
A Self-Adversarial Approah to Delay Analysisunder Arbitrary ShedulingJens B. Shmitt, Hao Wang, and Ivan Martinovi{jshmitt,wang,martinovi}�s.uni-kl.deAbstrat. Non-FIFO proessing of �ows by network nodes is a frequentphenomenon. Unfortunately, the state-of-the-art analytial tool for theomputation of performane bounds in paket-swithed networks, net-work alulus, annot deal well with non-FIFO systems. The problemlies in its onventional servie urve de�nitions. Either the de�nition istoo strit to allow for a onatenation and onsequent bene�ial end-to-end analysis, or it is too loose and results in in�nite delay bounds.Hene, in this paper, we propose a new approah to derive tight boundsin tandems of non-FIFO nodes, the so-alled self-adversarial approah.The self-adversarial approah is based on a previously proposed methodfor alulating performane bounds in feedforward networks [30℄. By nu-merial examples we demonstrate the superiority of the self-adversarialapproah over existing methods for the analysis of non-FIFO tandemsas well as that for low to medium utilizations it even stays lose to or-responding FIFO performane bounds.1 Introdution1.1 MotivationIn the reent past, network alulus [10,25℄ has shown promise as an alternativemethodology, besides lassial queueing theory, for the performane analysis ofpaket-swithed networks. It has found usage as a basi tool for attaking sev-eral important network engineering problems: most prominently in the Internet'sQuality of Servie proposals IntServ and Di�Serv, but also in other environmentslike wireless sensor networks [22,29℄, swithed Ethernets [31℄, Systems-on-Chip(SoC) [8℄, or even to speed-up simulations [21℄, to name a few. Unfortunately, itomes up short in ertain fundamental aspets to really ath on as the systemtheory for the Internet as whih it is sometimes advertised (see for the subtitleand the disussion in the introdution of the book by Le Boude and Thiran[25℄). Two prominent fundamental limitations that an be raised are: (1) its de-terministi nature, and (2) its dependene on strit FIFO proessing of �ows.While still being open to some degree, the �rst issue has been dealt with ex-tensively in literature, and partiularly reent approahes towards a stohastirelaxation of network alulus an, for example, be found in [20,11,16℄. Yet, theseond issue about non-FIFO proessing is still largely unexplored. In the nextsubsetion, we provide an overview of the previous sare work we ould �nd on



this topi. In ontrast, non-FIFO multiplexing between �ows was an intensivesubjet in previous work (see, for example, [30,7℄ and the referenes therein toreent ontributions on the so-alled arbitrary or general multiplexing). In thispaper, we are onerned with the sheduling within a �ow under analysis, so wedeal with the questions when work units are proessed by a node and in whihorder. The �rst question on how a node provides its apaity to a �ow is �exiblyanswered by the network alulus onept of servie urves, while the seondquestion has so far always been answered by assuming a FIFO proessing order.The goal of this paper is to provide a more �exible answer to this questions. Inthe following, we provide some arguments on why besides being of theoretialinterest this issue should be addressed.Assuming that the work units of a �ow under analysis are proessed in FIFOorder onstitutes a logial break for the worst-ase methodology in a ertainsense, as we disuss now. Assume that a �ow traverses a system resulting ina ertain output proess. The real delay1 for a work unit input at time t andoutput at time t′ is simply de�ned as
rd(t) = t′ − t.Any proessing order other than FIFO results in an inrease of the worst-asereal delay; this an be easily seen by the following argument: Assume at time

t0 a work unit whih experienes the worst-ase real delay is input to a FIFOsystem. Now assume we an hange the proessing order of work units. If thework unit is further delayed by sheduling work units that arrived later, thenertainly the real delay of that work unit under the new proessing order willbe worse. Proessing that work unit earlier will make its new real delay rd′(t0)smaller, yet, the work unit whih was proessed just ahead of the above workunit is now leaving the system when the above work unit would have left, yetthat work unit has arrived at time t1 ≤ t0 suh that the new real delay of thatwork unit rd′(t1) is higher than or equal to the one from the FIFO worst-asework unit, i.e., rd(t0) ≤ rd′(t1). So, in this sense FIFO an be viewed as the best-ase assumption on the proessing order of the �ow under analysis. Therefore,it an be seen as onsistent with a worst-ase methodology to release the FIFOproessing assumption.Furthermore, by providing the following real-world examples where non-FIFO behavior is exhibited, we also want to stress the pratial relevane ofthis work:Paket Reordering: In several studies of Internet tra� it has been shownthat paket reordering is a frequent event (see, for example, [4,19℄). Aordingto these studies this is ours beause of the growing amount of parallelism on aglobal (use of multiple paths or parallel links) as well as on a loal (devie) level.In partiular, for salability reasons high-speed routers often ontain a omplexmulti-stage swithing fabri whih annot ensure to preserve the preservationof arrivals at its output. This is due to a ommon design trade-o� where FIFO1 The word real is hosen for the purpose of ontrasting it to the virtual delay, lateron de�ned as delay under FIFO proessing of a �ow.



servie at the input queues is relaxed in order to avoid head-of-line bloking byhoosing from a set of pakets in the input queue (often some window-basedsheme is used). Furthermore, the use of link aggregation, where multiple physi-al lines are aggregated into a single virtual link, may often lead to a non-FIFObehavior [6℄.Content-Dependent Paket Sheduling:As the last example, let us men-tion wireless sensor networks (WSN) where paket sheduling deisions may bebased on the ontents of pakets following a WSN-typial data-entri paradigm.Under suh irumstanes hardly anything an be assumed about the shedulingorder, let alone the FIFO behavior.So, from a methodologial as well as an appliation perspetive there is a learneed for an investigation on how network alulus an be extended towards ananalysis without any FIFO assumptions. Immediate questions that ome up are:� Can the existing network alulus onepts be arried over to the non-FIFOase?� Is an e�ient end-to-end analysis still possible?� What is the ost in terms of performane bounds ompared to pure FIFOsystems?1.2 Related WorkThere is amazingly little existing work on the treatment of non-FIFO systems inthe ontext of network alulus. Remarkably, in his pioneering paper [12℄, Cruzbrie�y showed how to derive a delay bound for a single work-onserving serverunder a general sheduling assumption (omprising any non-FIFO proessingorder) based on the observation that the maximum baklogged period an bebounded given that tra� is regulated. Similar results an also be found in [10℄.Yet, the multiple node ase as well as more general server models are not treatedtherein.In [24℄, Le Boude and Charny investigate a non-FIFO version of the PaketSale Rate Guarantee (PSRG) node model as used in Di�Serv's Expedited For-warding de�nition. They show that the delay bound from the FIFO ase stillapplies in the single node ase while it does not in a spei� two node ase. Theyleave more general onatenation senarios for further study.In [30℄, we dealt with the problem of omputing tight delay bounds for anetwork of arbitrary (non-FIFO) aggregate multiplexers. They show the tightnessof their bounding method by sample path arguments. Yet, in ontrast to theproblem setting in this paper, we still make a FIFO assumption on the proessingorder within a �ow and only allow for non-FIFO behavior between �ows (see thedisussion in the previous subsetion). Bouillard et al. reently provided moreadvaned and general results for the same setting in [7℄, yet nevertheless, theywere still based on FIFO proessing per �ow.To the best of our knowledge, the only previous work that also tries to de-rive end-to-end delay bounds without any FIFO assumptions was done by Rizzoand Le Boude [27℄. They investigate delay bounds for a speial server model,



non-FIFO guaranteed rate (GR) nodes, and show that a previously derived de-lay bound for GR nodes [17℄ is not valid for a non-FIFO ase (against ommonbelief). Furthermore, they derive a new delay bound based on the network alu-lus results. Their delay bound no longer exhibits the nie pay-bursts-only-onephenomenon. Based on sample path arguments, they argue that their boundis tight and thus onlude that �pay bursts only one does not hold for non-FIFO guaranteed rate nodes�. In ontrast, we show that non-FIFO systems maystill possess a onatenation property. This seeming ontradition is disussedin more detail at the very end of this paper.1.3 ContributionsIn this work, the following ontributions are made:� We demonstrate di�ulties with existing servie urve de�nitions under non-FIFO proessing.� We introdue a new approah, alled self-adversarial, that enables a trueend-to-end analysis for non-FIFO systems.� We show that, somewhat ontrary to the results presented in literature, thepay-bursts-only-one phenomenon still holds for non-FIFO systems.2 Preliminaries on Network CalulusNetwork alulus is a min-plus system theory for deterministi queueing systemsthat builds upon the alulus for network delay in [12℄, [13℄. The important on-ept of servie urve was introdued in [2,9,14,23,28℄. The servie urve basedapproah failitates the e�ient analysis of tandem queues where a linear salingof performane bounds in the number of traversed queues is ahieved as elabo-rated in [11℄ and also referred to as pay-bursts-only-one phenomenon in [25℄. Adetailed treatment of min-plus algebra and of network alulus an be found in[3℄ and [10℄, [25℄, respetively.As network alulus is built around the notion of umulative funtions forinput and output �ows of data, the set F of real-valued, non-negative, and wide-sense inreasing funtions passing through the origin plays a major role:
F =

{

f : R
+ → R

+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0
}

.In partiular, the input funtion F (t) and the output funtion F ′(t), whihumulatively ount for the number of work units that are input to, respetivelyoutput from, a system S, are in F . Throughout the paper, we assume in- andoutput funtions to be ontinuous in both time and spae. Note that this is not ageneral limitation as there exist transformations between disrete and ontinuousmodels [25℄.There are two important min-plus algebrai operators:



De�nition 1. (Min-plus Convolution and Deonvolution) The min-plus onvo-lution and deonvolution of two funtions f, g ∈ F are de�ned to be
(f ⊗ g) (t) = inf

0≤s≤t
{f(t − s) + g(s)} ,

(f ⊘ g) (t) = sup
u≥0

{f(t + u) − g(u)} .It an be shown that the triple (F ,∧,⊗), where ∧ denotes the minimum operator(whih ought to be taken pointwise for funtions), onstitutes a dioid [25℄. Also,the min-plus onvolution is a linear operator on the dioid (R ∪ {+∞},∧, +),whereas the min-plus deonvolution is not. These algebrai harateristis resultin a number of rules that apply to those operators, many of whih an be foundin [25℄, [10℄. Let us now turn to the performane harateristis of �ows that anbe bounded by network alulus means:De�nition 2. (Baklog and Virtual Delay) Assume a �ow with input funtion
F that traverses a system S resulting in the output funtion F ′. The baklog ofthe �ow at time t is de�ned as

b(t) = F (t) − F ′(t).The virtual delay for a work unit input at time t is de�ned as
vd(t) = inf {τ ≥ 0 : F (t) ≤ F ′(t + τ)} .So, this is the point where the FIFO assumption sneaks in the network alulusas far as delay is onerned, beause rd(t) = vd(t) for all t only under FIFOproessing of the �ow. We use the usual network alulus terminology of theso-alled virtual delay in ontrast to the real delay, as de�ned above (see Se-tion 1.1). Next, arrival and departure proesses spei�ed by input and outputfuntions are bounded based on the entral network alulus onepts of arrivaland servie urves:De�nition 3. (Arrival Curve) Given a �ow with input funtion F , a funtion

α ∈ F is an arrival urve for F i�
∀t, s ≥ 0, s ≤ t : F (t) − F (t − s) ≤ α(s) ⇔ F = F ⊗ α.A typial example of an arrival urve is given by an a�ne arrival urve γr,b (t) =

b + rt, t > 0 and γr,b (t) = 0, t ≤ 0, whih orresponds to token-buket tra�regulation.De�nition 4. (Servie Curve � SC) If the servie provided by a system S fora given input funtion F results in an output funtion F ′ we say that S o�ers aservie urve β i�
F ′ ≥ F ⊗ β.For ontinuous funtions F and β this is equivalent to the following ondition

∀t ≥ 0 : ∃s ≤ t : F ′(t) ≥ F (s) + β(t − s).



A typial example of a servie urve is given by a so-alled rate-lateny funtion
βR,T (t) = R(t − T ) · 1{t>T}, where 1{cond} is 1 if the ondition cond is satis-�ed and 0 otherwise. Also, nodes operating under a delay-based sheduler andguaranteeing that a work unit arriving at any time t will leave the node at time
t′ ≤ t + T for some �xed T > 0, i.e. ∀t ≥ 0 : rd(t) ≤ T , are known to provide aservie urve δT = ∞ · 1{t>T}. We also all these bounded lateny nodes.Using those onepts it is possible to derive tight performane bounds onbaklog, virtual delay and output:Theorem 1. (Performane Bounds) Consider a system S that o�ers a servieurve β. Assume a �ow F traversing the system has an arrival urve α. Thenwe obtain the following performane bounds:baklog: ∀t : b(t) ≤ (α ⊘ β) (0) =: v(α, β),virtual delay: ∀t : vd(t) ≤ sup

t≥0

inf {τ ≥ 0 : α(t) ≤ β (t + τ)} =: h (α, β) ,output (arrival urve α′for F ′): α′ = α ⊘ β.Here, note again that the delay bound is only a virtual one, meaning that it isbased on the FIFO assumption for the �ow under analysis. One of the strongestresults of the network alulus is the onatenation theorem that enables us toinvestigate tandems of systems as if they were single systems:Theorem 2. (Conatenation Theorem for Tandem Systems) Consider a �owthat traverses a tandem of systems S1 and S2. Assume that Si o�ers a servieurve βi to the �ow. Then the onatenation of the two systems o�ers a servieurve β1 ⊗ β2 to the �ow.Using the onatenation theorem, it is ensured that an end-to-end analysis ofa tandem of servers ahieves tight performane bounds, whih in general is notthe ase for an iterative per-node appliation of Theorem 1.3 Conventional Network Calulus And Non-FIFOSystemsIn this setion, we investigate how the existing network alulus an ope withnon-FIFO systems. The ruial aspet is the node model. We start with thetypial servie urve model as de�ned in the previous setion and then turnto strit servie urves, only to �nd out that both of them enounter problemsunder non-FIFO proessing.3.1 Using Servie Curves (SC) for Non-FIFO SystemsAs the SC de�nition bears the advantages that many systems belong to thatlass and that it possesses a onatenation property, it is worthwhile an attemptto apply it also in the ase of non-FIFO systems. Yet, the following exampleshows that it is impossible to bound the real delay in non-FIFO systems solelybased on the SC de�nition:



Example 1. (SC Cannot Bound the Real Delay) Assume a single node system Swhih o�ers a rate-lateny servie urve β = β2,1 to a �ow F whih is onstrainedby an a�ne arrival urve α = γ1,0. Now assume the �ow to be greedy, that means
F = α and the server to be lazy, that means F ′ = F ⊗ β. Thus, we obtain

F ′ = α ⊗ β = γ1,0 ⊗ β2,1 = γ1,0 ⊗ γ2,0 ⊗ δ1

= (γ1,0 ∧ γ2,0) ⊗ δ1 ≤ γ1,0 ⊗ δ1 < γ1,0 = F.Hene, ∀t ≥ 0 : F ′(t) < F (t), or equivalently, ∀t ≥ 0 : b(t) > 0, whih meansthat the system remains baklogged the entire time. Therefore, without anyassumptions on the proessing order, a ertain work unit an, under these ir-umstanes, be kept forever in the system. Thus, the real delay of that work unitis unbounded. Note that using the standard FIFO proessing assumption, we anof ourse bound the real delay of the system by ∀t ≥ 0 : rd(t) = vd(t) ≤ 3

2
.From this example, we see that the SC property is too weak as a node model foranalyzing non-FIFO systems. Therefore, it is sensible to look for more stringentnode models, as it is done in the following subsetion.3.2 Using Strit Servie Curves (S2C) for Non-FIFO SystemsA number of systems provides more stringent servie guarantees than apturedby SC, ful�lling the so-alled strit servie urve [25℄ (also known as strongservie urve [15,2℄ and related to the universal servie urve onept in [26℄)De�nition 5. (Strit Servie Curve � S2C) Let β ∈ F . System S o�ers a stritservie urve β to a �ow, if during any baklogged period of duration u the outputof the �ow is at least equal to β(u). A baklogged period of duration u at time tis de�ned by the fat that ∀s ∈ (t − u, t] : b(s) > 0.Note that any node satisfying S2C also satis�es SC, but not vie versa. Forexample, a bounded lateny node does not provide δT as a strit servie urve.In fat, it does not provide any S2C apart from the trivial ase β = 0. Onthe other hand, there are many shedulers that o�er strit servie urves; forexample, most of the generalized proessor sharing-emulating shedulers (e.g.,PGPS [26℄, WF2Q [5℄, or round robin shedulers like SRR [18℄, to name a few),o�er a strit servie urve of the rate-lateny type.Now for bounding the real delay under S2C: In fat, as was already shown byCruz [12℄ (and an also be found in [10℄ (Lemma 1.3.2)), the intersetion pointbetween an arrival and a strit servie urve onstitutes a bound on the lengthof the maximum baklogged period and thus also a bound on the real delay forsuh a system:Theorem 3. (Real Delay Bound for Single S2C Node) Consider a system Sthat o�ers a strit servie urve β. Assume a �ow F traversing the system hasan arrival urve α. Then we obtain the following bound on the real delay:

rd(t) ≤ sup{s ≥ 0 : α(s) ≥ β(s)} =: i(α, β).



So, the situation has improved in omparison to the SC ase: Based on the singlenode result one an oneive, for the multiple node ase, an iterative appliationof Theorem 3 together with the output bound from Theorem 1. More spei�ally,if a tandem of n S2C non-FIFO nodes, eah providing a strit servie urve
βj , j = 1, . . . , n, is to be traversed by an α-onstrained �ow then a bound on thereal delay an be alulated as

rd(t) ≤
n

∑

j=1

i(α ⊘

j−1
⊗

k=1

βk, βj).Setting for example βj = βR,T , j = 1, . . . , n and α = γr,b this results in
rd(t) ≤

n(b + RT ) + n
2
(n − 1)rT

R − r
. (1)Here, we see a typial drawbak of additive bounding methods, with the burstof the tra� being paid n times as well as a quadrati saling of the boundin the number of nodes [11,25℄. The key to avoid this behavior is to performan end-to-end analysis based on a onatenation theorem. Yet, as known anddemonstrated in the next example, S2C does not possess suh a onatenationproperty.Example 2. (S2C Possesses No Conatenation Property) Assume two systems

S1 and S2, both providing a strit rate-lateny servie urve βi = β1,1, i = 1, 2,whih are traversed in sequene by a �ow F . Let F ′
1 and F ′

2 be the outputfuntions from S1 and S2, respetively. As a andidate strit servie urve forthe omposite system, we onsider β1,2 = β1 ⊗ β2 = β1,2.We now onstrut a baklogged period [t1, t2] of the omposite system suhthat
F ′

2(t2) − F ′
2(t1) < β1,2(t2 − t1).thereby showing that β1,2 is not a strit servie urve for the omposite system:Let t1 = 0 and t2 = 3 and assume the following behavior of the input andoutput funtion

F (t) =

{

ǫ 0 < t < 2
2ǫ 2 ≤ t ≤ 3

, F ′
1(t) =

{

0 0 ≤ t ≤ 1
ǫ 1 < t ≤ 3

,

F ′
2(t) =

{

0 0 ≤ t ≤ 2
ǫ 2 < t ≤ 3

,with any ǫ > 0. It is easy to hek that the omposite system is ontinuouslybaklogged during [0, 3] as well as that eah individual system is not violatingits strit servie urve property. Nevertheless, for any hoie of ǫ < 1 we obtain
F ′

2(3) − F ′
2(0) = ǫ < β1,2(3) = 1,whih shows that β1,2 is not S2C for the omposite system (while, of ourse,being SC for it). In fat, by extending the example appropriately it an be



shown that the only strit servie urve that an be guaranteed by the ompositesystem is the trivial ase β = 0. This an be seen by making ǫ arbitrarily smalland alternating between baklogged and idle periods of the individual systemssu�iently often. Another way to view this, is that the baklogged period of aomposite system annot be bounded based on the individual systems providinga strit servie urve.4 The Self-Adversarial ApproahIn this setion, we devise an approah, alled the self-adversarial method, toompute a tight delay bound for non-FIFO systems based on a tehnique thatwas introdued in [30℄.4.1 The Self-Adversarial MethodAs brie�y disussed in Setion 1.2, in [30℄, we proposed a tehnique for omputingtight delay bounds in the network of arbitrary (non-FIFO) aggregate multiplex-ers, yet we still made a FIFO proessing order assumption per �ow. So, thistehnique is not diretly appliable when releasing all FIFO assumptions andbesides arbitrary multiplexing also assumes arbitrary sheduling within a �ow.Nevertheless, there is a way to exploit the proposed method for the problem athand by transforming the arbitrary sheduling problem into an arbitrary aggre-gate multiplexing problem. More spei�ally, we split the original �ow, with thearrival urve α, into two sub-�ows: one with the arrival urve α1 = γ0,ǫ and theother one with the arrival urve α2 = α − γ0,ǫ. Both �ows traverse the sameservers as the original �ow. This transformation is illustrated in Figure 1.
...

...Fig. 1. Transformation of the pure non-FIFO problem into an arbitrary aggregatemultiplexing problem.Now the method from [30℄ allows us to �nd the maximum left-over end-to-endservie urve under arbitrary multiplexing, i.e., under any possible interleavingof the two sub-�ows. To that end, the problem is reformulated as an optimizationproblem that an be solved by using standard methods. In [30,7℄, it is shownthat this approah ahieves tight delay bounds. So, in our ase we an proeedwith the following steps:



1. Computation of the left-over servie urve for sub-�ow 1 aording to [30℄:
βl.o.

1 .2. Computation of the delay bound for sub-�ow 1: d1 (ǫ) = h
(

α1, β
l.o.
1

).3. Letting the delay bound for sub-�ow 1 go to the limit: d = limǫ→0 d1 (ǫ).What is e�etively done here, is to assume that a part of the �ow pretends to bean adversary to the other part of the �ow when it omes to ompetition for theforwarding resoures. This is why we all it the self-adversarial method. Takingthis behavior to the limit, i.e., making the adversary part as large as possible,gives us a real delay bound as experiened by a single (in�nitesimally small)work unit.We remark that the omputation of the horizontal deviation in step 2 im-pliitly makes a FIFO assumption for sub-�ow 1. Yet, in the limit this is nota problem beause a single work unit provides no degrees of freedom for theproessing order any more.Note that for the splitting of the original �ow into two sub-�ows we assumedthat ǫ > 0 is hosen suh that α2 ≥ 0. In fat, for some arrival urves this maynot be possible. More preisely, if α(t) is ontinuous at t = 0 (e.g., a onstantrate arrival urve), then the splitting desribed is not feasible. In suh ases, theoriginal arrival urve should be shifted to the left by some small amount ∆ andset to zero for t ≤ 0. The approah is then performed on this new (stritly larger)arrival urve. To �nd the delay bound under the original arrival urve, one lets
∆ → 0. We deided to neglet this (rarely ourring) tehniality in the abovedesription of the self-adversarial method in order not to (further) ompliateit.4.2 Self-Adversarial vs. Additive Bounding MethodLet us investigate by a simple example how the self-adversarial method worksand also ompare it to an additive bounding based on S2C. Assume a token-buket arrival urve γr,b for the �ow under investigation (b > 0), whih traversestwo servers providing strit rate-lateny servie urves βRiTi

, i = 1, 2. Aordingto the additive bounding based on S2C the delay bound then beomes:
dAD = T1 + T2 +

b + rT1

R1 − r
+

b + r (T1 + T2)

R2 − r
.For the self-adversarial method we �rst split the �ow into two sub-�ows:sub�ow 1 with γ0,ǫ and sub�ow 2 with γr,b−ǫ as arrival urves. Proeeding withthe steps desribed in the previous setion we obtain the following delay bound:1. Computation of the left-over servie for sub-�ow 1 aording to [30℄:

βl.o.
1 = β

min{R1,R2}−r,T1+T2+
b−ǫ+rT1

min{R1,R2}−r
+

rT2
R2−r

.2. Computation of the delay bound for sub-�ow 1:
d1 (ǫ) =

ǫ

min {R1, R2} − r
+ T1 + T2 +

b − ǫ + rT1

min {R1, R2} − r
+

rT2

R2 − r
.



3. Letting the delay bound for sub-�ow 1 go to the limit (ǫ → 0):
dSA = T1 + T2 +

b + rT1

min {R1, R2} − r
+

rT2

R2 − r
.A simple inspetion shows that dSA ≤ dAD , where equality only holds if

b = 0∧ (T1 = 0∨ r = 0), whih are strong restritions. Hene, this demonstratesthat the additive method is not tight under most irumstanes. Similar problemswith purely min-plus algebrai methods are reported and extensively disussedin [30℄. These problems are inherent in using the min-plus algebrai approah.In partiular, by the appliation of a min-plus onvolution the knowledge on theorder of servers is lost. Yet, this order is ruial to derive tight delay boundsfor non-FIFO systems. The min-plus algebrai approah automatially mapsa tandem of system to the worst-ase order it ould be in (see [30℄ for moredisussions along this line).So, with respet to the tightness of the omputed bounds, the self-adversarialmethod is superior to the additive method. A potential drawbak for the self-adversarial method is that the omputational e�ort for the self-adversarial methodan beome very high. In partiular, if arrival and servie urves are pieewise-linear funtions then a set of optimization problem needs to be solved �rst beforethe �nal left-over servie urve an be onstruted aording to [30℄ (in [7℄ a moree�ient and provably tight approah is proposed, on whih the self-adversarialmethod ould also be based). The ardinality of that set grows exponentially inthe number of nodes traversed and may quikly beome prohibitive. For detailssee [30℄, or even better [7℄, whih also demonstrates the problem of omputing atight delay bound under arbitrary multiplexing in general feedforward networksto be NP-hard.We also remark that the self-adversarial method requires S2C servers (as inother ases like, e.g., �xed priority shedulers or arbitrary multiplexing senar-ios). This requirement is ruial for setting up the optimization problem in [30℄and a relaxation towards only assuming SC seems infeasible. This means, in par-tiular, that bounded lateny nodes annot be analyzed. Similarly, aording to[30℄, the self-adversarial method an only be applied to pieewise-linear onavearrival and onvex servie urves. Suh a restrition does not apply, in priniple,to the additive bounding method.While the tightness of the self-adversarial method is �inherited� from [30℄, itan also be understood in the original system. In partiular, if the proessingorder applied is to always hoose the work unit that has entered the network last(assuming work units are time-stamped when they enter the network) then weonjeture that the bound an atually be ahieved. This proessing order hasalso been oined shortest-in-system (SIS) in the realm of adversarial queueingtheory [1℄. If only one node is traversed, then SIS beomes LIFO and learly on-stitutes the worst-ase proessing order. In multi-node senarios, we onjeturethat SIS produes a worst-ase sample path if greedy arrivals (exatly follow-ing the arrival urve) and lazy servers (exatly following the servie urve) areassumed.



As the last remark, we note that if there is also ross-tra� from other �owswe an �rst apply [30℄ to derive a left-over servie urve for the �ow of inter-est and then apply the self-adversarial method to arrive at tight bounds underarbitrary multiplexing and sheduling, i.e., a ompletely non-FIFO senario.5 Numerial ExperimentsTo give some feeling for the improvements ahievable by using the self-adversarialapproah ompared to an additive bounding based on S2C we provide somenumerial experiments. In addition, we demonstrate what ost is inurred whenreleasing the FIFO assumption. For these numerial experiments we use simplesettings: as arrival urve for the �ow to be analyzed we assume a token buket
γr,b where we set r = 10[Mbps] and b = 5[Mb] (unless we vary the rate r toahieve a ertain utilization); for the servie urves of the nodes to be traversedwe use a rate-lateny funtion βR,T with R = 20[Mbps] and T = 0.01[s]. Unlesswe use the number of nodes as a primary fator in the experiments we assume
n = 10 nodes to be traversed by the �ow under investigation.5.1 Comparison of Self-Adversarial and Additive BoundingIn this �rst set of numerial experiments we investigate how the self-adversarial(SA) and additive (AD) bounding methods ompare to eah other. In Figure2(a) the two methods are shown for a varying number of nodes (from 2 to 20). Toemphasize the bad saling of the additive method we also provide results for thesame experiment with a larger number of nodes to be traversed (up to 100) inFigure 2(b). In both graphs it is obvious that the end-to-end analysis failitatedby the self-adversarial approah is highly superior and sales linearly with thenumber of nodes, whereas the additive bounding method sales quadratiallywith the number of nodes traversed and thus beomes a very onservative boundquikly.A di�erent view on the relative performane of self-adversarial and additivemethods is provided in Figure 2(). Here, the aeptable utilizations (apturedby the ratio of the the rate for the �ow under investigation and the servie rateof the tandem, i.e., r

R
) for a given delay bound are shown for both methods.This information an be used for admission ontrol purposes. Again, as an belearly seen, the self-adversarial method outperforms the additive bounding byfar, espeially for lower delay bounds. For example, if we desire a delay boundof 2s, then an admission ontrol using the additive bounding would return withan infeasible reply, whereas under the self-adversarial approah we ould admittra� up to ≈ 80% of the servie rate.5.2 FIFO vs. Non-FIFO Delay BoundsIn the next set of numerial experiments, we investigate the ost of releasingthe FIFO assumption in terms of delay bounds. For that purpose, we vary the
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(b) Exposing the quadrati saling of theadditive bound.
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(d) FIFO vs. non-FIFO delay boundsdepending on the utilization.Fig. 2. Comparison of self-adversarial approah to other analysis methods under dif-ferent metris. Sub�gures (a) and (b) show results for 50% utilization.utilization by inreasing the sustained rate of the tra� �ow under investigation(while at the same time saling the buket depth proportionally). As we anobserve from Figure 2(d), only for higher utilizations there is a signi�ant di�er-ene between the FIFO and non-FIFO delay bounds if using the self-adversarialbounding approah. On the other hand, if the additive bounding was used, theost of releasing FIFO assumptions is high, whih may be why FIFO behavioris often assumed a neessary ondition to ahieve good delay bounds [27℄. Yet,under strit servie urve assumptions and using the self-adversarial approahthis assumption is not neessarily required any more.From an appliation perspetive, the bottom line is that only for highlyutilized systems it is neessary to enfore a FIFO behavior, as far as delaybounds are onerned. For systems with lower utilizations, optimizations suhas for example link aggregation or multi-stage swithing fabris do not inur ahigh ost in terms of worst-ase delay bounds.
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