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ABSTRACT
Key management in wireless sensor networks does not only
face typical, but also several new challenges. The scale, re-
source limitations, and new threats such as node capture and
compromise necessitate the use of an on-line key generation,
where secret keys are generated by the nodes themselves.
However, the cost of such schemes is high since their secrecy
is based on computational complexity. Recently, several re-
search contributions justified that the wireless channel itself
can be used to generate information-theoretic secure keys be-
tween two parties. By exchanging sampling messages during
movement, a bit string can be derived that is only known to
the involved entities. Yet, movement is not the only possi-
bility to generate randomness. The channel response is also
strongly dependent on the frequency of the transmitted sig-
nal. In our work, we introduce a protocol for key generation
based on the frequency-selectivity of channel fading. The
great practical advantage of this approach is that we do not
rely on node movement as the source of randomness. Thus,
the frequent case of a sensor network with static motes is
supported. Furthermore, the error correction property of
the proposed protocol mitigates the effects of measurement
errors and other temporal effects, giving rise to a key agree-
ment rate of over 97%. We show the applicability of our
protocol by implementing it on MICAz motes, and evaluate
its robustness and secrecy through experiments and analy-
sis.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Distributed
networks, Wireless communication

General Terms
Security, Algorithms, Measurement
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1. INTRODUCTION
Securing wireless sensor networks (WSNs) has been one

of the main wireless network research areas in recent years.
Especially key generation and key management, which are
at the heart of any security design, pose new challenges be-
cause of the low computational capabilities of wireless motes,
their limited battery lifetime, and the broadcast nature of
wireless communication. Given these peculiarities, a large
number of key management protocols for WSNs has been
proposed, often fine-tuned between different performance
vs. security trade-offs and adapted for specific WSN scenar-
ios and their applications (for a general overview see, e.g.,
[3, 15]). However, most of these protocols follow a conven-
tional cryptographic approach, where the secret is based ei-
ther on pre-distributed keys or public-key schemes assuming
more performance capable devices that are able to generate
and distribute the keys. Although there have been efforts
to adapt public key cryptographic protocols to the world of
WSNs (e.g., TinyECC [6]), these adaptations usually have
a significant complexity and memory footprint as well as a
high energy consumption (for energy analysis of public key
schemes, see, e.g., [13]).

Recently, there have been research contributions that fol-
low an alternative path to key generation using an infor-
mation-theoretic approach to derive secrets from unauthen-
ticated broadcast channels. Informally, the general idea is
similar to the quantum world, in which the laws of quantum
mechanics ensure that two spatially separated particles ex-
perience highly correlated quantum states (called “quantum
entanglement”). Measuring the quantum properties of one
particle discloses the knowledge of another. However, in con-
trast to the mystical quantum nature, contributions on key
generation using wireless channel are concerned with con-
ventional physical signal propagation and, to some extent,
its reciprocal behavior. Specifically, recent results described
by Mathur et al. [7] and Azimi-Sadjadi et al. [2] justify that
the unpredictable multipath propagation and the resulting
fading behavior of wireless channel can be used to extract
shared secret material. Simply by exchanging messages that
serve to sample the signal propagation behavior, both trans-
mitters can establish mutual secret information, while an
eavesdropper who also receives these messages still remains
completely ignorant. Since the secrecy of the extracted in-
formation is not based on computational complexity as com-
mon to conventional public key cryptography, these proto-
cols are especially valuable to computationally limited wire-
less devices. Yet, existing solutions require that the wireless
devices move at certain speeds to produce enough unpre-



dictability in their signals. Thus, the most prevalent appli-
cations of WSNs which are based on static wireless motes
makes these protocols inapplicable. This brings us to the
contribution of this work, which abstains from this limita-
tion and provides a novel key generation protocol for static
WSNs.

2. CONCEPT
In this section, we introduce the concept of key genera-

tion using the frequency-selectivity of wireless channels. As
we base the secrecy of our protocol on our ability to ex-
tract secrets at two different locations, we require two things
from the wireless channel: strongly correlated information
between the two parties and high unpredictability of the gen-
erated keying material for adversaries. Our results in [14]
show that two parties experience strong correlation in their
measured values (the so-called channel reciprocity), so we
will focus on security aspects in this paper.

2.1 Security Considerations
The unpredictability of the channel state is the most im-

portant aspect when considering the wireless channel as the
source of randomness, as it directly affects the provided se-
crecy. In the related work [7, 2], the spatial selectivity of
the wireless channel due to movement was used to gener-
ate secret bits. In this work, we show that the frequency-
selectivity of multipath fading is a viable alternative to gen-
erate secret information using the wireless channel.

In general, wireless signals are not traveling on a single
path from a sender to a receiver, but arrive from several
directions at the receiver, i.e., the signal exhibits multipath
propagation characteristics. Each path is affected by differ-
ent attenuations and phase shifts, and the resulting signal
at the receiver is a combination of all signal paths by wave
interference, resulting in a channel response depending on
many variables. A small variation in phase, e.g., by using a
different carrier frequency, leads to unpredictable changes in
the signal strength, even when signal paths are unchanged.
This behavior is captured by the impulse response of the
wireless channel, considering L signal paths

h(τ) =

L∑
l=1

αle
jφlδ(τ − τl),

with different values of each path for the amplitude αl, phase
shift φl and delay τl, acting as random variables on each
impulse δ. Because of phase shifts, interference effects can
lead to signal cancellation or amplification, depending on
the relative phase shifts.

To show the magnitude of these effects, we conducted
an experiment to evaluate the selectivity of the channel
both with respect to position and carrier frequency. Fig-
ure 1 shows the uncertainty of an adversary even if the po-
sitions of Alice and Bob are known up to a few centimeters.
Each barplot represents the received signal strength mea-
surements on 16 channels in the 2.4 GHz range available
on the MICAz platform. The sensor mote acting as Alice
was placed in a fixed position on a desk, Bob was placed in
an adjacent room, such that both were separated by a wall,
and the channel response was sampled from 12 positions on a
10 cm radius around Bob’s initial position. The results show
that the multipath effects are strong, and even if an attacker
has knowledge of the environment and the positions of Al-
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Figure 1: Spatial and frequency selectivity of the
wireless channel. Even with shifts of 5 cm, the mea-
sured signal prints are significantly different for each
position.

ice and Bob; the channel behavior is unpredictable. More
quantitative results are presented in Section 4.2.

2.2 System Model
We are interested in the amount of uncertainty that an ad-

versary experiences. Information theory introduces the no-
tion of (Shannon) entropy to quantify the average amount of
information of a discrete random variable, making it suitable
for capturing the amount of uncertainty an attacker experi-
ences. In this section, we derive a stochastic model of the
system enabling us to evaluate the secrecy of the proposed
protocol based on signal strength distributions of real-world
measurements.

2.2.1 Secrets from the Wireless Channel
The state of the wireless channel for a specified frequency

at a certain point in time is captured by the discrete random
variable C, that is, we assume that only finite precision can
be achieved in channel state acquisition. Possible sources for
this variable are, for example, the complex impulse response
of the channel, or as in our case, the received signal strength.
The outcome of C is stable during channel coherence time,
which depends on the speed of movement. In static scenarios
on which we focus, this time is very long, enabling us to take
several samples and use mean values as outcomes of C.

Both Alice and Bob have access to the wireless channel
and can exchange sampling messages. Each can monitor
one of the random variables

XAlice = CAlice +NAlice

XBob = CBob +NBob,

with Cx being the measured channel state at the respective
position and Nx being random variables representing the
noise processes that introduce errors in the channel state
estimations. With the help of channel reciprocity we can
assume that CAlice = CBob = C, i.e., both parties experi-
ence the same channel properties in their exchanged sam-
pling messages. The mutual information that the channel
provides is described by

I(XAlice, XBob) = H(XAlice)−H(XAlice | XBob) ≤ H(C).



The conditional entropy H(XAlice | XBob) is zero if the
channel is noiseless, and the amount of shared information
which Alice and Bob gain from monitoring the wireless chan-
nel is quantified by the entropy H(C) of the channel state
variable, given by

H(C) = −
∑
c∈C

p(c) log p(c),

where p(c) denotes the probability mass function of c and
C is the support of the random variable C. This also rep-
resents the maximum attainable mutual information from
the wireless channel [8]. An experimental evaluation of the
magnitude of measurement errors and the effects on secrecy
is given in Section 5, as we aim to quantify the amount of
secrecy using the propagation properties of realistic wireless
channels.

2.2.2 Multiple Channels
In this work, we consider the random vector C = (C1, . . . , Cn),

measured on n different frequencies to increase the amount
of shared information between Alice and Bob. This ap-
proach allows to support static networks. Alice measures

XAlice = (X
(1)
Alice, . . . , X

(n)
Alice) and Bob measures XBob, which

both can be used to obtain the mutual information

I(XAlice,XBob) = H(XAlice)−H(XAlice | XBob) ≤ H(C),

assuming reciprocity on all channels and H(C) being the
joint entropy over all channels, given by

H(C) = −
∑
cj∈Ci

p(c1, . . . cn) log p(c1, . . . , cn).

If the elements in the random vector are independent, then
the amount of uncertainty can directly be evaluated us-
ing the entropy values from individual channels, H(C) =∑n
i=1H(Ci). This value represents the upper bound of joint

entropy, as dependencies between the variables enable pre-
dictions and reduce the overall uncertainty of Eve. How-
ever, wireless channels experience correlated fading if the
distance between the center frequencies is smaller than the
coherence bandwidth. Therefore, we must analyze the de-
pendency structure to evaluate the amount of uncertainty,
i.e., the secrecy of keys generated by the presented protocol.

3. KEY GENERATION PROTOCOL
In this section, we present a key generation protocol suit-

able even for limited hardware capabilities by using a per-
formance-aware design, specifically with WSNs in mind.

We conduct measurements by sampling RSS values on
a set of n different frequencies F = {f1, . . . , fn} (also re-
ferred to as channels). The number of samples taken is
k, i.e., for each channel fi we collect a set of measure-

ments {mi} = {m(1)
i , . . . ,m

(k)
i }. To increase the error tol-

erance of our scheme, we calculate the mean value µi =
1
k

∑k
j=1m

(j)
i of these RSS samples. We view this mean as

the random variable Ci, which is distributed depending on
the characteristics of wireless propagation, e.g., following the
commonly assumed Rayleigh or Ricean distributions. The
means of all n channels are combined to a random vector
C =(C1, . . . , Cn). A realization, the outcome of our mea-
surements is µ = (µ1, . . . , µn), with µi ∈M = [µmin, µmax],
the range of mean values that can be measured by the hard-
ware platform. We associate M with the distance function

dis :M×M→ R+ defined as dis(µ, µ′) := |µ− µ′|, which
is the difference in dB in our case.

3.1 Robustness Considerations
In order to achieve a high success rate in the key gen-

eration, we require a mechanism that ensures equality of
the measurements of Alice and Bob. To this end, we in-
troduce a multilevel quantization scheme on the measured
signal strength values.

We choose K quantization levels, and each of these levels
is identified by the binary string p. For simplicity of anal-
ysis, the chosen levels have an equal distance. The choice
of K is critical for the security of the proposed key gener-
ation protocol. The higher the number of levels, the more
information can be extracted from the state of the wire-
less channel, however, the required precision in the mea-
surements equally increases, as the distance d between the
values is decreasing. We denote this set of quantization lev-
els as Ct = {c1, . . . , cK}, the bijective mapping to the bi-
nary representation as bin : Ct → {0, 1}p, which represents
the quantized values. The tolerance of this scheme is given
by t = d

2
, i.e., the proposed quantization algorithm is able

to repair deviations up to this value. Thus, we can trade ro-
bustness and secrecy by choosing a set Ct with a suitable pa-
rameter t ∈ R that is able to correct errors in measurements
given dis(µ, µ′) < t. The process of quantization of µ to c is
denoted as

enct(µ) = arg min
c∈C

dis(µ, c).

3.2 Protocol Phases
The complete protocol is shown in Figure 2. We used a

straightforward protocol for the ease of presentation of the
protocol evaluation, but we also experimented with several
protocol optimizations that can further increase the robust-
ness and secrecy of the protocol.

3.2.1 Sampling Phase
In this initial phase, Alice and Bob exchange sampling

messages on the set of available wireless channels. For each
of the n frequencies in F , Alice and Bob exchange k mes-
sages and each one stores a set of measured RSS values {mi}
or {m′i}, respectively. Alice initiates the message exchanges,
Bob answers incoming sampling messages as fast as possible
for a maximum of channel reciprocity. Due to constraints
of the wireless hardware, the samples must be collected in
an interleaved manner, such that the state of the wireless
channel can change slightly, contributing to the noise terms
NAlice and NBob. However, by using several sampling mes-
sages per channel, the effects of such short term deviations

can be mitigated. The mean values µi = 1
k

∑k
j=1m

(j)
i are

then generated by Alice, while Bob proceeds similarly with
µ′i. Thus, after finalization of the sampling phase, both Al-
ice and Bob possess the vectors of channel state information
µ and µ′ that capture the fading behavior of the wireless
channel.

3.2.2 Key Generation Phase
The gathered mean values µ and µ′ contain secret infor-

mation that can be used as secret keys, but after the sam-
pling phase these vectors are unlikely to agree. The key
generation phase uses information reconciliation based on a
multilevel quantization to produce a bit string that is equal
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Figure 2: Key generation protocol. The proposed key generation protocol operates in three phases. In the sampling

phase, the channel state is acquired, and due to the reciprocity of the wireless channel state information strongly

correlated measurements are collected by the two legitimate parties in the protocol. In the key generation phase, these

deviations are corrected, resulting in a secret bit string that is guaranteed to be equal if the experienced deviations

are bounded and a suitable quantization is used. The key verification phase ensures correct key agreement.

on both sides, without discarding shared bits or revealing in-
formation to eavesdroppers. Alice chooses a set of tolerance
values T = (t1, . . . , tn) based on the variance of the RSS val-
ues {mi} and the number of experienced verification errors
from possible previous runs. We used the same tolerance
value ti = 1 for all channels as the basis for our experiments
and analysis, which combines a high rate of successful key
agreements and good secrecy, as shown experimentally with
our implementation. However, the choice of tolerance values
strongly influences the robustness and secrecy trade-off, and
considering optimization at this point is useful.

Alice chooses tolerance values by using the the appropri-
ate quantization function encti on her mean values µi to
generate the values ci for each channel. She also generates
the vector of public reconciliation strings P = (P1, . . . , Pn)
by calculating Pi = ci−µi to aid Bob in his error correction
and to ensure matching secrets. He can generate his quan-
tized vector by calculating c′i = encti(µi +Pi). Both parties
now have sufficient information to generate their candidate
secrets secret and secret′.

3.2.3 Key Verification Phase
Finally, both parties proceed to verify if the secret keys are

generated successfully, i.e., if a mutual secret is established.
After Bob has finished his computations, he sends the hash
value h(secret′) of his secret string to Alice. She ensures
successful key generation by comparing Bob’s value to her
secret string. If the hash values do not match, Alice can retry
the key generation by increasing the error count and choos-
ing new tolerance values in the key generation phase; new
sampling of the wireless channel is not necessary. The ap-
proach used in our implementation uses a tolerance increase
of 0.5 dB on each channel. However, our implementation on
MICAz sensor motes presented in the next section shows
that with a tolerance t = 1, key agreement was reached in
90.5% of the cases on the first try.

After the finalization of this step, both Alice and Bob
share a secret string that can be used to support security
services.

4. IMPLEMENTATION AND ANALYSIS
After the definition of the key generation protocol, the

next interesting aspect is how this protocol performs in real-
world environments, and how large the achievable secrecy
and robustness is given realistic propagation properties. With
several experiments, these properties are explored in detail
in this section. We also show that the concept is applicable
on resource-constrained devices under realistic properties of
the wireless channel. The first part is focused on the robust-
ness and performance of the protocol, and in the second part
the secrecy is quantified empirically using the notion of in-
formation entropy. These insights are used as a basis and
justification for the analytical model developed in the next
section.

4.1 WSN Testbed and Methodology
Several different scenarios were considered to evaluate the

impact of positioning to secrecy and robustness. A large
meeting room was used for experiments, where the sensor
motes always maintained a line of sight connection, and sev-
eral smaller office rooms were used to quantify the impact
of shadowing objects and walls. For each of these scenarios,
250 positions were considered, and the distance was kept
constantly at 2.5 meters to avoid the influence of path loss
effects. In long-term and mobile scenarios, these rooms and
the connecting corridors were used, and 1000 additional po-
sitions were tested with mixed distances and obstacles. We
used k = 16 samples on each channel, collected on n = 16
channels.

4.2 Protocol Robustness and
Security Analysis

The success ratio of the protocol can be directly controlled
by the tolerance values used, as larger tolerance values are
able to correct stronger deviations. With a tolerance of 1 dB,
90.5% of the key agreements are successful on the first run.
This value is increased to 98.3% with a tolerance of 2 dB.
The empirical cumulative distribution function (ECDF) for
the successful key generations of all experiments is shown in
Figure 3. The majority of deviations are below 2 dB, and
only a small number of extreme outliers were measured. As



Jo
in

t 
S

h
a

n
n

o
n

 e
n

tr
o

p
y

0 0.5 1 1.5 2 2.5 3 3.5 4

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0
.0

0
.5

1
.0

Line of Sight
Non-LOS

Tolerance

Independence assumption

Dependent channels Pr
o

b
a

b
ili

ty
 o

f 
su

cc
e

ss
fu

l k
e

y 
a

g
re

e
m

e
n

tSuccess probability

Figure 3: Results for the implementation on MICAz
sensor motes. The amount of secrecy under differ-
ent dependence assumptions is shown, with the cor-
responding success probabilities of key agreement.

the chosen tolerance value also has an impact on the secrecy
of the resulting bit string, a careful trade-off between secrecy
and robustness must be found.

The secrecy analysis focuses on the distribution of code-
words, especially on the entropy that the distributions of-
fer. The evaluation of the entropy for single channels is
straightforward: we use the empirical distribution to calcu-
late H(Ci) for each of the n channels individually, using the
relative frequencies as the estimations of codeword proba-
bilities. This analysis results in 3.5 bit of entropy available
from each channel channel for a tolerance value of t = 1, a
value of t = 0.5 results in an increase to 4.38 bit. The joint
entropy under this assumption of independence is the sum of
the channels’ entropy values. The resulting entropy values
are shown in Figure 3.

The entropy of dependent channels is hard to quantify
considering unknown dependencies in the variables. The
Shannon entropy operates on the knowledge of the under-
lying distributions, which are unknown in our case, and a
precise estimate of these distributions, i.e., a large number of
observations, is necessary to estimate the entropy accurately.
This becomes increasingly difficult when considering multi-
variate distributions, as the number of observations needed
increases rapidly. Yet, several analytical tools are available
to estimate the joint entropy from empirical data [12, 10].
The approach in this work is based on construction complex-
ity, which uses insights from the theory of data compression
to find the shortest representation of the channel codewords,
which also results in a maximum entropy. As a result, us-
ing this method we were able to capture the dependencies
between channels in the empirical data without explicitly
knowing them. In Section 4.3, we use them for the verifica-
tion of the derived stochastic model.

A comparison of different results is shown in Figure 3.
With a tolerance value of t = 1, the entropy under indepen-
dence assumption is 56 bit for both LOS and non-LOS con-
nections. When considering the dependencies in the mea-
surements, 31 bit of entropy can be achieved with the limited
number of channels and precision that the wireless sensor
mote hardware offers. Lower tolerance values can be used
to increase secrecy. For example, a tolerance value of 0.4,
which results in a 50% chance of key agreement, offers 45 bit
under dependent channels. The hardware capabilities are
the most limiting factor in the proposed key generation pro-

tocol. Therefore, in the next section we analyze the amount
of secrecy if current technology limitations are lifted.

4.3 Analyzing Dependent Wireless Channels
The experimental analysis shows that the dependencies

between channels have considerable influence on the over-
all secrecy of the proposed protocol. In this section, we
develop a stochastic model that makes these dependencies
explicit and enables us to analyze the protocol and predict
ways to increase the achieved secrecy, such as the impact of
increasing the number of available channels or a larger spac-
ing between center frequencies. To derive a realistic model
of dependent wireless channels, we start with fitting and
validating the distribution of single channel measurements
and then extending it to a multivariate case, which describes
the dependency structure of wireless channels. The model
is validated by comparing the resulting entropy values with
our empirical results.

Frequently used distributions for large-scale models of wire-
less channels are Rayleigh, Ricean, or Log-Normal [9] de-
pending on the properties of the respective propagation envi-
ronment. Also, in scenarios common to WLANs and WSNs,
where distances between transceivers are short, the empir-
ical data can be estimated by the Normal distribution [11,
5, 1]. To find an adequate distribution, we collected 4000
RSS sample means for each of the LOS and non-LOS scenar-
ios, where every RSS mean was calculated over 16 measure-
ments, estimating the distribution parameters using Maxi-
mum Likelihood Estimation (MLE). Additionally, we tested
the normality of the sampled data using the probability plot
correlation coefficient test for normality (PPCC), which is
based on checking for linearity between the theoretical quan-
tiles and the sample data [4]. In fact, the goodness of fit
test confirms that the assumption of the Normal distribu-
tion (correlation coefficient = 0.992) can be accepted with
an even higher confidence than the corresponding Rayleigh
distribution (correlation coefficient = 0.967). In this case,
the multivariate Normal distribution can be used to describe
the complex dependency structures of wireless channels by
directly estimating the covariance matrix from the empirical
data.

Hence, to analyze the dependencies of the joint distribu-
tion over all 16 wireless channels, especially with respect to
joint entropy, we model the signal strength values of differ-
ent channels using a single multivariate Normal distribution.
The distribution parameter estimation is straightforward:
the vector of mean values µ, which is in case of the Normal
distribution already the MLE for the population mean, and
for the covariance matrix Σ we used the MLE method:

Σ̂ =
1

n− 1

n∑
i=1

(Xi −X)(Xi −X)T .

Finally, we validated the multivariate channel dependency
model against our empirical data by using the same error
correction mechanism (described in Section 4) to generate
codewords and to compare the Shannon entropy of the em-
pirical data with the results of the model. The results of
this evaluation are given in Figure 4, which shows the re-
sulting entropy values for the non-LOS data applying the
same analysis methods used in the experimental analysis.
The LOS experiment is omitted as the behavior is similar.
The model captures the dependency structure well, resulting
in a similar progression of the curve for the existing toler-
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Figure 4: Comparison of discrete entropy values
based on RSS values generated using the stochas-
tic model derived in Section 4.3.

ance values, although the entropy is slightly overestimated
by the model.

Using the model, we can estimate the amount of entropy
if additional resources are available, such as a higher num-
ber of channels or a larger spacing between channels. Due
to space limitations, we omit the extrapolation procedure
and only pointing out some results. Adding a new channel
that can be probed increases the amount of secret bits by
4.02. For example, if the number of channels of the present
IEEE 802.15.4 is set to 40, this protocols can generate up
to 160 bit secret keys in static scenarios. Additionally, the
model allows to analyze larger channel spacing, which de-
creases the dependency across channels. For example, the
additional gain if the channels are spaced 10 MHz apart,
instead of the 5 MHz spacing in our experiments, yields a
4.25 bit increase.

Our model shows that there are several ways to increase
the secrecy of the proposed protocol. With measurements
of higher precision it is possible to generate more bits on
each channel, but as this increases the hardware costs, it is
advisable to rather use a larger number of channels, or a
larger channel spacing.

5. CONCLUSION
Taking advantage of the unpredictable nature of wireless

communication, two transmitters can generate a shared se-
cret without exchanging any information other than frames
used merely for measuring the received signal strength. Most
importantly, any other transmitter that is positioned only a
few centimeters away remains ignorant of the generated se-
cret. While such an approach for generating secret keys has
already been addressed, existing contributions require move-
ment as the main generator of secret material. Valuable to
mobile networks, such solutions however are not applicable
to the majority of WSN applications based on static sensor
motes. The main focus of this work was to overcome this
limitation.

We started by introducing a system model based on real-
world measurements using IEEE 802.15.4 technology, and
describing building blocks of the novel key generation pro-
tocol. To demonstrate its applicability, the protocol was im-
plemented and evaluated using MICAz sensor motes. Exper-
iments show that the protocol is able to successfully generate
keys in over 95% of the cases, irrespective of the scenario. By
using only a very limited number of wireless channels, the

proposed protocol can already provide secrets up to 60 bit,
depending on the wireless channel behavior. In addition,
the derived stochastic model verified our experimental data
and provided insights on how to increase the number of gen-
erated secret bits. Finally, even if only a small number of
wireless channels is available, the introduced protocol can
be applied to various applications, e.g., as a part of device-
pairing schemes to establish an authenticated channel, or as
a source of fresh randomness for initial key deployments.
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