
Interference Scripting: Protocol-aware Interference
Generation for Repeatable Wireless Testbed Experiments

Matthias Wilhelm
Computer Science Department

TU Kaiserslautern
67653 Kaiserslautern, Germany

wilhelm@cs.uni-kl.de

Jens B. Schmitt
Computer Science Department

TU Kaiserslautern
67653 Kaiserslautern, Germany

jschmitt@cs.uni-kl.de

ABSTRACT

Despite its practical importance, interference can still be
considered a “black box” in wireless network experiments as
it is difficult to generate in a controlled and repeatable man-
ner. Current generation approaches, such as packet storms or
pre-recorded interference traces, do not adapt to the transmis-
sions on the channel; the resulting effects of the interference
are random and beyond the experimenter’s control. Our
solution to this problem is to use channel-aware interferers,
allowing them to adapt to the actual packet transmissions on
the channel. We implemented a reactive jamming system on
the USRP2 that enables this mode of operation as a proof of
concept, decoding packets and interfering with them during
their transmission. With this capability in mind we propose
interference scripting, a way to define protocol-aware inter-
ference patterns using both packet content and time, and
to repeatably generate these patterns on dedicated devices
deployed alongside a testbed. This way, we hope to provide a
useful tool to experimenters, adding controllable interference
to wireless testbeds.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques;
C.2.1 [Computer Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms

Design, Experimentation, Measurement

Keywords

Interference, USRP2, RFReact, SDR, Sora, testbeds, WLAN,
WSN

1. INTRODUCTION

Shared spectrum is a widely used concept because it makes
it easy to develop and deploy wireless networks, as long as
the devices do not obstruct or frequently interrupt other
services in the band. Because of this requirement, networks
use collision avoidance mechanisms such as carrier sense
and random backoff to ensure fair access to the medium.
However, even today the spectrum is already crowded by
an increasing number of wireless devices (using a plethora

Copyright is held by the author/owner(s).
S3’12, August 26, 2012, Istanbul, Turkey.
ACM 978-1-4503-1528-9/12/08.

of standards such as WLAN, ZigBee, Bluetooth), posing a
challenge to network protocol designers and operators alike.
The resulting interference is a major factor in the performance
and reliability of wireless networks: it adversely affects key
metrics such as throughput, packet loss, and delay.

The performance of a wireless network under interference
is hard to predict for several reasons. First, a packet may
still survive interference depending on the circumstances: the
positions of sender, receiver, and interferer; the propagation
environment; the resistance of the receiver against the par-
ticular type of interference; or the use of coding to recover
damaged packets (e.g., [4]). Second, the interference may
exhibit patterns that harm network performance dispropor-
tionately, e.g., by destroying a packet and all corresponding
retransmissions. Analytical treatment or simulations of net-
work protocols often require simplifying assumptions to keep
the evaluation treatable. For example, instead of complex
channel models that are required to capture physical wave
interactions in realistic environments, only simple fading
models such as path distance or log-normal shadowing are
often used. Another example is that the concurrent use of
different medium access protocols may break the assump-
tion of independence of interference events, which is often
assumed to keep the analysis simple.

Because of these issues real-world experiments are widely
used to explore the performance of protocols in realistic set-
tings. The goal is to show that the protocol performs as
intended in a representative environment. Still it is very
challenging to reproduce experimental results in other envi-
ronments (and oftentimes even in the same environment). To
increase comparability and repeatability, researchers started
to build and share testbeds where experiments can be per-
formed under stable conditions. Yet, even in these controlled
environments, interference is still problematic in experimen-
tation, especially its repeatable and reliable generation. A
common approach to interference generation is to deploy
COTS devices in the testbed (e.g., using WLAN access
points or sensor motes) and program them to send packets
at random times or with a fixed rate. While this approach
yields insights in the performance of a protocol in crowded
settings, it is neither realistic nor repeatable [1]. Another
approach is to record interference patterns and replay them
during the experiment. For example, Boano et al. [2] show
that sensor motes may be programmed to precisely capture
and generate interference in a sensor network testbed.
Despite these efforts, the effects of interference are still

a “black box” to experimenters. Even if exactly the same
interference pattern is reproduced, the response of the net-



work may deteriorate from its previous behavior because of
small timing differences or internal system effects, leading
to differing execution traces and a different performance.
Oftentimes the response of the network is the parameter
of interest (e.g., the packet reception ratio), not the duty
cycle of the interferers. What we need is protocol-aware
interference that also takes the state of the network into
consideration, allowing direct control of these parameters.
We propose a system that addresses this need and enables
both repeatable and more realistic experiments.
In previous work [6] we presented a reactive jamming

system that supports precise interference generation and
channel-aware operation. In this extended abstract, we de-
scribe our on-going work to extend this system to support
“interference scripting,” a way to specify portable interference
patterns that are protocol-aware, i.e., adapt the interference
according to the network’s operation. The goal is to allow
a full offline specification of the complete network interfer-
ence, and repeatable and real-time execution during the
experiment.

2. INTERFERENCE SCRIPTING

The idea is to deploy dedicated interferers in the testbed
that are programmed and controlled individually from a
central point. Each device monitors the channel, detects
packets, and generates interference in response to packet
and timing events according to a supplied script. We briefly
describe the implementation of the interference generation
nodes and their operation, and the necessary changes to
support scripting for a wide range of application scenarios.

2.1 The Dedicated Interferer System

We built a channel-aware jamming system (RFReact [7])
that allows to access the content of an IEEE 802.15.4 packet
and still interfere with the end of the packet. It is imple-
mented on the USRP2, an affordable software-defined radio
platform. No modifications to the hardware are necessary,
RFReact is implemented in software only. Still, because
we use the USRP2’s FPGA, it achieves reaction times in
the order of tens of microseconds, allowing to listen to the
largest part of the packet and still destroy it. This mode of
operation is also reliable: our experiments show that 99.9%
of the targeted packets are actually destroyed while other
packets are correctly classified and remain unaffected.
We note that the concept of interference scripting is not

limited to IEEE 802.15.4 networks. We are also experiment-
ing with the Sora platform [5] to bring this concept to IEEE
802.11 b/g networks.

2.2 Scripting

In previous work, we used this system to implement a
classification system similar to firewall rules [8]. While this
concept is already sufficient for some realistic interference
scenarios, there are more components required for a fully
featured experimental system. The vision is that these com-
ponents can be combined to define arbitrary interference
patterns in a script, using control structures like loops and
conditions. The script ties together the following conditions
to select packets for interference:

Packet content: Access to the packet content is an impor-
tant step to protocol-awareness; it allows to restrict in-
terference to packets with a chosen source/destination,

to packet types, or bits in the payload. The real-time
demodulation of RFReact allows this access to the con-
tent 4µs after the corresponding physical layer symbol
was on the air.

Timing: To support pre-recorded interference patterns or
to occupy the channel for measuring the performance
of carrier-sense based protocols, the system must also
support scheduled interference. The USRP2 supports a
timing precision of 10 ns and transmission timestamps
that allow this mode of operation.

Randomness: Because blocking all packets of a kind is not
a realistic interference scenario (when no adversarial
setting is considered), we need a way to define inter-
ference patterns that follow random distributions of
choice, e.g., 30% of the packets with bursty interference.
This feature requires the implementation of random
sources with distributions of interest.

Protocol state: State information enables interference de-
cisions with memory. Taking a trace of packets into
consideration, this enables white box testing of wireless
protocols, triggering interference only when a sequence
of packets was previously detected. For example, a
node may loose its connection to surrounding nodes
each time it successfully associates with the network.

Interference waveforms: To generate interference patterns
using multiple communication standards, or to mimic
unintentional interferers such as microwave ovens, we
need a way to choose interfering waveforms on a per-
packet basis. The USRP2 supports arbitrary sequences
of samples as digital representation of waveforms, al-
lowing to store or compute them on-the-fly.

3. APPLICATION EXAMPLES

Next, we describe some possible applications of interference
scripting.

Protocol-aware interference: With our approach, it is
possible to define fine-grained interference patterns,
e.g., targeting specific MAC layer packets such as ACKs
to debug the interaction between application and OS
layer software (this approach was used in related work
to discover race conditions in the Contiki operating
system [3]). However, in contrast to that work, our
system does not rely on timing information, such that
we can decide if interference is required and start it
before the packet is over. An application of this is to
target neighborhood discovery messages (used in rout-
ing protocols) to observe the behavior of the network
in such adverse conditions.

Virtual topologies: By selectively interfering with pack-
ets based on their header addresses, we can define and
enforce virtual topologies by blocking a subset of neigh-
bors, or making links between nodes directional. This
increases the control of the experimenter over the topol-
ogy, and adds flexibility to an existing testbed. For
example, it can alleviate the need of physically rear-
ranging devices in the network, or help to evaluate the
behavior of protocols in changing environments rapidly.



Arbitrary loss processes: Targeting packets directly al-
lows to choose which random distribution the packet
loss process should follow. This allows to compare the
performance of protocols under the same conditions,
e.g., using 70% packet loss with interference bursts.
Even if the protocols are operating differently, e.g., us-
ing different medium access strategies, we can control
the interference patterns precisely because we are not
relying on timing but targeting packets directly. This is
also important when comparing results to simulations
because the same random distributions can be used.
This enables direct comparison between simulated re-
sults and observations from the real system.

Arbitrary waveforms: Emulating different devices in the
vicinity (microwave ovens, baby phones, WLAN or
ZigBee devices) is also an important application, which
can be combined with the previous strategies to choose
the interfering shape for each packet individually.

4. CONCLUSION

We outlined the operation and the possible uses of our
approach to generate protocol-aware interference, to make the
interference controllable by experimenters and to increase the
repeatability of experiments by “interference scripting.” dWe
plan to release our system as open source code to support
researchers with their experiments.

5. REFERENCES
[1] C. A. Boano, Z. He, Y. Li, T. Voigt, M. Zuniga, and

A. Willig. Controllable radio interference for experimental
and testing purposes in wireless sensor networks. In Proc. of

IEEE LCN ’09, pages 865–872, Oct. 2009.

[2] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zuniga.
JamLab: Augmenting sensornet testbeds with realistic and
controlled interference generation. In Proc. of IPSN ’11,
pages 175–186, 2011.

[3] Z. He and T. Voigt. Precise packet loss pattern generation by
intentional interference. In Proc. of IEEE DCOSS ’11, pages
1–6, June 2011.

[4] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis.
Surviving wi-fi interference in low power ZigBee networks. In
Proc. of ACM SenSys ’10, SenSys ’10, pages 309–322, 2010.

[5] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang,
H. Wu, W. Wang, and G. M. Voelker. Sora: high performance
software radio using general purpose multi-core processors. In
Proc. of USENIX NSDI ’09, pages 75–90, Apr. 2009.

[6] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders.
Reactive jamming in wireless networks: How realistic is the
threat? In Proc. of ACM WiSec ’11, pages 47–52, June 2011.

[7] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders.
RFReact—a real-time capable and channel-aware jamming
platform. SIGMOBILE MCCR, 15:41–42, Nov. 2011.

[8] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders.
WiFire: A firewall for wireless networks. In Proc. of ACM

SIGCOMM ’11, pages 456–457, Aug. 2011.


