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Abstract
The Internet has built its success story to a large degree on the Transmission Control Protocol (TCP). Sin
still represents the by far most important transport protocol in the current Internet traffic mix, new applica
like media streaming need to take into account the social rules implied by TCP’s congestion control algor
i.e., they need to behaveTCP-friendly. One problem of this insight is that these new applications are not alw
well served by inheriting TCP’s transmission scheme. In particular, TCP’s initial start-up behaviour is a pro
for streaming applications. In this paper, we try to address this problem by proposing areflective server design
which allows to do inter-session congestion control, i.e., to share network performance experiences betwe
sions to make informed congestion control decisions. Since our target application is media streaming, w
the design in the framework of a media server, which means in particular that we employ not TCP itself
TCP-friendly transmissions scheme.

Keywords
TCP-friendliness, Slow-Start, Media Streaming

1  Introduction
TCP’s congestion control involves two basic algorithms: slow start and congestion avoid
During slow start (SS) a sender exponentially increases its sending window during each
trip time (RTT)1 starting with a window size of 1 to trial the available bandwidth in the n
work. It thus makes no assumptions and tries to find out fast what could be its fair share
available bandwidth. Once it encounters an error, either due to a retransmission time-out
to 3 consecutive duplicate acknowledgments (fast retransmit), it halves its slow start thre
(sstresh) and does another SS. This repeats until slow start reaches sstresh without any
then the congestion avoidance (CA) phase is started. In CA the sender still probes the n
for more capacity but now at a linear increase per RTT.

For new multimedia applications like media streaming TCP has several drawbacks:

• retransmissionsare unnecessary since old (retransmitted) data is usually worthless
streaming applications,

• the bandwidthresulting from TCP’s window-based congestion control algorithms tend
oscillate too much for streaming applications,

• the initial slow start behaviouris the exact opposite of what streaming applications wo
desire, namely an initially high rate that allows to fill the playback buffer such that later
variations can be accommodated by the smoothing effects of the buffer.

This is why many of these applications employ UDP (User Datagram Protocol) as a tran
protocol. However, UDP does not have a congestion control. That is why a number of
friendly congestion control schemes have been devised for UDP transmissions. The defi
of TCP-friendliness is phrased as “achieve fairness with concurrent TCP transmission
achieve the same long-term average throughput as a TCP transmission”.

1. For simplicity we neglect the dampening effect on the exponential increase due to ACK clocking.
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If TCP-friendliness is accepted as a MUST in the Internet it needs to be observed that,
TCP-friendly transmission schemes can avoid the problems of retransmissions and un
bandwidth availability to some degree (we will discuss some proposals below), all T
friendly protocols inherit TCP’s gross start-up behaviour resulting from slow start. Note
TCP’s start-up behaviour has for some time been realized as a problem for transfers o
duration as typically seen for HTTP requests. Yet, also for long-term streaming applicatio
contrast to long-term file transfers the initial transmission performance is of high importa
since they need to present transmitted data (more or less) immediately to the user and it
be especially dissatisfying if the start of a media transmission is badly disturbed or he
delayed due to a slow filling of the playback buffer (which might make the consumer sw
away again). Besides, promising optimizations of media distribution systems like patc
may involve short transfers, too (Hua et al. 1998).

On a higher level of abstraction one could argue that TCP is transiently unfair to new
sions which are still in their probing phase. Ideally, one would wish for a new session to
sending with its fair share and immediately go into a CA-like phase. The question now is
could we make a step towards this ideal behaviour. Since our target application is m
streaming, we may assume that we have high-performance servers streaming the
towards a large number of clients. We are thus in a situation where TCP’s zero know
assumption about the network state at the start of a new transmission towards a client is
essarily limiting since such a server could take advantage of the probing of past and conc
transmissions to the same or “similar” clients. The server could thus improve its congestio
control decisions byreflectingon past decisions / experience and could start the transmissio
a higher rate avoiding the SS phase altogether. Of course, care must be taken to back-o
this rate immediately if the estimation of available bandwidth turns out to be erroneous.

2  Related Work & Own Contribution
2.1  TCP-Friendly Transmission Protocols

The design of TCP-friendly transmission protocols has recently experienced a lot of atte
A nice overview can be found in (Widmer et al. 2001). Their basic rationale is to avoid retr
missions and to improve TCP’s oscillating bandwidth behaviour by smoothing the avai
bandwidth to a session. There is mainly two flavours:

• window-based schemes like (Bansal and Balakrishnan 2001, Jin et al. 2001),
• rate-based schemes like (Rejaie et al. 1999, Floyd et al. 2000, Rhee et al. 2000).

While window-based schemes inherit TCP’s favourable self-clocking characteristic and
generally be assumed to react faster to dynamic changes in available bandwidth, rate
schemes usually achieve a smoother transmission scheme which makes them more fav
for streaming applications. Furthermore, the rate-based TFRC (TCP-Friendly Rate Co
has been shown to react relatively fast to changes and has been extended to the multica
(Widmer and Handley 2001). For these reasons we chose TFRC as the TCP-friendly tran
sion scheme which shall be integrated into our reflective server design.

2.2  Inter-Session Congestion Control
Directly related to our work is what we call inter-session congestion control. These pro

als consider network performance experience from other concurrent or past sessions fo
congestion control decisions. (Savage et al. 1999) introduces what they call inter-host co
tion control and give some nice introductory motivation for the efficiency gains that ma
achievable. Their sharing of congestion control information is solely based on what the
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network locality, i.e., only destinations that have a common 24-bit subnet mask share info
tion. Their proposal is restricted to TCP transmissions. Along the same lines yet more de
is (Zhang et al. 2000), which proposes the use of a gateway. Again this work is only suite
Web-like traffic since only TCP is considered and they only share information between d
nations with common 24-bit subnet masks (network locality).

In conclusion, while the above proposals are very interesting, they are specialized for
transmissions and may require substantial infrastructure changes due to the gateway ap
Furthermore, they employ a simple rule for sharing congestion control information, wh
while it is empirically shown to be a good rule (Zhang et al. 2000), may be too restrictive
the case of a server-based inter-session congestion control for media streaming, which in
compared to a Web server a lesser number of sessions.

3  Reflective Media Server Design for Inter-Session Congestion Control
In this section, we give an overview of the high-level design of our reflective media server
underlying principles of our reflective media server proposal is to gather past bandwidth
ability data, process these data intelligently in order to make moreinformed decisionswhen
starting a new TCP-friendly streaming session.

3.1  Overall Design

Two different, concurrently performed areas of operation can be distinguished for the refle
media server: the actual handling of media requests and the reflection on the corresp
transmission observations. The latter process of reflection is further on calleddata manage-
mentbecause it involves the gathering and processing of statistical data for past session
results from the data management operations are then exploited in serving the media re
i.e., in the congestion-controlledtransmissionof the media objects. The following subtasks fo
the data management component can be identified:

• data gathering, i.e., record the data from sessions periodically for subsequent session
• data clustering, i.e., explore the data on past and concurrent sessions for similaritie

order to find maximum sharing rules between the recorded data,
• data prediction, i.e., forecast fair bandwidth share for a session based on the sharing

constructed in the preceding step.

With respect to the transmission component: as discussed above we focus on the improv
of the start-up behaviour for media streams, i.e., we introduce aninformed startwhich con-
trasts to slow start by assuming knowledge when choosing an initial transmission speed

The overall scheme of our refective media server design is depicted in Figure 1.
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Figure 1:Reflective Media Server Design.
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3.2  Data Management
Data Gathering: The major questions for data gathering are which data to gather and w
We decided to gather the available bandwidth values after they have reached a certain e
rium state (i.e., the rate does not vary too much any more). The available bandwidth of
session (identified by the client’s destination address) is tracked on two time-scales, one
order of RTTs and one on the order of minutes. These serve different purposes. The
time-scale values are used for identifying similar available bandwidth properties for diffe
clients, i.e., they are input for the data clustering task. A time-scale on the order of mi
seems sufficient for that purpose based on the temporal stability observations reported in
akrishnan et al. 1997). The shorter time-scale values are used within the data predictio
and therefore need to be very recent.

Data Clustering: The data clustering subtask is a preparation step for the actual data pr
tion in order to make as much use as possible from the given data. In particular, we perf
cluster analysis along the available bandwidth samples of different sessions, which pro
more comprehensive sharing rules than for a second-order criterion like network locality,
it allows to capture more similarities between clients / sessions, e.g., like the use of the
access technology which might always form a bottleneck or the situation when a transa
link is underdimensioned and a certain subset of clients is only reachable via this link. So
ents do neither need to share exactly the same bottleneck but only a structurally simila
nor does the bottleneck need to be close to them. Furthermore, we cluster along available
width trajectories, and not just single values, over relatively large time-scales (24 hours), w
also allows to identify temporal similarities.

Since for individual clients the covering of a 24 hour interval by sampled available b
width values is likely to be insufficient, we first aggregate the samples of all clients of a
work cloud defined by the common 24-bit subnet mask heuristic (network locality). The a
technique we then use for clustering the network clouds is so-calledagglomerative clustering
based on maximizing the inter-cluster distance while minimizing the intra-cluster dist
where we use the euclidean distance norm for the bandwidth trajectories (Gordon 1999
resulting clusters represent the sharing rules used for data prediction.

Data Prediction: The data prediction step takes as an input the short time-scale samples
the data gathering and uses the sharing rules resulting from the data clustering sub
obtain a set of samples as large as possible to ensure an accurate prediction. The qua
predict is the fair share of bandwidth available to a new media stream. Note that for diff
congestion control schemes this value may have to be transformed in the quantity that i
vant for the respective scheme, i.e., for a window-based scheme this has to be transform
an initial window size (which would require to also sample the RTT, which for ease of dis
sion we have left out here since our focus is on rate-based schemes).

The actual prediction technique we use is an optimal linear predictor (Papoulis 1991)
we make relatively little assumptions on the underlying stochastic process. This optimal
predictor uses the existing realization of the stochastic process of the available bandwi
set its linear coefficients such that the prediction error is minimized. This is only possible
underlying process is ergodic, however, the results reported in (Balakrishnan et al. 199
encouraging with respect to this assumption. The number of linear coefficients tha
employed depend on the number of samples that are available, the more samples are a
the more linear coefficients are used resulting in a higher prediction accuracy. So, t
exactly the point where the maximization of the sharing rules is exploited.
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3.3  TFRC Transmission UsingInformed Start

Concurrently to the data management operations, the actual transmission of media s
takes place. As discussed above we chose TFRC as a (good) example of a TCP-friendly
mission protocol for media streams. Now, we describe how a TFRC-based media stre
can take advantage of the data gathered and evaluated by the data management comp
improve a media stream’s start-up behaviour by using what we call aninformed startinstead of
the normal slow start algorithm. Therefore, we first discuss in a little bit more detail how TF
works especially at start-up.

At the start-up of a session, TFRC mimics TCP’s SS behaviour: it doubles its sending
every RTT and even tries to emulate TCP’s self-clocking characteristic by limiting the sen
rate to two times the received bandwidth as reported by the receiver (which sends these
every RTT). It does so until a loss event occurs. This enables then a receiver-based roug
mation of the loss rate as the corresponding loss rate for half of the current sending rate
estimated loss rate is returned to the sender and used to compute the allowable send
using the TCP rate formula proposed in (Padhye et al. 1998). Furthermore, the sende
turns into a less aggressive CA-like behaviour which is again determined by the TCP rat
mula: if the formula results in a higher value than the current sending rate then the sendin
is increased by one packet per RTT.

Assuming we have enough data to make a sensible fair share bandwidth prediction w
avoid the SS-like behaviour and start with the predicted bandwidth, i.e., perform an info
start (IS) and turn to the CA-like phase of TFRC directly. An IS requires, however, special
since the prediction might be wrong. In particular, IS works the following way:

• The transmission starts with the predicted rate. After 1.5 RTT the receiver calculate
corresponding loss rate from the inverse TCP rate formula and sends it towards the s
It cannot invoke the TCP rate formula before because it requires an estimate of the
which is only determined after 1 RTT at the sender and then sent to the receiver (w
takes another 0.5 RTT).

• Before the sender receives the first loss rate estimate the sender uses the minimum
dicted rate and received rate as reported by the receiver. This restriction minimizes th
ative effect of a wrong prediction for the available fair share of the bandwidth.

• After it got the first loss rate estimation (after 2 RTT), the sender uses TFRC’s normal
like behaviour further on.

• In case of packet loss two cases must be distinguished:
(1) packet lossbefore 2 RTT: this indicates that the predicted available bandwidth was

optimistic and the sender should backoff immediately in order not to interfere w
other TCP sessions. Of course, due to the packet loss we have a first estimate
loss rate, however it is very likely to be too pessimistic since due to the overestim
of the allowed sending rate losses are probably excessive. Using that loss rate
consequently lead to an underestimation of the actual allowed sending rate. F
nately, we also have the received rate as reported by the receiver as a further
While the received rate itself is obviously too high because we have been o
aggressive at the start-up, we can take a compromise between underestimatin
overestimating the allowed sending rate by taking the mean of the fair bandwidth s
as computed by the TCP rate formula and the received bandwidth. When the fai
eventually becomes higher than the received rate we turn to CA-like TFRC behav

(2) packet lossafter 2 RTT: here we just use normal TFRC behaviour, i.e., the loss rat
reported to the sender and the sender adapts its current sending rate.
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A further question that comes up after this discussion is what happens if we underestima
currently available bandwidth. Here, the problem is that since we do not use a SS-like tri
of the available bandwidth at the start of a new session we may remain in a state of under
ing the fair share for that media stream. However, at least no other sessions suffer and pr
for the case of media streaming we should actually reject the request for a new stream
predicted available bandwidth is too low since we cannot expect our estimate to be too lo
it is better not to start a session which can anyway not deliver the quality a user would e

4  Simulations
The aim of the following simulation experiments with the ns-2 simulator2 is to show the basic
improvements that can be achieved with an IS over the normal SS-like behaviour of T
They are not about the analysis of the data management component of our reflective
server design, but make extreme assumptions on the outcome of the data managemen
tions: the fair share bandwidth predictions are assumed to be either correct, far too high,
too low. The simple simulation setup we used for these experiments is shown in Figure 2

The queue at the bottleneck link uses drop tail, all links are dimensioned at 10 Mb/s (or
MB/s) with a propagation delay of 10 ms. The TCP senders use TCP Reno (i.e., they em
fast retransmit) and all of them are all started at the beginning of the simulation runs (t=0
approximately t=4s they achieved an equilibrium state where they shared the available
width at the bottleneck link fairly. Thus at t=4s we started our different versions of TFRC

• TFRC with usual SS,
• TFRC with IS and correct prediction (CORR), i.e., the fair share bandwidth prediction

21 of 1.25 MB/s (≈ 60 KB/s)
• TFRC with IS and far too high prediction (HIGH), in particular, the fair share bandwi

prediction is 3 times to high (≈ 180 KB/s)
• TFRC with IS and far too low prediction (LOW), in particular, the fair share bandwidth p

diction is 3 times to low (≈ 20 KB/s)

In Figure 3, the simulation outcomes for the different scenarios are given. Here, we
depicted the sending behaviour of one of the TCP senders (TCP-Sender 13) vs. the respective
TFRC sending behaviour in the relevant time-scale (from 3s to 15s).

2. http://www.isi.edu/nsmam/ns
3. The others showed the same behaviour, though with some phase shifts.

TCP-Sender 1

TCP-Sender 20

TFRC-Sender

Daten

Feedback

TCP-Sender 2

TCP-Receivers 1-20

TFRC Receiver

Figure 2:Simulation Setup.
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It is obvious that with a correct prediction we can substantially improve on TFRC’s u
start-up behaviour resulting from SS: TFRC with SS took about 5s (from t = 4s to 9s) un
turns to a stable CA-like behaviour, whereas TFRC with IS(CORR) shows immediate sta
from its start. Interestingly, also for a far too high prediction of the fair bandwidth share fo
TFRC session, it takes only about 1s until a stable behaviour can be observed. So, w
achieved the goal of a fast reaction of the informed start on an overestimated bandwidth p
tion. The case IS(LOW) shows that an underestimation requires a longer start-up phas
the fair bandwidth share is reached than the other cases (including the slow start case)
does so in a fairly smooth way which from the perspective of streaming applications shou
desirable.

5  Conclusions
In this paper, we have investigated how TCP-friendly transmission schemes for media st
ing could be enhanced to circumvent the inheritance of TCP’s disadvantageous start-up
iour by the use of inter-session congestion control. For that purpose we have introdu
reflective media server design and described its major functional components: data ma
ment and transmission. In contrast to previous work, we have focussed on the maximiza
sharing rules between sessions by the use of cluster analysis techniques taking into acco
specific requirements for media streaming servers. We have shown how TFRC, a s
instance of a TCP-friendly transmission protocol can be extended to use an informed
based on the operations performed by the data management component of the reflective
server. By simulations we have shown the benefits of an informed start over the norma
start-like behaviour of TFRC.
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Figure 3:Slow Start vs. Informed Start TFRC with Differing Prediction Scenarios.
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