the special case dealt with in The-
orem 7, and also presented in [20], is to model a router as consisting of (1) a
non-FIFO switching fabric that is traversed with a certain maximum latency τ ,
i.e. it provides δτ as S3C, and (2) an output link which provides a FIFO rate-
latency S3C βR,T . Assuming we have a tandem of n such routers and an arrival
curve γr,b for the flow under investigation, there are basically two ways to derive
a delay bound:

1. Ignore the FIFO behaviour of the output link and do a pure non-FIFO
analysis, which results in the following delay bound

dnon−FIFO = n (T + τ) +
b + rn (T + τ)

R − r
.

2. Use Theorem 7 to build two subsections of the tandem by moving all non-
FIFO latency elements in front of the FIFO elements and analyse the two
subsections separately and add their delay bounds. Doing so, we arrive at
the following delay bound:

dmixed−mode = n (T + τ) +
b + rnτ

R
.

Note that for the pure non-FIFO option it does not matter whether we apply
the self-adversarial or the S3C- based method since under the given assumptions
they compute the same bound. Clearly, the option of building two subsections
is superior since the second term is strictly smaller for r > 0. In Figure 11, this
is shown to be very significant for higher utilizations. Furthermore, the results
for an additive analysis (which can also make use of the FIFO behaviour of the
output links) are shown. For the interest reader, the delay bound for an additive
analysis is calculated as

dadditive = n

(

T + τ +
b

R

)

+
nr

2R
((n − 1)T + (n + 1) τ) .

26



For a utilization of 95%, the additive method even outperforms the pure non-
FIFO analysis, which further demonstrates the benefit of exploiting the knowl-
edge about the FIFO elements.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0
1

2
1

4

Utilization

D
e

la
y
 b

o
u

n
d

 [
s
]

non-FIFO

mixed

additive

Fig. 11. S3C-based mixed mode analysis vs. pure non-FIFO analysis. The fixed pa-
rameters are n = 10, R = 20, T = τ = 0.01, r = ρR, b = r

2
, with ρ being the

utilization.

6 Conclusion

In this report, it was our goal to extend the scope of network calculus towards
non-FIFO systems, as non-FIFO behaviour is a reality in many networking sce-
narios. It turned out that existing service curve definitions are not satisfying
under non-FIFO scheduling: they are either to loose to enable any bounding or
too strict to allow for an efficient end-to-end analysis. Therefore, we introduced
a new service curve definition, S3C, which allows to bound the delay and at the
same time enables an end-to-end analysis. By numerical examples, we showed
that the new analysis based on S3C is far superior to existing methods. S3C

allows to recover the pay bursts only once phenomenon for non-FIFO systems,
which had been disputed to be valid under non-FIFO scheduling in literature.
While the network calculus extension to non-FIFO systems runs smoothly up to
that point, the devil is in the tightness of the new bounds. By devising an alter-
native method we show that the new bounds can be conservative. Investigating
this further shows, however, that they stay very close to the tight bound. Fur-
thermore, adhering to the min-plus algebraic nature of network calculus avoids

27



several drawbacks of the alternative method. In particular, in mixed FIFO and
non-FIFO scenarios this pays off in significantly better delay bounds.

Acknowledgements

We are very grateful to Markus Fidler for insightful discussions and comments
on an early version of this report.

References

1. R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds for flow
control protocols. IEEE/ACM Transactions on Networking, 7(3):310–323, June
1999.

2. F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and
Linearity: An Algebra for Discrete Event Systems. Probability and Mathematical
Statistics. John Wiley & Sons Ltd., 1992.

3. J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering is not patho-
logical network behavior. IEEE/ACM Trans. Netw., 7(6):789–798, 1999.

4. J. M. Blanquer and B. Özden. Fair queuing for aggregated multiple links. SIG-
COMM Comput. Commun. Rev., 31(4):189–197, 2001.

5. S. Chakraborty, S. Kuenzli, L. Thiele, A. Herkersdorf, and P. Sagmeister. Perfor-
mance evaluation of network processor architectures: Combining simulation with
analytical estimation. Computer Networks, 42(5):641–665, 2003.

6. C.-S. Chang. On deterministic traffic regulation and service guarantees: A system-
atic approach by filtering. IEEE Transactions on Information Theory, 44(3):1097–
1110, May 1998.

7. C.-S. Chang. Performance Guarantees in Communication Networks. Telecommu-
nication Networks and Computer Systems. Springer-Verlag, 2000.

8. F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve approach for
the stochastic analysis of networks. In Proc. ACM SIGMETRICS, pages 279–290,
June 2005.

9. R. L. Cruz. A calculus for network delay, Part I: Network elements in isolation.
IEEE Transactions on Information Theory, 37(1):114–131, January 1991.

10. R. L. Cruz. A calculus for network delay, Part II: Network analysis. IEEE Trans-
actions on Information Theory, 37(1):132–141, January 1991.

11. R. L. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE
Journal on Selected Areas in Communications, 13(6):1048–1056, August 1995.

12. P. Goyal, S. S. Lam, and H. M. Vin. Determining end-to-end delay bounds in
heterogeneous networks. Multimedia Syst., 5(3):157–163, 1997.

13. S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Measurement
and classification of out-of-sequence packets in a tier-1 IP backbone. IEEE/ACM
Trans. Netw., 15(1):54–66, 2007.

14. H. Kim and J.C. Hou. Network calculus based simulation: theorems, implementa-
tion, and evaluation. In Proc. IEEE INFOCOM, March 2004.

15. A. Koubaa, M. Alves, and E. Tovar. Modeling and worst-case dimensioning of
cluster-tree wireless sensor networks. In Proc. 27th IEEE International Real-Time
Systems Symposium (RTSS’06), pages 412–421, Rio de Janeiro, Brazil, 2006. IEEE
Computer Society.

28



16. J.-Y. Le Boudec. Application of network calculus to guaranteed service networks.
IEEE Transactions on Information Theory, 44(3):1087–1096, May 1998.

17. J.-Y. Le Boudec and A. Charny. Packet scale rate guarantee for non-fifo nodes. In
Proc. IEEE INFOCOM, pages 23–26, June 2002.

18. J.-Y. Le Boudec and P. Thiran. Network Calculus A Theory of Deterministic
Queuing Systems for the Internet. Number 2050 in Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 2001.

19. A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: The single-node case. IEEE/ACM
Transactions on Networking, 1(3):344–357, June 1993.

20. G. Rizzo and J.-Y. Le Boudec. Pay bursts only once does not hold for non-fifo
guaranteed rate nodes. Performance Evaluation, 62(1-4):366–381, 2005.

21. H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of service
guarantees via service curves. In Proc. IEEE ICCCN, pages 512–520, September
1995.

22. J. Schmitt and U. Roedig. Sensor network calculus - a framework for worst case
analysis. In Proc. Distributed Computing on Sensor Systems (DCOSS), pages 141–
154, June 2005.

23. J. Schmitt, F. Zdarsky, and M. Fidler. Delay bounds under arbitrary multiplexing.
Technical Report 360/07, University of Kaiserslautern, Germany, July 2007.

24. J. Schmitt, F. Zdarsky, and M. Fidler. Delay bounds under arbitrary aggregate
multiplexing: When network calculus leaves you in the lurch... In Proc. IEEE
INFOCOM, April 2008.

25. T. Skeie, S. Johannessen, and O. Holmeide. Timeliness of real-time IP communi-
cation in switched industrial ethernet networks. IEEE Transactions on Industrial
Informatics, 2(1):25–39, February 2006.

29


