
.de

Con-
ol in
ount

d by
rob-
ng a
et-
isions.
rver,

me.

ntrol
op
mes
ble to

tion
win-
e
out
rror,

ledg-
r SS.

estion
ore

cks:
less

s

s
ch
A Reflective Server Design to Speedup
TCP-friendly Media Transmissions at Start-Up

Jens Schmitt, Michael Zink, Steffen Theiss, Ralf Steinmetz

KOM, Darmstadt University of Technology, Germany
{Jens.Schmitt, Michael.Zink, Steffen.Theiss, Ralf.Steinmetz}@KOM.tu-darmstadt

Abstract: The Internet has built its success story to a large degree on the Transmission
trol Protocol (TCP). Since TCP still represents the by far most important transport protoc
the current Internet traffic mix, new applications like media streaming need to take into acc
the social rules implied by TCP’s congestion control algorithms, i.e., they need to behaveTCP-
friendly. One problem of this insight is that these new applications are not always well serve
inheriting TCP’s transmission scheme. In particular, TCP’s initial start-up behaviour is a p
lem for streaming applications. In this paper, we try to address this problem by proposi
reflective server designwhich allows to do inter-session congestion control, i.e., to share n
work performance experiences between sessions to make informed congestion control dec
Since our focus is media streaming, we show the design in the framework of a media se
which means in particular not employing TCP itself but a TCP-friendly transmissions sche

1 Introduction

1.1 Background: TCP Congestion Control and Media Streaming

Despite its age and known shortcomings, TCP and its reactive congestion co
method still dominate today’s Internet traffic mix [1], whereas proactive, open-lo
congestion control approaches like, e.g., RSVP/IntServ seem still far away. It co
thus as a kind of Internet law of nature that data transmissions have to be compati
TCP with respect to their handling of congestion situations, i.e., they have to beTCP-
friendly.

TCP’s congestion control involves two basic algorithms: slow start and conges
avoidance [2]. During slow start (SS) a sender exponentially increases its sending
dow during each round trip time (RTT) starting with a window size of 1 to trial th
available bandwidth in the network. It thus makes no assumptions and tries to find
fast what could be its fair share of the available bandwidth. Once it encounters an e
either due to a retransmission time-out or due to 3 consecutive duplicate acknow
ments (fast retransmit), it halves its slow start threshold (sstresh) and does anothe
This repeats until slow start reaches sstresh without any losses, then the cong
avoidance (CA) phase is started. In CA the sender still probes the network for m
capacity but now at a linear increase per RTT.

For new multimedia applications like media streaming TCP has several drawba
• retransmissionsare unnecessary since old (retransmitted) data is usually worth

for streaming applications,
• the bandwidthresulting from TCP’s window-based congestion control algorithm

tends tooscillate too much for streaming applications,
• the initial slow start behaviouris the exact opposite of what streaming application

would desire, namely an initially high rate that allows to fill the playback buffer su
1

f the

as a
n the
uch
TCP-
ch as

eve
erage

ld
ni-

that,
ions
sals

ing
d as

Yet,
ini-

rans-
ially
yed
tch
like

ir to
ew

ase.
e our
ance

situa-
t of a
ould
e or
by

igher
from
ne-

rver
past
ming
that later rate variations can be accommodated by the smoothing effects o
buffer.

This is why many of these applications employ UDP (User Datagram Protocol)
transport protocol. However, UDP does not have a congestion control, based o
assumption that there is little UDP traffic. Yet, this may be not true any more if s
UDP-based streaming applications become successful. That is why a number of
friendly congestion control schemes have been devised for UDP transmissions su
media streaming. The definition of TCP-friendliness is informally phrased “achi
fairness with concurrent TCP transmissions, i.e., achieve the same long-term av
throughput as a TCP transmission”. Of course, it should be mentioned that byTCP-
fairnessthe following is meant: ifN TCP sessions share a bottleneck link each shou
get 1/N-th of the link’s capacity (assuming they do not want less, a more formal defi
tion of TCP’s max-min fairness captures this case).

1.2 Motivation: Why and How to Avoid TCP Slow Start

If TCP-friendliness is accepted as a MUST in the Internet, it needs to be observed
while TCP-friendly transmission schemes can avoid the problems of retransmiss
and unsteady bandwidth availability to some degree (we will discuss some propo
below), all TCP-friendly protocols inherit TCP’s gross start-up behaviour result
from slow start. Note that TCP’s start-up behaviour has for some time been realize
a problem for transfers of short duration as typically seen for HTTP requests [3].
also for long-term streaming applications in contrast to long-term file transfers the
tial transmission performance is of high importance, since they need to present t
mitted data (more or less) immediately to the user and it might be espec
dissatisfying if the start of a media transmission is badly disturbed or heavily dela
due to a slow filling of the playback buffer (which might make the consumer swi
away again). Besides, promising optimizations of media distribution systems
patching may involve short transfers, too [4].

On a higher level of abstraction one could argue that TCP is transiently unfa
new sessions which are still in their probing phase. Ideally, one would wish for a n
session to start sending with its fair share and immediately go into a CA-like ph
The question now is how could we make a step towards this ideal behaviour. Sinc
target application is media streaming, we may assume that we have high-perform
servers streaming the media towards a large number of clients. We are thus in a
tion where TCP’s zero knowledge assumption about the network state at the star
new transmission towards a client is unnecessarily limiting since such a server c
take advantage of the probing of past and concurrent transmissions to the sam
“similar” clients. The server could thus improve its congestion control decisions
reflectingon past decisions / experience and could start the transmission at a h
rate avoiding the SS phase altogether. Of course, care must be taken to back-off
this rate immediately if the estimation of available bandwidth turns out to be erro
ous.

In essence, the goal of our investigations is the development of a reflective se
design build around TCP-friendly transmission schemes but using statistics from
network experience to achieve a favourable start-up behaviour for media strea
2

ich
hey

yet

t of
ns-
the

asic
her

cer-
mple,
the
ion.

istic
band-
which
ased
to the

smis-
that
n be
P’s

par-

thus

TTP
such a
een
applications. The basic motivation stems from empirical data gathered by [5] wh
reports on temporal as well spatial stability in throughputs for Web transfers: t
already concluded “... this allows for caching and sharing to achieve efficiency ...”

2 Related Work & Own Contribution

We present the related work in three areas:TCP-friendly transmission protocolson
which we build, but which we do not aim to improve themselves or propose
another one;TCP optimizations for short transferslike HTTP requests as a motivation
and basic groundwork for our investigation;Inter-session congestion controlas
directly related work.

2.1 TCP-Friendly Transmission Protocols

The design of TCP-friendly transmission protocols has recently experienced a lo
attention. A nice overview can be found in [6]. Their basic rationale is to avoid retra
missions and to improve TCP’s oscillating bandwidth behaviour by smoothing
available bandwidth to a session. There is mainly two flavours:
• window-based schemes like [7, 8] that generalize resp. slightly change TCP’s b

AIMD (additive increase, multiplicative decrease) behaviour to allow for a smoot
transmission behaviour,

• rate-based schemes like [9, 10, 11] which adapt their sending rate according to a
tain rule between experienced loss and estimated available bandwidth. For exa
the TCP-friendly Rate Control (TFRC) protocol proposed in [9] is based on
empirical equation in [12] which relates loss to the fair bandwidth share of a sess

While window-based schemes inherit TCP’s favourable self-clocking character
and can generally be assumed to react faster to dynamic changes in available
width, rate-based schemes usually achieve a smoother transmission scheme
makes them more favourable for streaming applications. Furthermore, the rate-b
TFRC has been shown to react relatively fast to changes and has been extended
multicast case [13]. For these reasons we chose TFRC as the TCP-friendly tran
sion scheme which shall be integrated into our reflective server design. Yet, note
most of our work is independent of the actual transmission scheme and may eve
applied to TCP itself (which from our background is not so interesting due to TC
bad characteristics for streaming media).

2.2 Short TCP Transfer Optimizations

There has been some work on improving TCP performance for short transfers in
ticular for Web transfers. [14] experimented withlarger initial window sizesand found
larger initial window sizes particularly helpful for short transfers.Persistent HTTP(P-
HTTP) [15] is a technique to reuse TCP connections within one HTTP session,
not loosing the congestion window value. TheTCP Fast Starttechnique proposed by
[16] enhances P-HTTP to use cached congestion window values for the same H
session after an idle period of that session and proposes to send packets during
fast start phase at a lower priority. Similarly, [17] proposes to differentiate betw
short and long transfers by assigningdifferent drop prioritiesto the latter and shows by
3

two
la

ially
l of

ese
nsider
con-

o dif-
ns of
iffer-
inter-
egra-
for-
ur

anges
ke as
a may
g of

stion
t it
[19]
tory
tion

al is
hich
nce
with
ro-
quire

, they
is
f a
lves

try
start-
sary
edia
simulations to improve short transfers’ performance. As a comment to the latter
approaches, note that they require a form of differentiation within the network a
DiffServ. While this is technically feasible one needs to be aware that it essent
destroys IP’s traditional best-effort model and in particular its economic mode
access charging.

2.3 Inter-Session Congestion Control

Directly related to our work is what we call inter-session congestion control. Th
proposals go beyond proposals in the preceding section in the sense that they co
network performance experience from other concurrent or past sessions for their
gestion control decisions. To gather data from other sessions one can imagine tw
ferent types of inter-session congestion those based on the collection of all sessio
a single host which then typically needs to be a busy server or to accumulate the d
ent sessions’ experience at a certain (shared) gateway. While the former type of
session congestion control requires the installation of such a gateway and its int
tion in the routing of sessions as well as a distributed protocol for accessing its in
mation, the latter approach exploits purely local information. This is why we favo
inter-session congestion control at a single server since it requires much less ch
of existing infrastructure. On the other hand, this means that a server needs to ma
optimal use of its experiences as possible because the scope of the available dat
be limited. The Congestion Manager concept introduced by [18] focuses on sharin
knowledge betweenconcurrentsessions within a host, whereas we concentrate onpast
experiences. Also, [18] is more about mechanisms like an API to exchange conge
control information which makes it complementary to our work, in the sense tha
may be a good framework for implementing the mechanisms we propose here.
introduces what they call inter-host congestion control and give some nice introduc
motivation for the efficiency gains that may be achievable. Their sharing of conges
control information is solely based on what they callnetwork locality, i.e., only desti-
nations that have a common 24-bit subnet mask share information. Their propos
restricted to TCP transmissions. Along the same lines yet more detailed is [20], w
proposes the use of a gateway. Again this work is only suited for Web-like traffic si
only TCP is considered and they only share information between destinations
common 24-bit subnet masks (network locality). In conclusion, while the above p
posals are very interesting, they are specialized for TCP transmissions and may re
substantial infrastructure changes due to the gateway approach. Furthermore
employ a simple rule for sharing congestion control information, which, while it
empirically shown to be a good rule [20], may be too restrictive for the case o
server-based inter-session congestion control for media streaming, which invo
compared to a Web server a lesser number of sessions.

2.4 Own Contribution

After the review of related work our contribution can be summarized as follows: we
to make use of information from past experience at a media server to improve the
up behaviour of TCP-friendly media streaming sessions at a minimum of neces
changes to existing infrastructure. The latter constraint means we only allow for m
4

e, we
elf,
st be
er of
how
be

ristic
icu-
hile
al-
idth

dia
ther
ore

, in
ntrol
on-

the
n the
er on
ical

then

can

use

ities

ring

-up

sion
win-

eme
ction
server-internal changes in contrast to existing work discussed above. Furthermor
concentrate on TCP-friendly transmission protocols like TFRC instead of TCP its
since our case is media streaming. Another specific of a media server that mu
taken into account is that compared to a Web server it serves only a limited numb
sessions over a certain time interval. That means we need to put special care in
good sharing rules between information from sessions to different clients can
achieved. Therefore, we go beyond the simple common 24-bit subnet mask heu
and try to exploit similarities between different clients as much as possible. In part
lar, the sharing rules should be defined along common bottlenecks for clients. W
network locality is a fairly safe heuristic for that (and much better than just host loc
ity), we try establish more advanced sharing rules in order to be able to use bandw
availability data from as many sessions as possible.

3 Reflective Server Design for Inter-Session Congestion Control

In this section, we give an overview of the high-level design of our reflective me
server. The underlying principles of our reflective media server proposal is to ga
past bandwidth availability data, process these data intelligently in order to make m
informed decisionswhen starting a new TCP-friendly streaming session. Note that
principle, a reflective server design could involve more changes of congestion co
decisions than just at start-up. However, here we only want to focus on the initial c
gestion control behaviour.

3.1 Functional Components

Two different, concurrently performed areas of operation can be distinguished for
reflective media server: the actual handling of media requests and the reflection o
corresponding transmission observations. The latter process of reflection is furth
calleddata managementbecause it involves the gathering and processing of statist
data for past sessions. The results from the data management operations are
exploited in serving the media requests, i.e., in the congestion-controlledtransmission
of the media objects.
Data Management: The following subtasks for the data management component
be identified:
• data gathering,i.e., record the data from sessions on a periodical basis for later

by other sessions,
• data clustering, i.e., explore the data on past and concurrent sessions for similar

in order to find maximum sharing rules between the recorded data,
• data prediction, i.e., forecast fair bandwidth share for a session based on the sha

rules constructed in the preceding step.
Transmission: As discussed above we focus on the improvement of the start
behaviour for media streams, i.e., we introduce what we callinformed startwhich con-
trasts to slow start by assuming knowledge when choosing an initial transmis
speed (in terms of a rate when a rate-based scheme is used or a window size if a
dow-based scheme is employed)

Since our case is media servers we employ a TCP-friendly transmission sch
instead of TCP due to its problems with media streaming described above. In Se
5

asily

e

re

ting
es;
e
ility
ell as

s
effec-
ove

sub-

ent

cided
rium
each
ales,
pur-

and-
. A
2, we have argued for our use of TFRC, although most of our proposal could be e
transferred to other TCP-friendly transmissions schemes.
Design Decisions and Overall Scheme:The major design decisions we have mad
are to:
• usepassive measurementsfrom past and existing connections in order not to requi

substantial changes to existing infrastructure;
• restrict our inter-session congestion control schemeto single servers, i.e., have no

exchange of information between servers, although this could be an interes
extension, yet again we only wanted to introduce local, minimal-invasive chang

• samplethe fair bandwidth shareinstead of more algorithm-specific measures lik
congestion window sizes or loss rates, this is especially motivated by compatib
of the data management component with differing transmission schemes as w
favoring of rate-based transmission protocols for media transmissions;

• put strong emphasis on the data clusteringstep in order to support environment
where we have potentially scarce data such that exploitation needs to be done
tively, i.e., we need to maximize sharing of information between sessions to impr
upon prediction accuracy;

• target atrate-based TCP-friendly transmissions.
The overall scheme of our refective media server design with its two concurrent
components and their subtasks is depicted in Figure 1.

4 Data Management

In this section, we take a more detailed (albeit informal) look at the data managem
component and its subtasks within our reflective media server design.

4.1 Data Gathering

The major questions for data gathering are which data to gather and when. We de
to gather the available bandwidth values after they have reached a certain equilib
state (i.e., the rate does not vary too much any more). The available bandwidth of
session (identified by the client’s destination address) is tracked on two time-sc
one on the order of RTTs and one on the order of minutes. These serve different
poses. The longer time-scale values are used for identifying similar available b
width properties for different clients, i.e., they are input for the data clustering task

Informed
Start

Gathering

Clustering

Prediction

Data Management

Figure 1:Reflective Media Server Design.

Congestion
Avoidance

Transmission
6

tem-
sed
urse

refore
n, in

they
r 24

order
clus-
rom-
work
like
e sit-
ts is
bot-
e to

urther-
ues,
ral
hile

nges-
n as

ble
cli-
ork
so-

le
r the
d for
ffer-
y we
sys-
am-
s are
ma-

data
btain
tity to
time-scale on the order of minutes seems sufficient for that purpose based on the
poral stability observations reported in [5]. The shorter time-scale values are u
within the data prediction step and therefore need to be very recent. During the co
of time, the short time-scale data become the longer time-scale data and are the
aggregated as the mean available bandwidth in a given time interval of a sessio
order to save storage space. Of course, data also need to be removed when
become too old, in particular we decided to track session characteristics only fo
hours.

4.2 Data Clustering

The data clustering subtask is a preparation step for the actual data prediction in
to make as much use as possible from the given data. In particular, we perform a
ter analysis along the available bandwidth samples of different sessions, which p
ises more comprehensive sharing rules than for a second-order criterion like net
locality, since it allows to capture more similarities between clients / sessions, e.g.,
the use of the same access technology which might always form a bottleneck or th
uation when a transatlantic link is underdimensioned and a certain subset of clien
only reachable via this link. So, clients do neither need to share exactly the same
tleneck but only a structurally similar one, nor does the bottleneck need to be clos
them. Both of these insights can be used to increase sharing between sessions. F
more, we cluster along available bandwidth trajectories, and not just single val
over relatively large time-scales (24 hours), which also allows to identify tempo
similarities. Please note again here that all of this data is only used for clustering w
for the prediction we are well aware that such data can be considered stale for co
tion control purposes, yet the aim is to make the available data set for predictio
large as possible in order to improve the prediction accuracy.

Since for individual clients the covering of a 24 hour interval by sampled availa
bandwidth values is likely to be insufficient, we first aggregate the samples of all
ents of a network cloud defined by the common 24-bit subnet mask heuristic (netw
locality). The actual technique we then use for clustering the network clouds is
calledagglomerative clusteringbased on maximizing the inter-cluster distance whi
minimizing the intra-cluster distance where we use the euclidean distance norm fo
bandwidth trajectories [21]. The resulting clusters represent the sharing rules use
data prediction. The alert reader may notice that the bandwidth trajectories for di
ent network clouds may be based on different time reference systems, which is wh
first (linearly) interpolate the bandwidth trajectories on a common time reference
tem. In addition, we eliminate network clouds for which too little data have been s
pled. Note that network clouds that have been excluded from the cluster analysi
not excluded further on from the prediction step, but have to cope with less infor
tion for the prediction since they form individual clusters.

4.3 Data Prediction

The data prediction step takes as an input the short time-scale samples from the
gathering and uses the sharing rules resulting from the data clustering subtask to o
a set of samples as large as possible to ensure an accurate prediction. The quan
7

t for
the

e this
ple

rate-

we
imal
lable
his
d in
ents
sam-

ction
s is

and
not
. Fur-

y to
hion.

edia
le of a

a
luated
ur by
-
up.
nd-

lim-
eiver
This
nding

o the
a pro-
hav-

n a
y one
band-
nd-
C
. In
predict is the fair share of bandwidth available to a new media stream. Note tha
different congestion control schemes this value may have to be transformed in
quantity that is relevant for the respective scheme, i.e., for a window-based schem
has to be transformed into an initial window size (which would require to also sam
the RTT, which for ease of discussion we have left out here since our focus is on
based schemes).

The actual prediction technique we use is an optimal linear predictor [22], i.e.,
make relatively little assumptions on the underlying stochastic process. This opt
linear predictor uses the existing realization of the stochastic process of the avai
bandwidth to set its linear coefficients such that the prediction error is minimized. T
is only possible if the underlying process is ergodic, however, the results reporte
[5] are encouraging with respect to this assumption. The number of linear coeffici
that are employed depend on the number of samples that are available, the more
ples are available the more linear coefficients are used resulting in a higher predi
accuracy. So, this is exactly the point where the maximization of the sharing rule
exploited.

Note that the choice of an optimal linear predictor is not necessarily the best
final choice, but hopefully a good first step for a prediction technique since it does
make too strong assumptions on the underlying stochastic process to be predicted
thermore, it allows for a confidence value to be computed which allows potentiall
make use of the performance parameter estimated in a statistically controlled fas

5 TFRC Transmission UsingInformed Start

Concurrently to the data management operations, the actual transmission of m
streams takes place. As discussed above we chose TFRC as a (good) examp
TCP-friendly transmission protocol for media streams. Now, we describe how
TFRC-based media streaming can take advantage of the data gathered and eva
by the data management component to improve a media stream’s start-up behavio
using what we call aninformed startinstead of the normal slow start algorithm. There
fore, we first discuss in a little bit more detail how TFRC works especially at start-

At the start-up of a session, TFRC mimics TCP’s SS behaviour: it doubles its se
ing rate every RTT and even tries to emulate TCP’s self-clocking characteristic by
iting the sending rate to two times the received bandwidth as reported by the rec
(which sends these reports every RTT). It does so until a loss event occurs.
enables then a receiver-based rough estimation of the loss rate as the correspo
loss rate for half of the current sending rate. This estimated loss rate is returned t
sender and used to compute the allowable sending rate using the TCP rate formul
posed in [12]. Furthermore, the sender then turns into a less aggressive CA-like be
iour which is again determined by the TCP rate formula: if the formula results i
higher value than the current sending rate then the sending rate is increased b
packet per RTT. Assuming we have enough data to make a sensible fair share
width prediction we can avoid the SS-like behaviour and start with the predicted ba
width, i.e., perform an informed start (IS) and turn to the CA-like phase of TFR
directly. An IS requires, however, special care since the prediction might be wrong
particular, IS works the following way:
8

lates
ards
esti-

nt to

um of
ini-

the

or-

as
ere
ate of
esti-

loss
ding
a fur-
een

timat-
and-
(the

val-
ually
our.
ss
adapt

resti-
se a
ain

t we
edia
vail-
it is

ould
pt to

the
viour
f our

of the
• The transmission starts with the predicted rate. After 1.5 RTT the receiver calcu
the corresponding loss rate from the inverse TCP rate formula and sends it tow
the sender. It cannot invoke the TCP rate formula before because it requires an
mate of the RTT which is only determined after 1 RTT at the sender and then se
the receiver (which takes another 0.5 RTT).

• Before the sender receives the first loss rate estimate the sender uses the minim
predicted rate and received rate as reported by the receiver. This restriction m
mizes the negative effect of a wrong prediction for the available fair share of
bandwidth.

• After it got the first loss rate estimation (after 2 RTT), the sender uses TFRC’s n
mal CA-like behaviour further on.

• In case of packet loss two cases must be distinguished:
1) packet lossbefore 2 RTT: this indicates that the predicted available bandwidth w
too optimistic and the sender should backoff immediately in order not to interf
with other TCP sessions. Of course, due to the packet loss we have a first estim
the loss rate, however it is very likely to be too pessimistic since due to the over
mation of the allowed sending rate losses are probably excessive. Using that
rate would consequently lead to an underestimation of the actual allowed sen
rate. Fortunately, we also have the received rate as reported by the receiver as
ther guide. While the received rate itself is obviously too high because we have b
overly aggressive at the start-up, we can take a compromise between underes
ing and overestimating the allowed sending rate by taking the mean of the fair b
width share as computed by the TCP rate formula and the received bandwidth
mean is the best estimate if we have no further information on which of the two
ues could be closer to the actual allowed sending rate). When the fair rate event
becomes higher than the received rate we turn to normal CA-like TFRC behavi
2) packet lossafter 2 RTT: here we just use normal TFRC behaviour, i.e., the lo
rate is reported to the sender and the sender invokes the TCP rate formula to
its current sending rate.

A further question that comes up after this discussion is what happens if we unde
mate the currently available bandwidth. Here, the problem is that since we do not u
SS-like trialling of the available bandwidth at the start of a new session we may rem
in a state of underutilizing the fair share for that media stream. However, at leas
are not harming anybody besides that session and probably for the case of m
streaming we should actually reject the request for a new stream if the predicted a
able bandwidth is too low since we cannot expect our estimate to be too low and
better not to start a session which can anyway not deliver the quality a user w
expect. Alternatively, we could decide to use SS for that session to at least attem
set it up.

6 Simulations

The aim of the following simulation experiments with the ns-2 simulator is to show
basic improvements that can be achieved with an IS over the normal SS-like beha
of TFRC. They are not about the analysis of the data management component o
reflective media server design, but make extreme assumptions on the outcome
9

to be
nly

pari-
up we

Mb/
eno

f the

4s

ic-

d-

d-

, we
- the

ective
that
-up
il it
iate
d-
n be
n an

ation
other
rom
data management operations: the fair share bandwidth predictions are assumed
either correct, far too high, or far too low. We are aware that the simulations can o
have a partial and simplifying character, yet, they give a basic showcase for a com
son between IS and SS-based media transmissions. The simple simulation set
used for these experiments is shown in Figure 2.

The queue at the bottleneck link uses drop tail, all links are dimensioned at 10
s (or 1.25 MB/s) with a propagation delay of 10 ms. The TCP senders use TCP R
(i.e., they employ fast retransmit) and all of them are all started at the beginning o
simulation runs (t = 0s). At approximately t = 4s theyachieved an equilibrium state
where they shared the available bandwidth at the bottleneck link fairly. Thus at t =
we started our different versions of TFRC:
• TFRC with usual SS,
• TFRC with IS and correct prediction (CORR), i.e., the fair share bandwidth pred

tion is 1/21 of 1.25 MB/s (≈ 60 KB/s)
• TFRC with IS and far too high prediction (HIGH), in particular, the fair share ban

width prediction is 3 times too high (≈ 180 KB/s)
• TFRC with IS and far too low prediction (LOW), in particular, the fair share ban

width prediction is 3 times too low (≈ 20 KB/s)
In Figure 3, the simulation outcomes for the different scenarios are given. Here
have depicted the sending behaviour of one of the TCP senders (TCP-Sender 1
others showed the same behaviour, though with some phase shifts) vs. the resp
TFRC sending behaviour in the relevant time-scale (from 3s to 15s). It is obvious
with a correct prediction we can substantially improve on TFRC’s usual start
behaviour resulting from SS: TFRC with SS took about 5s (from t = 4s to 9s) unt
turns to a stable CA-like behaviour, whereas TFRC with IS(CORR) shows immed
stability from its start. Interestingly, also for a far too high prediction of the fair ban
width share for the TFRC session, it takes only about 1s until a stable behaviour ca
observed. So, we have achieved the goal of a fast reaction of the informed start o
overestimated bandwidth prediction. The case IS(LOW) shows that an underestim
requires a longer start-up phase until the fair bandwidth share is reached than the
cases (including the slow start case), yet it does so in a fairly smooth way which f
the perspective of streaming applications should be desirable.

TCP-Sender 1

TCP-Sender 20

TFRC-Sender

Data

Feedback

TCP-Sender 2

TCP-Receivers 1-20

TFRC Receiver

Figure 2:Simulation Setup.
10

edia
eous
e we
ional
, we
se of
edia
ndly
ations
sim-
tart-

rms.
sive
te-
lan
ated
rom

et-

s.
7 Conclusions & Outlook

In this paper, we have investigated how TCP-friendly transmission schemes for m
streaming could be enhanced to circumvent the inheritance of TCP’s disadvantag
start-up behaviour by the use of inter-session congestion control. For that purpos
have introduced a reflective media server design and described its major funct
components: data management and transmission. In contrast to previous work
have focussed on the maximization of sharing rules between sessions by the u
cluster analysis techniques taking into account the specific requirements for m
streaming servers. We have shown how TFRC, a special instance of a TCP-frie
transmission protocol can be extended to use an informed start based on the oper
performed by the data management component of the reflective media server. By
ulations we have shown the benefits of an informed start over the normal slow s
like behaviour of TFRC.

A major open question is how well the data management component perfo
This is naturally one of our future goals to investigate. For this we need exten
empirical data, similar to the study performed in [5]. Besides, we are currently in
grating TFRC into our publicly available media streaming system KOMSSYS and p
to realize the presented reflective media server design in that framework. A rel
issue we want to investigate is whether the predictions on available bandwidth f
the data management component could also be used as a starting point for atentative
admission controlof new streams for a media server operating over a best-effort n
work as the Internet.

S
e

n
d

in
g

 R
a

te
 (

K
B

/s
)

Time (s)

Figure 3:Slow Start vs. Informed Start TFRC with Differing Prediction Scenario

Slow Start Informed Start (CORR)

Informed Start (HIGH) Informed Start (LOW)

0

20

40

60

80

100

120

140

160

180

200

4 6 8 10 12 14

TCP1
TFRC

S
e

n
d

in
g

 R
a

te
 (

K
B

/s
)

Time (s)

0

20

40

60

80

100

120

140

160

180

200

4 6 8 10 12 14

TCP1
TFRC

S
e

n
d

in
g

 R
a

te
 (

K
B

/s
)

Time (s)

0

20

40

60

80

100

120

140

160

180

200

4 6 8 10 12 14

TCP1
TFRC

S
e

n
d

in
g

 R
a

te
 (

K
B

/s
)

Time (s)

0

20

40

60

80

100

120

140

160

180

200

4 6 8 10 12 14

TCP1
TFRC
11

s

dards

ces.

ork

ing
nd

nce
ls,

nism
he

icast
ies,

ia

its
es,

ns .
res,

16 -

re for
ies,

t, and
References
[1] S. McCreary and K. Claffy. Trends in Wide Area IP Traffic Patterns. InProceedings of 13th ITC

Specialist Seminar on Internet Traffic Measurement and Modeling, September 2000. http://
www.caida.org/outreach/papers/AIX0005.

[2] V. Jacobson. Congestion Avoidance and Control.ACM Computer Communication Review; Proceeding
of the Sigcomm ’88 Symposium in Stanford, CA, August, 1988, 18, 4:314–329, 1988.

[3] R. Braden. RFC 1644 - T/TCP – TCP Extensions for Transactions Functional Specification. Stan
Track RFC, July 1994.

[4] K. A. Hua, Y. Cai, and S. Sheu. Patching: A Multicast Technique for True Video-on-Demand Servi
In Proceedings of the ACM Multimedia Conference 1998, Bristol, England, pages 191–200, September
1998.

[5] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz. Analyzing Stability in Wide-Area Netw
Performance. InProc. of the ACM SIGMETRICS, Seattle, WA, pages 2–12, 1997.

[6] J. Widmer, R. Denda, and M. Mauve. A Survey on TCP-Friendly Congestion Control.Special Issue of
the IEEE Network Magazine "Control of Best Effort Traffic", 15(3):28–37, May 2001.

[7] D. Bansal and H. Balakrishnan. TCP-friendly Congestion Control for Real-time Stream
Applications. In Proceedings of the 20th Annual Joint Conference of the IEEE Computer a
Communications Societies (INFOCOM’01). IEEE Computer Society Press, Anchorage, April 2001.

[8] S. Jin, L. Guo, I. Matta, and A. Bestavros. TCP-friendly SIMD Congestion Control and Its Converge
Behavior. InProceedings of ICNP’2001: The 9th IEEE International Conference on Network Protoco
Riverside, CA, 2001.

[9] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-End Rate-based Congestion Control Mecha
for Realtime Streams in the Internet. InProceedings of the Eighteenth Annual Joint Conference of t
IEEE Computer and Communications Societies 1999, New York, NY, USA, pages 395–399, March 1999.

[10] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion Control for Un
Applications. InProceedings of the ACM SIGCOMM ’00 Conference on Applications, Technolog
Architectures, and Protocols for Computer Communication 2000, Stockholm,pages 43–56, August
2000.

[11] I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP emulation at receivers - flow control for multimed
streaming. Technical report, North Carolina State University, April 2000.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: A Simple Model and
Empirical Validation. InACM SIGCOMM ’98 Conference on Applications, Technologies, Architectur
and Protocols for Computer Communication, pages 303–314, Vancouver, CA, 1998.

[13] J. Widmer and M. Handley. Extending Equation-Based Congestion Control to Multicast Applicatio
In Proceedings of the ACM SIGCOMM ’01 Conference on Applications, Technologies, Architectu
and Protocols for Computer Communication 2001, San Diego, CA, pages 275–285, August 2001.

[14] M. Allman, C. Hayes, and S. Ostermann. An evaluation of TCP with larger initial windows.ACM
Computer Communication Review, 28, 3:41–52, 1998.

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. BernersLee. RFC 26
Hypertext Transfer Protocol – HTTP/1.1. Standards Track RFC, 1999.

[16] V. Padmanabhan and R. Katz. TCP fast start: a technique for speeding up web transfers. InProc. IEEE
Globecom ’98 Internet Mini-Conference, Sydney, Australia, 1998.

[17] L. Guo and I. Matta. The War Between Mice and Elephants. InProceedings of ICNP’2001: The 9th
IEEE International Conference on Network Protocols, Riverside, CA, 2001.

[18] H. Balakrishnan, H. Rahul, and S. Seshan. An Integrated Congestion Management Architectu
Internet Hosts. InProceedings of the ACM SIGCOMM ’99 Conference on Applications, Technolog
Architectures, and Protocols for Computer Communication 1999, New York, NY, USA, pages 175–187,
August 1999.

[19] S. Savage, N. Cardwell, and T. Anderson. The Case for Informed Transport Protocols. InProceedings of
the Seventh Workshop on Hot Topics in Operating Systems, Rio Rico, AZ, March 1999.

[20] Y. Zhang, L. Qiu, and S. Keshav. Speeding Up Short Data Transfers: Theory, Architecture Suppor
Simulation Results. InProceedings of NOSSDAV 2000, June 2000.

[21] A. Gordon.Classification. Chapman-Hall, 1999.
[22] A. Papoulis.Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1991.
12

	A Reflective Server Design to Speedup TCP-friendly Media Transmissions at Start-Up
	Jens Schmitt, Michael Zink, Steffen Theiss, Ralf Steinmetz
	KOM, Darmstadt University of Technology, Germany {Jens.Schmitt,�Michael.Zink,�Steffen.Theiss,�Ral...
	Abstract
	1 Introduction
	1.1 Background: TCP Congestion Control and Media Streaming
	1.2 Motivation: Why and How to Avoid TCP Slow Start

	2 Related Work & Own Contribution
	2.1 TCP-Friendly Transmission Protocols
	2.2 Short TCP Transfer Optimizations
	2.3 Inter-Session Congestion Control
	2.4 Own Contribution

	3 Reflective Server Design for Inter-Session Congestion Control
	3.1 Functional Components
	Data Management
	Transmission
	Design Decisions and Overall Scheme
	Figure 1: Reflective Media Server Design.

	4 Data Management
	4.1 Data Gathering
	4.2 Data Clustering
	4.3 Data Prediction

	5 TFRC Transmission Using Informed Start
	1) packet loss before 2 RTT: this indicates that the predicted available bandwidth was too optimi...
	2) packet loss after 2 RTT: here we just use normal TFRC behaviour, i.e., the loss rate is report...

	6 Simulations
	Figure 2: Simulation Setup.
	Figure 3: Slow Start vs. Informed Start TFRC with Differing Prediction Scenarios.

	7 Conclusions & Outlook
	References

