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Abstract

Today’s wireless sensor networks (WSN) focus on
energy-efficiency as the main metric to optimize. However,
an increasing number of scenarios where sensor networks
are considered for time-critical purposes in application sce-
narios like intrusion detection, industrial monitoring, or
health care systems demands for an explicit support of per-
formance guarantees in WSNs and, thus, in turn for a re-
spective mathematical framework. In [1], a sensor network
calculus was introduced in order to accommodate a worst-
case analysis of WSNs. This sensor network calculus fo-
cused on the communication aspect in WSNs, but had not
yet a possibility to treat in-network processing in WSNs. In
this work, we now incorporate in-network processing fea-
tures as they are typical for WSNs by taking into account
computational resources on the sensor nodes. Furthermore,
we propose a simple, yet effective priority queue manage-
ment discipline which achieves a good balance of response
times across sensor nodes in the field.

1. Introduction

Wireless sensor networks have requirements and char-
acteristics that are considerably different from those of
common computer networks. Issues include low energy
reserves, limited processing power, uncontrolled environ-
ments and other adverse factors. The main attention has
been laid on meeting these restrictions, so there has been
much research on minimizing energy usage by introduc-
ing sleep times, reducing the amount of transmitted data,
etc. While these topics remain important, other aspects
have been somewhat neglected. Long sleep times go to-
gether with long delays, which can grow rapidly depending
on the network topology. This becomes a problem for a
growing number of WSN applications that have real-time
requirements in addition to energy-efficiency targets such
as intrusion detection, industrial monitoring, or health care
systems, see also [2]. In order to accommodate these appli-

cations a mathematical framework taking into account the
peculiarities of WSNs is desirable. We base this framework
on network calculus, a promising theory for the analysis
of worst-case models of data flow-oriented systems, which
provides a good match with WSNs. However, what network
calculus lacks is the consideration of transformations of the
data flow inside the network as it is typical for WSNs in the
form of in-network processing. In particular, in-network
processing is an important ingredient to achieve energy-
efficiency by reducing the amount of data that has to be
communicated, under the typical assumption that compu-
tation is by several orders of magnitude cheaper than com-
munication. Consequently, our motivation is to provide a
comprehensive network calculus-based worst-case analysis
methodology for WSNs taking in-network processing into
account.

In the following we make a set of assumptions: a sink-
tree based WSN topology is supposed; we assume that data
sources’ behavior can be upper-bounded (by arrival curves),
as well as the communication and computational resources
in WSNs can be lower-bounded (with the aid of service
curves); control traffic from sink to sources or nodes is ab-
stracted from (by modeling it into, e.g., latency terms in the
nodal service curves, thus modeling a strict priority for con-
trol traffic). As we discuss below these should not be very
restrictive assumptions and are satisfied in many interesting
WSN scenarios.

Related Work. While there has been a growing body
of work on real-time aspects in WSNs (see, e.g., [2] for a
review and [3] for an interesting large-scale tracking sys-
tem with real-time requirements and references therein),
holistic system models on the interplay between perfor-
mance characteristics and energy-efficiency targets have not
been addressed much. One notable exception is the work
by Chiasserini and Garetto [4], which proposes a perfor-
mance model based on Markov chains that relates perfor-
mance characteristics as, e.g., data delivery delay and en-
ergy management parameters as the duty cycle of nodes.
However, for applications with real-time requirements such
an average case analysis methodology is of limited use.



What is needed for real-time WSNs is a worst-case anal-
ysis methodology. In [1], a framework for the worst-case
analysis of WSNs has been proposed based on network cal-
culus [5]. It allows to relate again energy management pa-
rameters with performance characteristics, but now under
worst-case assumptions. In [6], a methodology to analyze
802.15.4 cluster-tree WSNs has been proposed, again based
on network calculus. Both of these approaches focus on the
communication aspects within WSNs and do not integrate
the processing resources on the sensor nodes. As discussed
above the integration of communication and computation
in a worst-case methodology for WSNs is the goal of this
work.

Outline. In the following section, a brief overview of
the most important concepts and results from network re-
spectively real-time calculus as required for this paper is
provided. The customization of these concepts to a WSN
setting as well as their extension to the sink-tree case is pre-
sented in Section 3. Here, the way to calculate the bounds is
different from [1] and [6] and constitutes a first contribution
of this work. In Section 4, we advance the sensor network
calculus by also including computational resources on the
sensor nodes, which constitutes the major contribution of
this paper. This is accomplished by integrating the real-
time calculus [7] concept of workload transformations [8]
that has also been coined data scaling in [9]. In Section 5,
a queue management scheme that attempts to achieve a bal-
ancing of the response times across all sensor nodes in the
field is proposed and integrated into the analytical frame-
work as a further contribution. Numerical experiments that
investigate some basic characteristics and trade-offs of the
proposed methodology are discussed in Section 6.

2. Network Calculus Background

Network calculus is a min-plus system theory for de-
terministic queuing systems. A detailed treatment of min-
plus algebra and of network calculus can be found in [10]
and [11], [5], respectively. As network calculus is built
around the notion of cumulative functions for input and out-
put flows of data, the set of real-valued, non-negative, and
wide-sense increasing functions passing through the origin
plays a major role:

F =
{
f : R

+ → R
+ : ∀t ≥ s : f(t) ≥ f(s), f(0) = 0

}
.

In particular, the input function R(t) and the output func-
tion R∗(t), which cumulatively count the number of bits
that are input to respectively output from a system S, are in
F . Throughout the paper, we assume in- and output func-
tions to be continuous in time and space. This is not a major
restriction as there are transformations from discrete to con-
tinuous models [5].

Definition 1: (Min-plus Convolution and Deconvolu-
tion) The min-plus convolution respectively deconvolution
of two functions f and g are defined to be

(f ⊗ g) (t) = inf
0≤s≤t

{f(t − s) + g(s)} ,

(f � g) (t) = sup
u≥0

{f(t + u) − g(u)} .

Let us turn now to the performance characteristics of
flows that can be bounded by network calculus means:

Definition 2: (Backlog and Delay) Assume a flow with
input function R that traverses a system S resulting in the
output function R∗. The backlog of the flow at time t is
defined as

b(t) = R(t) − R∗(t).

Assuming first-in-first-out delivery, the delay for an input at
time t is defined as

d(t) = inf {τ ≥ 0 : R(t) ≤ R∗(t + τ)} .

The arrival and server processes specified by input and
output functions are bounded based on the central network
calculus concepts of arrival and service curves:

Definition 3: (Arrival Curve) Given a flow with input
function R, a function α ∈ F is an arrival curve for R iff

∀t, s ≥ 0, s ≤ t : R(t) − R(t − s) ≤ α(s)

⇔ R ≤ R ⊗ α ⇔ α ≥ R � R.

Definition 4: (Service Curve) Let us suppose that a
server process is able to process C(t) bits of input data until
time t. Then, β ∈ F is a minimum service curve for C ∈ F
iff

∀t, 0 ≤ s ≤ t : C(t) − C(t − s) ≥ β(s).

Assuming the server is presented an input function R that it
outputs as R∗ this implies

R∗ ≥ R ⊗ β.

Theorem 1: (Performance Bounds) Consider a system
S that offers a service curve β and that stores input data
in a FIFO-ordered queue. Assume a flow R traversing the
system that has an arrival curve α. Then we obtain the fol-
lowing performance bounds for the backlog b, delay d and
output arrival curve α∗ for R∗:

b(t) ≤ (α � β) (0) =: v(α, β),

d(t) ≤ inf {t ≥ 0 : (α � β) (−t) ≤ 0} =: h(α, β),

α∗ ≤ α � β.

One of the strongest results of network calculus (albeit
being a simple consequence of the associativity of ⊗) is
the concatenation theorem that enables us to investigate
tandems of systems as a single system:



Theorem 2: (Concatenation Theorem for Tandem Sys-
tems) Consider a flow that traverses a tandem of systems
Si, i = 1, ..., n. Assume that Si offers a service curve βi,
i = 1, ..., n to the flow. Then the concatenation of the two

systems offers a service curve
n⊗

i=1

βi to the flow.

So far we have only covered the tandem network case,
the next result factors in the existence of other interfering
flows. In particular, it states the left-over minimum service
curve available to a flow at a single node under cross-traffic
from other flows at that node. Let us model this scenario
with a fixed-priority resource sharing discipline where some
flow has a lower priority than all other flows. Then we can
state the following theorem, see [7]:

Theorem 3: (Left-Over Service Curve) Consider a
greedy system that offers a service curve β and that serves
an input flow characterized by α. Then the left-over service
available to other flows with lower priority is for all t ≥ 0:

βl.o.(t) = sup
0≤s≤t

{β(s) − α(s)}.

As a shorthand notation, we define

(β 
 α)(t) = sup
0≤s≤t

{β(s) − α(s)}.

Consider a node with service curve β arbitrarily multi-
plexes two flows 1 and 2, with arrival curves αi, i = 1, 2 .
Then we can conclude from the last theorem that the least
service available to flow 1 can be given as

β1 = β 
 α2

3. Enhancing Sensor Network Calculus

The sensor network calculus framework described in [1]
has been a first step to enable a concise worst-case analy-
sis of WSNs. It provides a way to derive bounds on per-
formance measures as, e.g., the maximum delay experi-
enced by any data flow in a WSN based on analyzing single
servers in isolation and adding up their respective bounds.
From conventional network calculus it was clear already
then that this additive bounding method is more pessimistic
than a method that would allow to take advantage of the
concatenation result and take a holistic view on the WSN,
yet the tree structure of the network does not allow for a
direct application of the concatenation theorem. In this sec-
tion, we now present a generalization of the concatenation
result for the sink-tree network case, which results in better
bounds than in [1].

3.1. Sensor Network System Model

We assume the common class of single base station ori-
ented operation models, with a WSN being abstractly mod-

eled as shown in Fig. 1. It is also assumed that the routing
protocol being used forms a sink tree in the sensor network.

Figure 1. Sensor network model.

Each sensor node i senses its environment and thus is
exposed to an input function Ri corresponding to its sensed
input traffic. If sensor node i is not a leaf node of the tree
then it will also receive sensed data from all of its child
nodes child(i, 1), . . . , child(i, ni), where ni is the num-
ber of child nodes of sensor node i. Sensor node i for-
wards/processes its input, which results in an output func-
tion R∗

i from node i towards its parent node.

3.2. Incorporation of Network Calculus
Components

Now the basic network calculus components, arrival and
service curve, have to be incorporated. First, the arrival
curve ᾱi of each sensor node in the field has to be derived.
The input of each sensor node in the field, taking into ac-
count its sensed input and its children’s input, is given by:

R̄i = Ri +

ni∑
j=1

R∗
child(i,j).

Thus, the arrival curve for the total input function for
sensor node i is given by:

ᾱi = αi +

ni∑
j=1

α∗
child(i,j).

As an example, we could use simple token-bucket func-
tions to model inputs. These are defined as γr,b(t) =
b + rt, t > 0 and γr,b(0) = 0.

Second, the service curve has to be specified. The ser-
vice curve depends on the way packets are scheduled in a
sensor node, which, from the communication perspective,
mainly depends on link layer characteristics. More specif-
ically, the service curve depends on how the duty cycle
and therefore the energy-efficiency goals are set. Again as
an example, assume a service curve modeling the periodic
availability of the full medium capacity C after an initial de-
lay T . This closely captures the characteristics of a TDMA



medium access. The form of this curve for a node receiving
s time units of service in a frame of duration f is shown in
Fig. 2. The structure is similar to the one proposed in [6]
for 802.15.4 networks. This curve can be approximated by
a so-called rate-latency curve βR,T (t) = max(R(t−T ), 0)
with R = s

f C and T = f − s. That curve is shown labeled
as β in the figure and can be considered the fluid version of
the TDMA service curve.

Figure 2. TDMA service curve.

3.3. Calculation of Internal Traffic Flow

The output of sensor node i, i.e., the traffic that it for-
wards to its parent in the tree, is constrained by the follow-
ing arrival curve:

α∗
i = ᾱi � βi. (1)

Before performance characteristics like the maximum
delay from a given node to the sink or local buffer require-
ments, especially at the most challenged sensor nodes just
below the sink (which are called 1-hop nodes in the follow-
ing), can be calculated, an iterative procedure to calculate
the network-internal flows is required:

1. Let us assume that arrival curves for the sensed in-
put αi and service curves βi for sensor node i, i =
1, . . . , n, are given.

2. For all leaf nodes the output bound α∗
i can be calcu-

lated according to Theorem 1. Each leaf node is now
marked as “calculated”.

3. For all nodes only having children that are marked
“calculated” the output bound α∗

i can be calculated ac-
cording to Equation (1) and they can again be marked
“calculated”.

4. If all 1-hop nodes are marked “calculated” the algo-
rithm terminates, otherwise go to step 3.

3.4. Calculation of Performance Bounds

After the network-internal flows have been computed,
the local worst-case buffer requirements Bi and per-node

delay bounds Di for each sensor node i can be calculated
according to Theorem 1:

Bi = v(ᾱi, βi) = sup
s≥0

{ᾱi(s) − βi(s)},

Di = h(ᾱi, βi) = sup
s≥0

{inf{τ ≥ 0 : ᾱi(s) ≤ βi(s + τ)}}.

One way to calculate the maximum delay from a given
node till its data reaches the sink is now to just add up the
per-node maximum delays on the path to the sink. Let us
call this method total flow analysis (TFA) as flows are added
up as on their way to the sink. This is what has been done
in [1] and [6], the latter also proposed a further method that
first computes the left-over service curve for a flow of inter-
est at each node along its path and then concatenates all of
these. Let us call this method separated flow analysis (SFA),
as the flow of interest is separated from other flows by the
application of Theorem 3, before its performance bounds
are computed. As shown in [6] this can give an improve-
ment over TFA. However, we can further improve this by
making more careful use of the concatenation theorem, ef-
fectively paying the costs of multiplexing only once, which
is why the method is called pay multiplexing only once
analysis (PMOOA). The idea is to apply the concatenation
as much as possible before the application of Theorem 3.

To illustrate the PMOOA method and its benefits, a very
simple example illustrated in Fig. 3 shall be discussed. Here

Figure 3. Simple example to illustrate bound-
ing methods.

we can first concatenate and then apply Theorem 3 for the
PMOOA, or we can apply TFA or SFA. The delay bounds
for each of the three methods can be calculated as follows

dTFA = h (α1 + α2, β1) + h ((α1 + α2) � β1, β2)

dSFA = h (α1, [β1 
 α2] ⊗ [β2 
 (α2 � β1)])

dPMOOA = h (α1, [(β1 ⊗ β2) 
 α2])

If, for example, we assume specific rate-latency service
curves β1 = β2 = β3,0 and token-bucket arrival curves
α1 = α2 = γ1,1, this results in the following maximum
delay calculations: dTFA = 4

3 , dSFA = 3
2 , dPMOOA = 1.

The PMOOA consequently gives the tightest bound. Note
that the SFA in this example even gets worse than the TFA,
although in larger scenarios it usually performs better than
TFA as experienced by [6].



In [12] and [13], the PMOO analysis for general feed-
forward networks as well as its relation to the other meth-
ods is described accurately and discussed in very much de-
tail. Yet, due to the sink-tree structure of WSNs, all flows
that join a flow of interest will remain multiplexed up to
the sink, so that it is possible to simplify the analysis to Al-
gorithm 1. Here, it is assumed that the service curves are
located on the edges of the graph to be analyzed. In [14],
a similar procedure specific for FIFO multiplexing is pre-
sented, yet as is also experienced in [15] releasing the FIFO
assumption can make the treatment of performance bounds
tricky (in that work it is shown that the famous pay bursts
only once phenomenon is not true any more, similar to our
findings in [13], but for the single flow tandem case instead
of aggregate multiplexing).

Algorithm 1 Sink-tree PMOO Analysis.

1. Let M = {e1, . . . , ek} be the set of edges the flow of
interest is traversing on the way from its source to the
sink. Each edge ei has an incoming node ni−1 and an
outgoing node ni.

2. Let βl.o.
k+1 = δ0 with

δd(t) =

{
0 if t ≤ d

∞ otherwise

δ0 is the neutral element of the min-plus convolution.

3. For all ek≥i≥1 ∈ M , add up all upper output bounds of
interfering flows from incoming nodes n �= ni−1 (for
i − 1 = 0 this is the sum of all incoming flows except
the flow of interest) and update the left-over service
curve:

βl.o.
i =

(
βl.o.

i+1 ⊗ βei

) 
 ∑
n�=ni−1

α∗
n

with α∗
n calculated according to the procedure speci-

fied in Section 3.3.

4. βl.o.
1 is the left-over service curve for the flow of inter-

est.

4. Augmenting Sensor Network Calculus by
Modeling Computation

In the previous section, we reduced the sensor nodes to
pure communication resources. This is of course a very
coarse-grained abstraction of the functionality of a sensor
node. In fact, a typical wireless sensor network commonly
applies some in-network processing to the data that is de-
livered towards the sink, often in order to save energy by

data aggregation. It is thus very interesting to factor com-
putational resources on the nodes, i.e., the usage of the pro-
cessing unit, into the sensor network calculus model. Since
the workload units are however usually different between
communication and computation, we also need to introduce
elements into the model that translate between the usage
of communication and computational resources. These el-
ements have been coined as workload transformations or
scaling elements in [8] resp. [9]. While they are concep-
tually simple components translating for example a certain
number of bytes received from another sensor node into a
worst-case sequence of events for the processing unit on the
sensor node, they aggravate an end-to-end analysis as they
build up “walls” between the different resources that inhibit
the direct application of the concatenation result. However,
we demonstrate how an end-to-end-analysis is still feasible
by moving the scaling elements to the borders of the topol-
ogy and taking into account the effect of this moving such
that the application of the PMOO concatenation result is
possible again.

4.1. Background on Data Scaling

In this subsection, we provide the necessary definitions
and results for introducing scaling elements into network
calculus models as presented in [9].

Definition 5: (Scaling Function) A scaling function S ∈
F assigns an amount of scaled data S(a) to an amount of
data a.

As can be seen from the definition of scaling functions,
they are a very general concept for taking into account trans-
formations in a network calculus model. Note however that
they do not model any queueing effects–scaling is assumed
to be done infinitely fast. Queueing related effects must still
be modeled in the service curve element of the respective
component.

Definition 6: (Scaling Curves) Given a scaling function
S, two functions S, S ∈ F are minimum and maximum
scaling curves of S iff ∀b ≥ 0 it applies that

S(b) ≤ inf
a≥0

{S(b + a) − S(a)}

S(b) ≥ sup
a≥0

{S(b + a) − S(a)}

Theorem 4: (Alternative Systems) Consider the two
systems in Fig. 4 and let R(t) be the input function. Sys-
tem (a) consists of a server with minimum service curve β

whose output is scaled with scaling function S and system
(b) consists of a scaling function whose output is input to
a server with minimum service curve βS . Given system (a)
the lower bound of the output function of system (b), that
is S(R) ⊗ βS is also a valid lower bound for the output
function of system (a) if

βS = S(β)



Figure 4. Alternative Systems.

This means in effect that performance bounds for system
(b) under this assumption are also valid bounds for system
(a), i.e., we can effectively move a scaling function in front
of a service curve element as long as we transform the re-
spective service curve using the minimum scaling curve of
the scaling element. In [9], it is also shown that bounds
computed in the alternative system, i.e., after shifting the
scaling element downstream, remain tight.

The following corollary states the effect scaling has on
arrival constraints of a traffic flow.

Corollary 1: (Arrival Constraints under Scaling) Let R

be an input function with arrival curve α that is fed into a
scaling function with maximum scaling curve S. An arrival
curve for the scaled output from the scaling element is given
by

αS = S(α)

4.2. Data Scaling in Sink Trees

Using the scaling element we can now provide a much
finer modeling of the WSN integrating the local processing
resources into the overall model. This is illustrated in Fig.
5.

Figure 5. Advanced sensor network model.

This model is still based on the WSN model from Fig.
1, yet the modeling of the sensor nodes is refined by the in-
tegration of computational resources accommodated by the
use of scaling elements. Besides different scaling elements
we also introduce a multiplexing element, which allows to
explicitly model how the superposition of a number of data
flows is performed, e.g., arbitrary, FIFO or some specific or-
der that may be based on strict priorities. Thus, the data that
arrives from different predecessors in the sink tree is at first
multiplexed and afterwards a scaling element models the
transformation of the received data into a certain computa-
tional demand. The local sensing data are also transformed
using a specific scaling element before they are multiplexed
with the flows from upstream. This aggregate is then served
by the processing unit of the sensor node providing a service
curve βcomp. How much data is forwarded to the next node
downstream depends on how the processing is for example
able to compress the data flow by, e.g., data aggregation.
This is captured by another scaling element, before the re-
sulting flow is presented to the communication subsystem
of the sensor node that is represented by another service
curve element βcomm.

The problem with this new model now is that the scaling
elements hinder an end-to-end analysis based on the PMOO
principle. However, as we have seen in the previous sub-
section for a simple setting, it is possible to shift the scal-
ing elements across a service curve element. So the idea is
to shift all the scaling elements downstream in order to be
able to do a true end-to-end analysis again. What remains
to be discussed is how to shift the scaling elements across
multiplexers where they conceptually have to be split onto
several sub-flows. In the following theorem we provide a
sufficient condition in order to be able to do this shifting
without compromising the worst-case analysis.

Figure 6. Scaling Element with Multiplexer.

Theorem 5: (Shift of Scaling Element across Multi-
plexer) Assume a situation as depicted in Fig. 6, i.e., two
flows are multiplexed and then fed into a scaling function
S with maximum scaling curve S and minimum scaling
curve S. Provided that the minimum scaling curve is super-
additive and the maximum scaling curve is sub-additive we



can transform system (a) into system (b) without improving
the worst-case scenario in system (b) over the one in system
(a).

Proof: In Fig. 6, the multiplexer just adds the two input
flows

R = R1 + R2

and the output is scaled by S

RS = S(R) = S(R1 + R2).

Using the maximum and minimum scaling curve, we ob-
tain

RS ≤ S(R1 + R2),

RS ≥ S(R1 + R2).

On the other hand for system (b) in Fig. 6 we obtain the
following relationships

R
′

S = RS,1 + RS,2 = S(R1) + S(R2) ≤ S(R1) + S(R2),

R
′

S = RS,1 + RS,2 = S(R1) + S(R2) ≥ S(R1) + S(R2).

As we want system (b) not to be excluding scenarios that
are possible in system (a), we effectively require the upper
resp. lower bound of RS to be smaller resp. larger than
those for R

′

S , i.e., it is required that

S(R1 + R2) ≤ S(R1) + S(R2),

S(R1 + R2) ≥ S(R1) + S(R2). (2)

These inequalities are just equivalent to S resp. S be-
ing sub-additive and super-additive, which is what has been
assumed. �

Hence, there is no more hindrance to shift all the scaling
elements to the sources of traffic. This is done by always
shifting the remaining scaling functions closest to the leaves
of the tree, thus accumulating scaling elements at the traffic
flows where they enter the system. In effect, all the input
to the system is scaled to the same resource units before
entering a system of “homogenized” servers, where an end-
to-end concatenation based on the techniques presented in
Section 3 can be applied again.

Discussion. The alert reader may have noticed that while
by shifting the scaling elements across a multiplexer we
have not improved on the worst-case scenario, we may have
actually worsened the situation. In fact, only when the scal-
ing curves are linear we can be sure not to overestimate
the worst case (because then we would have equality in
the inequations (2) and systems (a) and (b) from Fig. 4
would be equivalent systems). Another source of overesti-
mating the worst-case scenario when scaling elements are
shifted behind service curve elements can be observed. Re-
call Fig. 4, the output bound for system (b) is calculated as

S(α) � S(β), which however cannot happen in any sam-
ple path of the system as maximum and minimum scaling
curve cannot be attained at the same time unless they are
equal. This means the more maximum and minimum scal-
ing curves differ the more the worst-case scenario is overes-
timated. Here a potential cure to this situation could be sug-
gested by moving the scaling elements upwards to the sink
instead of downwards. However, a moment’s consideration
shows that this is only possible in a tandem network case
and not in our case of a sink-tree network because shifting
different scaling elements across a multiplexer upwards is
not possible. Both of these effects counter the positive ef-
fect of a holistic end-to-end analysis and are quantitatively
discussed in Section 6.

5. Response Time Balancing

In a WSN with real-time constraints one often faces the
situation that the response time for any sensor in the field
should not exceed a certain value. This puts nodes that are
topologically distant from the sink at an obvious disadvan-
tage. Therefore, it would be better to provide them with a
preferential treatment at forwarding nodes than data from
nodes with shorter paths to the sink. A simple strategy that
always gives strict priority to flows that have had a longer
path should strike a good compromise between investing
computational effort and state management for flows and
a good balance of response times across the sensor field.
Specifically, we can carry the state information that is re-
quired in each packet, because it is simply the hop count.
We call this queue management scheme of always giving
priority to the data that has traversed the highest number of
hops so far: Longest Flow First (LFF).

While LFF is a very intuitive countermeasure against the
topologically unfortunate placement of some nodes, the in-
teresting question now is how to accommodate this queue
management strategy in the worst-case analysis. This is
actually very simple within our framework (see also Algo-
rithm 2): We step through the tree level by level, starting
from the lowest leaf level. While analyzing the flows origi-
nating at level i, we only consider flows of equal or higher
priority, i.e., we temporarily ignore all flows that cannot in-
terfere due to their strictly lower priority (those originating
at levels < i).

Algorithm 2 LFF Network Analysis.
Given: sink tree of service curve elements with d levels
Initialization: deactivate all traffic sources
FOR i from d down to 1

Activate all sources at level i

Perform PMOOA for all flows originating at level i



6. Numerical Experiments

In this section, we investigate numerically under realis-
tic parameter settings how advantageous it is to perform a
holistic analysis of a WSN based on the PMOO result and
the shifting of scaling elements from Section 4 instead of
a component-wise analysis based on the total flow analy-
sis (TFA) from Section 3. Furthermore, we investigate how
this relation is affected by a deviation between minimum
and maximum scaling curve. Last but not least, it is also
examined how well the LFF queue management performs
in comparison to arbitrary multiplexing with respect to bal-
ancing response times more equally among sensor nodes in
the field.

6.1. Experimental Design

First of all we generate a set of random WSN topologies
by placing n sensor nodes on a square based on a uniform
random distribution. Each sensor has a transmission range
of 20m such that, for suitable sensor field sizes, connec-
tivity is ensured with high likelihood (not fully connected
topologies are discarded). The sink is placed in the cen-
ter of the field and the forwarding tree towards the sink
is constructed as shortest path tree. For each experiment
we generate 10 topologies in order to avoid random ef-
fects due to topological peculiarities. In most of the experi-
ments we used n = 100 nodes and a square sensor field of
100m2. In the experiments concerning the performance of
the LFF queue management we varied the number of nodes
and adapted the area size accordingly to be proportional to√

n, so that connectivity characteristics are conserved.
The instantiation of the sensor node related parameters

is based on MICAz motes from Crossbow Technology Inc.
Thus, a physical data rate of 250kbps is assumed, for the
MAC we suppose a TDMA-based scheme that allows for
a duty cyle of 1% with a TDMA frame length of 100ms.
That means we obtain the service curve for communication
as βcomm = β2.5[kbps],0.099[s]. For the packet length 36B

TinyOS packets are assumed. Regarding computational re-
sources, the MICAz is equipped with an Atmel ATmega
128L microcontroller that operates at 8 Mhz. Hence, sup-
posing on average 4 cycles per instruction, it has a raw ca-
pacity of 2 MIPS. Assuming the processing unit also has to
perform other tasks, for example related to network control
operations, and it also applies a power management scheme
with certain sleep periods in low power modes, we set its
availability for data path related processing (including sens-
ing) to 10% of its full capacity with a potential latency of
1 ms. Thus we obtain as service curve for computation
βcomp = β0.2[MIPS],0.001[s].

With respect to the scaling elements we use token-
bucket functions for the maximum scaling curves and rate-

latency functions for the minimum scaling curves. The
maximum scaling curve for communication into compu-
tation resource demand transformation is assumed to be
S

comm2comp
= γ5000[Instr./p],b[Instr.], i.e., in the long-

term a received packet consumes 5000 instructions, devi-
ations from this are modeled by the bucket depth parame-
ter b that will be varied in the experiments. The minimum
scaling curve is supposed to be given as Scomm2comp =
β5000[Instr./p],T [p], where the latency parameter T will
again be varied in the experiments. Similarly maximum
and minimum scaling curves for the transformation of
sensing into computation resource demand are given as

S
sense2comp

= γ6000[Instr./p],b[Instr.]and Ssense2comp =
β6000[Instr./p],T [p] , where a somewhat higher demand for
sensing is supposed since raw sensing values have to be
processed first. The scaling curves for the transformation
of computation into communication resource demand is set
such that it is roughly inverse to the other scaling elements
and additionally models some compression due to, e.g., data
aggregation. The compression factor varies depending on
the number of children of a node. In particular, it decays
exponentially with the number of child nodes in a given in-
terval from 0.6 to 0.2, i.e., the downstream flow of a node
can be scaled down to one fifth the size of the aggregate
input flow, roughly speaking.

The fresh arrivals from the sensing unit are modeled by a
token bucket γ0.1[p/s],1[p], i.e., it is assumed that a packet is
created every 10 seconds with the obvious possibility of an
instantaneous packet arrival in an arbitrary short interval.

While it is clear that many of these values are a some-
what arbitrary and would need to be tailored to a specific
scenario, they should nevertheless be in a reasonably realis-
tic region.

In the baseline comparison between holistic and
component-wise analysis we assume the multiplexers to be
arbitrary, later on we investigate LFF at the multiplexing el-
ements. All of this is performed with the aid of the DISCO
Network Calculator [16]1, in which we implemented all of
the above presented concepts and methods.

6.2. Benefit of End-to-End Analysis

Baseline Comparison. At first we want to find out how
the holistic analysis based on PMOOA performs in compar-
ison to the component-wise analysis based on TFA. Here,
we assume identical minimum and maximum scaling curves
going through the origin. All other parameters are chosen
as described in the previous subsection. In Fig. 7, the re-
sults of both methods for 10 different random topologies
with 100 nodes each are shown.

1The DISCO Network Calculator is publicly available under
http://disco.informatik.uni-kl.de/content/Downloads.
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Figure 7. Baseline comparison between
PMOOA and TFA for different scenarios.

For each scenario the maximum delay observed across
all nodes in the field is reported. As can be perceived easily
the PMOOA is a clear winner with the TFA delivering delay
bounds up to 1.9 times higher than those for the PMOOA.

Effect of Uncertainty about Scaling. Often scaling
cannot be captured as deterministically as in the previous
section, i.e., with minimum and maximum scaling curve be-
ing identical. Yet, usually it can still be upper- and lower-
bounded, which means we obtain differing minimum and
maximum scaling curves. As discussed in Section 4, this
may have an adverse effect on the performance of the holis-
tic analysis method. To investigate this issue, we now vary
the minimum and maximum scaling curves to be no more
linear. Effectively we shift the maximum scaling curve
upwards along the y-axis and shift the minimum scaling
curves along the x-axis to the right. This drifting apart of
maximum and minimum scaling curve is achieved by set-
ting the bucket depth parameters of the maximum scaling
curves respectively the latency parameters of the minimum
scaling curves incrementally higher until we reach certain
limits. These limits are as follows: for Scomm2comp the
maximum latency is 0.006; for S

comm2comp
the maximum

bucket depth is 240; for Ssense2comp the maximum latency

is 0.006; for S
sense2comp

the maximum bucket depth is 300;
for Scomp2comm the maximum latency is 240; for S the
maximum bucket depth is 0.006.

In Fig. 8, the shift along the axes is illustrated by an
expansion factor giving the percentage of how much these
limits have been utilized. The delay bound is averaged over
10 random topologies for each method.

It can be observed that the PMOOA still performs better
than the TFA up to a certain point of the drifting apart of the
maximum and minimum scaling curve. After this point it is
actually better to use the TFA because the uncertainty about
the scaling becomes too large to justify the application of
the PMOOA. Where this point is located depends a great
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Figure 8. Investigation of PMOOA vs. TFA un-
der the drifting apart of maximum and mini-
mum scaling curves.

deal on the respective scenario. So, as a general wisdom, it
is good to perform both analyses to be on the safe side.

6.3. Benefit of LFF Queue Management

In the last experiment, we investigate how much balanc-
ing of response times across the field is accommodated by
assuming LFF as a queue management discipline for multi-
plexing flows. We do this for different sizes of the WSN
ranging from 100 nodes up to 1000 nodes with a corre-
sponding deeper sink-tree structure using the basic set of
parameter values as presented in 6.1 with identical scaling
curves (we only perform the PMOOA anyway). The results
of this experiment are shown in Fig. 9.
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Figure 9. Use of LFF vs. arbitrary multiplex-
ing.

Here, the ratio of the delay bound for each size of WSN
(averaged over 10 random topologies) between PMOOA
with LFF and PMOOA with arbitrary multiplexing is given.
As can be perceived the gain by using LFF instead of arbi-
trary multiplexing is substantial at about a 30-40 % reduc-
tion of the delay bound. For the improvement due to LFF, a
slight dependency on an increasing network size is visible.



7. Conclusions

We believe to have taken a significant step on the way
to a comprehensive sensor network calculus, an analyti-
cal framework that shall enable a tight performance di-
mensioning and control of WSNs, which besides energy-
efficiency goals also have timing requirements. In partic-
ular, we presented a new method to calculate end-to-end
delays in sink-tree networks under arbitrary multiplexing
that outperforms existing methods. Most importantly, in
our opinion, we extended our analytical framework to in-
corporate computational resources besides the communica-
tion aspects of WSNs. This is considered very important
for WSNs as it allows to model their typical in-network
processing. Since delay bounds in larger WSNs may dif-
fer substantially based on their topological position we also
proposed a simple queue management that alleviates this
problem and demonstrated how it is accommodated within
our analytical framework. In numerical experiments, we
demonstrated the quantitative behavior of the proposed con-
cepts and methods.
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