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Abstract—During the last two decades, starting with the
seminal work by Cruz, network calculus has evolved as an elegant
system theory for the performance analysis of networked systems.
It has found numerous usages as, for example, in QoS-enabled
networks, wireless sensor networks, switched Ethernets, avionic
networks, Systems-on-Chip, or, even to speed-up simulations.
One of the basic assumptions in network calculus is that links
are reliable and operate loss-free. This, of course, is a major
abstraction from the reality of many application scenarios, where
links are unreliable and often use retransmission schemes to
recover from packet losses. As of today, standard network
calculus cannot analyze such links.
In this paper, we take the challenge to extend the reach of network
calculus to unreliable links which employ retransmission-based
loss recovery schemes. Key to this is a stochastic extension of
the known data scaling element in network calculus [21], which
can capture the loss process of an unreliable link. Based on this,
modelling links with retransmissions results in a set of equations
which are amenable to a fixed-point solution. This allows to
find the arrival constraints of each flow that corresponds to a
certain number of retransmissions. Based on the description of
each retransmission flow, probabilistic performance bounds can
be derived. After providing the necessary theory, we illustrate
this novel and important extension of network calculus with the
aid of a numerical example.

I. INTRODUCTION

A. Motivation

Network calculus is a min-plus system theory for determin-
istic queuing systems which builds on the calculus for network
delay in [14], [15]. The important concept of service curve was
introduced in [16], [31], [9], [28], [2]. The service curve based
approach facilitates the efficient analysis of tandem queues
where a linear scaling of performance bounds in the number
of traversed queues is achieved as elaborated in [11] and also
referred to as pay bursts only once phenomenon in [29]. A
detailed treatment of min-plus algebra and of network calculus
can be found in [4] and [29], [10].

Network calculus has found numerous applications, most
prominently in QoS-enabled networks, e.g., based on the
IntServ or DiffServ architecture, but also in other scenarios
as, for example, wireless sensor networks [32], [26], switched
Ethernets [34], Systems-on-Chip (SoC) [8], network coding
[37], information theory [30], or even to speed-up simula-
tions [25]. Hence, besides queueing theory it has established
as a valuable methodology for the performance analysis of
networked systems.

However, as a relatively young theory, compared to tradi-
tional queueing theory, there are also a number of challenges

which network calculus still has to master. To name a few:
there has been much interest and progress with respect to
stochastic extensions (see [11], [19], [23] for basic approaches
and [12] for a recent perspective); tool support for network
calculus has been addressed by [33], [6] and brings about new
interesting perspectives. A very tough challenge is also found
in applying network calculus in network scenarios, where links
(or servers) may be unreliable and some packets are lost. This
actually shatters network calculus in one of its foundations
which is the assumption of a lossless system operation. Yet,
the key of our approach in dealing with such losses lies in the
so-called data scaling element (of which a deterministic and
stochastic variant have been proposed to accommodate flow
transformations inside the network [21], [13]), and the simple
realization that loss is just a specific flow transformation. To
make things even more compounded, unreliable links usually
employ retransmission-based loss recovery schemes, which
produces a feedback cycle between in- and output – another
difficult issue for the analysis.

In this paper, we tackle these challenges and specifically
make the following contributions:

• We set up a stochastic network calculus model for
an unreliable link employing retransmissions for loss
recovery.

• We provide a new definition of a stochastic scaling
curve that allows for a two-step procedure to solve
the model by decoupling deterministic and stochastic
arguments.

• For a specific loss process, the binary symmetric
channel, we determine a tight stochastic scaling curve
based on a Martingale argument.

• We solve the feedback cycle problem under the realis-
tic assumption of a limited number of retransmissions.

B. Related Work

There is a set of results that deal with lossy systems in the
framework of network calculus [3], [18], yet these deal with
losses due to a finite buffer or a specific scheduling discipline
that tries to take advantage from some loss tolerance, so these
are only seemingly related to our work on unreliable links with
retransmissions.

There is only little previous research that really tried to
transfer network calculus concepts into the domain of networks
with unreliable links: Remarkably, one of the earliest research



on stochastic extensions of network calculus [17] already
introduced a “channel impairment process” to model a time-
varying channel capacity as well as retransmission-based loss
recovery. The model, however, is very much tied to a specific
scheduling algorithm (SCED) to operate on the link. At the
time, the concept of scaling, which we use in this paper to
capture the loss characteristics of unreliable links, had not yet
been introduced in network calculus.

Another related work [1] investigates a network calculus
model of a wireless link using the concept of a clipper [18]
to capture data loss. The issue of operating the wireless link
with a retransmission scheme is briefly discussed but not
investigated in further detail, in particular the influence on the
overall service capacity is not taken into account. The paper
also remains unclear how the deterministic clipper component
can actually capture the stochastic loss behavior of a wireless
channel. In [35], the authors introduce a so-called effective
capacity model of a wireless link, in analogy to the notion of
effective bandwidth. The goal was to capture the time-varying
characteristics of a fading channel. Losses and corresponding
retransmissions were not considered. Similarly, though fol-
lowing a different analytical approach, [20] focused on the
characterization of a fading channel with memory. In this work,
a network calculus based on moment-generating functions was
used to calculate probabilistic performance bounds. Again, the
issue of data loss and retransmissions were not subject of this
research.

In a recent study [36], data loss has explicitly been taken
into account and abstracted as a stochastic process. As in [17],
the introduced error process was composed into the server, in
order to propose the so-called error server model. This is used
in a subsequent work [22] in the context of cognitive radio net-
works to model all the retransmission processes together. Yet,
only the virtual delay of the original flow can be calculated.
We believe this approach to lose flexibility compared to using
scaling for explicitly modelling the data loss process. A similar
method is used in [27], where the retransmitted units must be
analyzed together leveraging a free parameter. Again, only the
virtual delay of the original arrivals is calculated. In our work,
we focus on modelling losses due to unreliable transmission
and the influence of retransmission schemes to compensate for
these losses. With such a model, the delay of either the single
flow (the original and the retransmitted flows) or the aggregate
flow can be derived.

C. Outline

The rest of the paper is organized as follows. In the next
section we recall some important network calculus concepts
and results related to data scaling. In Section III we ex-
tend deterministic scaling into a probabilistic framework and
give an example of a stochastic scaling process. In Section
IV we present and analyze a model for an unreliable link
with retransmission-based loss recovery, using our model for
stochastic data scaling. In Section V we give a numerical
example and in Section VI we wrap up the paper.

II. PRELIMINARIES ON NETWORK CALCULUS AND DATA

SCALING

In this section, we provide the necessary background on
deterministic network calculus (see Le Boudec and Thiran [29]

or Chang [10]), and also on some prior work related to data
scaling.

A. Deterministic Network Calculus

Consider the set of real-valued, non-negative, and wide-
sense increasing functions:

F =
{

f : R
+ → R

+, ∀t ≥ s : f(t) ≥ f(s), f(0) = 0
}

.

A flow is defined in terms of an arrival process A(t) and a
departure process D(t), counting the number of input and
output packets in some queueing system. Note that, for any
sample-path, A(t), D(t) ∈ F . The flow’s backlog process at
time t is defined as

b(t) = A(t)−D(t) .

The flow’s virtual delay, more exactly of a packet (if any)
arriving at time t, is defined as

d(t) = inf {τ ≥ 0 : A(t) ≤ D(t+ τ)} .

Network calculus uses bounds for both arrivals and service.
These are described in a min-plus algebra with the convolution
operator ⊗ defined as

(f ⊗ g)(t) = inf
0≤s≤t

{f(t− s) + g(s)} ,

for f, g ∈ F . A bound on an arrival process A is defined as an
arrival curve function α ∈ F such that for ∀t, s ≥ 0, s ≤ t :

A(t)−A(t− s) ≤ α(s) ⇔ A ≤ A⊗ α .

In turn, a bound on the service provided by a system to an
arrival process A(t) is defined as a service curve function β
such that for ∀t ≥ 0

D(t) ≥ A⊗ β(t) ,

where D(t) is the corresponding departure process of A(t).

From these bounds, network calculus provides bounds on
backlog and delay processes, and also on the output flow:

backlog: ∀t : b(t) ≤ (α⊘ β) (0) =: v(α, β) ,

delay: ∀t : d(t) ≤ sup
s≥0

{inf{u ≥ 0 : α(s) ≤ β(s+ u)}}

=: h (α, β) ,

output (arrival curve α′for D(t)): α′ = α⊘ β .

Here, ⊘ is the deconvolution operator in the min-plus algebra
defined as

(f ⊘ g)(t) = sup
u≥0

{f(t+ u)− g(u)} ,

for f, g ∈ F . All relationships so far hold for all sample-paths,
or almost surely (a.s.), as stochastic processes (e.g., A(t) or
b(t)) are bounded with deterministic functions (e.g., α(t) or
v(α, β)).

An important subclass of service curves are the so-called
strict service curves. If a system guarantees an input flow at
least β(u) service during any backlogged period of size u, then
by definition β(u) is a strict service curve. In this paper strict
service curves will be used to calculate left-over service curves
at a node serving two flows H and L, with non-preemptive
priority given to H . If the node guarantees a strict service



curve β to the aggregate of the two flows, and if αH is the
arrival curve of flow H , then the left-over service curve for
flow L is

βL(t) = [β(t)− αH(t)]+ .

Moreover, the service curve guaranteed to flow H is βH(t) =
[β(t) − lLmax]

+, where lLmax is the maximum packet size for
flow L, where [x]+ := max{x, 0} for some number x.

B. Data Scaling

Here we review scaling elements in network calculus, as
introduced in Fidler and Schmitt [21].

Definition 1. (Scaling Process) A scaling process S ∈ F
scales a value a to a value S(a).

The value a has the physical interpretation of data/packet
count. Scaling processes are stochastic processes and are quite
general in that they can model various data transformations in
networks [13]. The physical process of scaling occurs infinitely
fast, and scaling processes do not deal with queueing effects
(still to be modelled separately by service curves).

Following the bounding principle of deterministic network
calculus, (stochastic) scaling processes are modelled with
(deterministic) bounds in order to increase their scope.

Definition 2. (Scaling Curve) A function S ∈ F is said to be
a maximum scaling curve for some scaling process S if

S ≥ S ⊘ S (a.s.)

The next lemma characterizes the effects of data scaling
on an arrival flow constrained with an arrival curve.

Lemma 1. (Scaling Constrained Arrivals) [21] Let A(t) be
an arrival process with arrival curve α. If a scaling process
S, with maximum scaling curve S, is applied to the arrival
process A(t), then the scaled output has the arrival curve

αS = S(α).

III. STOCHASTIC DATA SCALING

In this section, we briefly review the stochastic network
calculus (see also Jiang and Liu [24]), and then extend the
data scaling model in a probabilistic framework.

This extension is motivated herein by the stochastic be-
havior of unreliable links. Our key idea is to model the data
lost on an unreliable link as the scaled version of the output
flow from a fully reliable link. In other words, we first assume
lossless transmissions, and then make up for this assumption
by removing the (actually lost) data units with a scaling
process. Note that a deterministic scaling curve for the scaling
process, as in Definition 2, would clearly render loose bounds.

A stochastic scaling model was introduced in a previous
work of ours [13]. It consists of an arrival process A(t), a
scaling random process X = (Xi)i≥1 taking non-negative
integer values, and a scaled process AX(t) defined for all t ≥ 0
as a compound process for all t ≥ 0

AX(t) =

A(t)
∑

i=1

Xi .

This pointwise characterization can be in principle used to the
probabilistic analysis of unreliable links with retransmissions,
but in a very tedious manner. To simplify the calculus, we
propose a weaker stochastic scaling curve model which can
lend itself to a more efficient probabilistic analysis by first
making a sample-path deterministic argument, and then eval-
uating the probability of violating the underlying sample-path
assumption.

Before introducing our stochastic scaling curve model,
as a probabilistic extension of the one from Definition 2,
we review similar probabilistic extensions of deterministic
network calculus concepts [7]. A function αǫ ∈ F is called a
stochastic sample-path arrival curve for an arrival process A(t)
if for ∀t ≥ 0

P (A(t) ≤ (A⊗ αǫ)(t)) ≥ 1− ǫ .

A queueing system offers a stochastic service curve βǫ to some
arrival process A(t) if the corresponding departure process
D(t) satisfies for ∀t ≥ 0 that

P (D(t) ≥ (A⊗ βǫ)(t)) ≥ 1− ǫ .

Here, ǫ is the violation probability of the bounds.

A. Stochastic Scaling Curves

Here we introduce probabilistic scaling curves, based on
which we can model realistic loss processes at unreliable links
and yet preserve the simplicity of the calculus.

Definition 3. (Stochastic Scaling Curve) Consider a scaling

process S. A function S
ε
∈ F is said to be a (maximum)

stochastic scaling curve of S if for all b ≥ 0

P

(

sup
0≤a≤b

{

S(b)− S(a)− S
ε
(b− a)

}

≤ 0

)

≥ 1− ε ,

where ε denotes the violation probability for the stochastic
maximum scaling curve.

Note that the stochastic scaling curve property provides a
sample-path bound for the scaling process. As a side remark,
the definition may be slightly generalized by moving the supre-
mum outside of the probability measure, but at the expense
of loosing the sample-path property and consequently com-
plicating the calculus. Note also that a sample-path stochastic
scaling curve from Definition 3 extends the scaling curve from
Definition 2 by mimicking the extension of arrival curves to
stochastic sample-path arrival curves.

The next lemma mimics Lemma 1 in a probabilistic setting.

Lemma 2. (Scaling of Stochastic Constrained Arrivals) Let
A(t) be an arrival process with sample-path arrival curve αǫα .
If a scaling process S, with sample-path stochastic scaling

curve S
ε
, is applied to the arrival process A(t), then the scaled

output has the sample-path arrival curve αS = S
ε
(αǫα) with

probability ≥ 1− ε− ǫα .

Proof: Assume that, on some sample-path, both the

stochastic arrival curve αǫα and the scaling curve S
ε

are
not violated. On this sample-path, Lemma 1 yields that

αS = S
ε
(αǫα) is an arrival curve for the (sample-path) scaled



output, denoted by S(A(t)). Accounting now for the violation
probability of the sample-path assumption, we get

P
(

S(A(t)) ≤
(

S(A)⊗ S
ε
(αǫα)

)

(t)
)

≥ P
(

{αǫα not violated} ∧
{

S
ε
not violated

})

≥ 1− ε− ǫα (1)

due to Boole’s inequality, which completes the proof.

We point out that we used a seemingly loose bound in
Eq. (1) because the arrival and scaling processes may be corre-
lated; in our calculus, such a correlation will be determined by
retransmission processes which are assigned higher priorities
than the original process.

B. Modelling a Binary Symmetric Channel (BSC)

To exemplify how the loss process at an unreliable link
can be captured with stochastic scaling, we consider a binary
symmetric channel (BSC) model; more complicated channel
models can also be considered (see [13] for loss processes
defined as Markov arrival processes). For the ease of presen-
tation, and also to deal with inherent technical complications
due to modelling retransmissions, we mainly focus on the BSC
model.

We model the BSC with the scaling process

S(b) = X1 +X2 + · · ·+Xb , (2)

where X ′
is ∈ {0, 1} are i.i.d. Bernoulli random variables (r.v.)

with parameter p, i.e., the crossover probability of the BSC.
The next theorem gives the stochastic scaling curve for the
BSC, which will be used later.

Theorem 1. (STOCHASTIC SCALING CURVE FOR BSC) Con-
sider the scaling process S(b) for BSC from Eq. (2). Then the
function

S
ε
(b) = pb+ 1− ε . (3)

is a stochastic scaling curve for BSC, in the sense of Defini-
tion 3.

Proof: Let us first construct the process

T (c) := S(c)− S
ε
(c) + 1 ∀c .

Construct also the filtration Fc = σ(X1, X2, . . . , Xc) captur-
ing the partial histories of the process Xc. Then we have for
some fixed c:

E [T (c+ 1) | Fc] = E [T (c) +Xc+1 − p | Fc]

= T (c) + E [Xc+1 − p]

= T (c) ,

and thus T (c) is a martingale. In the second line we used
that T (c) is Fc-measurable, and that Xc+1 is independent of
Fc. The last line follows since Xc+1 is a Bernoulli r.v. with
parameter p.

Since T (c) is a martingale we can write for all b ≥ 0:

P

(

sup
0≤a≤b

{

S(b)− S(a)− S
ε
(b− a)

}

≥ 0

)

= P

(

sup
0≤c≤b

T (c) ≥ 1

)

≤ E [T (0)]

= ε .

In the second line we used the stationarity of the Bernoulli
process. In the third line we used Doob’s maximal inequality
(see Billingsley [5], p. 466), applied to the martingale T (c).

This result will be used to compute the arrival curves of
retransmission processes.

IV. A NETWORK CALCULUS MODEL OF AN UNRELIABLE

LINK WITH RETRANSMISSION-BASED LOSS RECOVERY

In this section, we propose a model for an unreliable link
that employs a retransmission scheme to recover from data loss
due to channel impairments. The model builds upon the novel
concept of stochastic scaling as introduced in the previous
section. Based on this model and existing results of network
calculus we provide a method to derive the arrival curves
of the retransmitted flows. This method applies a fixed-point
approach from which we also obtain stability criteria for the
overall system. Knowing the arrival curves of all the flows in
the system, we are able to derive bounds on backlog, delay,
and output. These bounds are probabilistic in nature due to the
stochasticity of the scaling.

A. Basic Model and General Assumptions

Data loss is a frequent event when transmitting data over
an unreliable link. In order to compensate for data loss, many
protocols and methods employ retransmission schemes. The
data loss process can be captured in a network calculus model

by a scaling process S and its stochastic scaling curve S
ε

as elaborated in the example of a BSC channel in Section
III-B. Before retransmitting a lost packet, we assume that
the sender must wait to be certain that the packet has really
been lost. Thus retransmitted packets will experience a certain
delay. To cover typical retransmission schemes we model two
mechanisms to detect such a loss event: a local countdown
timer at the sender if no positive acknowledgment is received,
and, optionally, an explicit negative acknowledgment from the
receiver. Thus the delay experienced before a retransmission
is performed is upper bounded by the countdown timer, but
may be lower if a negative acknowledgment is received before
timer expiration. We further assume the countdown timer to be
set to a fixed value. Clearly, loss detection may not be perfect
resulting in duplicate data packets. We assume that duplicate
packets can be identified by the receiver (e.g., through using
sequence number). In any case, due to the countdown timer or
a negative acknowledgement received at the sender side, we
can abstractly model the retransmission as a data flow being
fed back to the sender.

Concretely, modelling the retransmissions of the lost data
units consists of 1) a feedback loop of the lost data units to
the entrance of the server, 2) a feedback delay each retrans-
mitted packet potentially experiences, and 3) a deterministic
strict service curve β for characterizing the service capacity
available to the aggregate of original and retransmitted units.
We point out that the deterministic nature of the service curve



Unreliable Link:

Stochastic Scaling

Figure 1. Network calculus model of an unreliable link with retransmissions.

precludes accounting for the possibly time-varying nature of
the unreliable channel’s capacity; while such more realistic
scenarios can be captured using a stochastic service curve (see,
e.g., [20]), we consider the simplified deterministic model for
ease of exposition. Moreover, to model the feedback delay, we
know that the waiting time of either the countdown timer or the
potential negative acknowledgement is bounded by a maximum
feedback delay denoted as W . Thus, the delay process has a
service curve δW ([29]), with W ≥ 0 and δW (t) = 0 if t ≤ W ,
otherwise δW (t) = ∞. Note that retransmitted data units may
have to be retransmitted again due to new loss, resulting in
further retransmitted flows. We make the assumption, which
holds true in most practical implementations, that the number
of retransmissions is limited to some fixed value. This model
of an unreliable link with retransmission-based loss recovery
is depicted in Figure 1.

We distinguish between different retransmission flows,
those consisting of data units being retransmitted once, twice,
and so on. Correspondingly, we represent all flows in the
system with their arrival curves α(0) = α, α(1), · · · , α(N),
where N is the limit of the number of retransmissions for any
data unit. Denote by Si the scaling process of flow i− 1 and

by S
εi
i the corresponding scaling envelope, where i ≥ 1. Note

that the Si’s form a partition of the overall scaling process

S and
∑N

i=1 Si = S. Here, εi is the violation probability of
Si. We also make the assumption that retransmission flow i,
consisting of the data units retransmitted for i times, has lower
priority than retransmission flow i+1, for all i = 1, . . . , N−1.
One instance of this policy is exemplified by a simple stop-
and-wait protocol. More generally, any ARQ protocol that
sends data units with lower sequence numbers first satisfies
this assumption, for example, TCP does, too.

In the following, we first state the general problem of deriv-
ing the arrival curves for each of the retransmission flows based
on the general assumptions just presented (Section IV-B). This
general problem reduces to solving a fixed-point problem,
whose analytical tractability requires imposing further assump-
tions, to be discussed in Section IV-C. As solving the fixed-
point problem is done under deterministic assumptions, or put
differently, for sample-paths that do not violate the respective
scaling curves, we finally derive probabilistic bounds on the
performance measures in Section IV-D.

B. Arrival Curves for Retransmission Flows: General Problem
Statement

Under the general assumptions of Section IV-A, we can use
existing network calculus results on priority multiplexing [29]
to obtain the following formulations for the service and arrival
curves of each retransmission flow. Under the assumption that
the node offers a strict service curve β, using the output bound
in Section II-A and Lemma 1, each flow i is offered a service

N N

Figure 2. Self-dependent equation system.

curve β(i) defined as follows

β(0) = [β −

N
∑

k=1

α(k)]+ , α(0) = α

β(1) = [β −

N
∑

k=2

α(k)]+ , α(1) = S
ε1
1 (α(0) ⊘ β(0))⊘ δW

β(2) = [β −

N
∑

k=3

α(k)]+ , α(2) = S
ε2
2 (α(1) ⊘ β(1))⊘ δW

· · · · · ·

β(N) = β , α(N) = S
εN
N (α(N−1) ⊘ β(N−1))⊘ δW .

We point out that, with a small loss of generality, we ignored
packetization effects in the expressions of β(i)’s. We can
further simplify and remove the dependency of the α(i)’s and
the β(i−1)’s as follows

α(0) = α

α(1) = S
ε1
1

(

α(0) ⊘ [β − α(1) − α(2) − ...− α(N)]+
)

⊘ δW

α(2) = S
ε2
2

(

α(1) ⊘ [β − α(2) − α(3) − ...− α(N)]+
)

⊘ δW

...

α(N) = S
εN
N

(

α(N−1) ⊘ [β − α(N)]+
)

⊘ δW .

From these equations, it is apparent that the different arrival
flows are dependent on each other and thus a probabilistic
interpretation of the curves would need to take into account
the corresponding correlations. However, since, in the first step,
we argue purely deterministically this becomes no technical
problem. The deterministic argument is under the assumption
that we are on a sample path of the system for which the
scaling curves are not violated. Only in the second step,
in Subsection IV-D, when we evalutate the probability of
this event, we reason stochastically, yet then the correlations
between the arrival flows pose no technical problem any more.

Our goal next is to find explicit formulations of
α(1), α(2), ..., α(N) using this recursive set of equations (in
the α(i)’s only, as the β(i)’s were just removed). We use a
fixed-point approach to resolve the self-dependency issue of
the α(i)’s; see also Figure 2 for a graphical representation of
the recursion system. Thereby we interpret our equation system
as a mapping

T (αn) = αn+1 ,

where αn = (α
(1)
n , α

(2)
n , ..., α

(N)
n ). To find a fixed-point for T

we are going to rely on further assumptions on the shape of
the functions αi’s, as elaborated next.

C. Arrival Curves for Retransmission Flows: Fixed-Point Cal-
culation

In this subsection, we tackle the fixed-point problem just
described by making further assumptions to instantiate a form
of the problem that can actually be solved. The assumptions
are simplifying but at the same time they are realistic and some
of them are actually without loss of generality.



Figure 3. Illustration of the calculation for one retransmission flow.

1) Further Assumptions: We assume an affine arrival curve
(a token bucket) for the original input flow α = γr,b (i.e.,
α(t) = rt+ b), and a rate-latency function as the strict service
curve β = βR,T (i.e., β(t) = R[t − T ]+). The feedback is
assumed to be delayed, so we use a positive W for the service
curve δW of the feedback delay process. With respect to the

scaling curves, we set ∀i = 1, . . . , N : S
εi
i (b) = S

ε
(b) =

Cb + B. This means all the scaling processes Si’s of the
retransmission flows can be bounded by the same stochastic
scaling curve; this holds true for any overall scaling process
that is i.i.d. (e.g., the BSC). For ease of exposition, we also
assume homogeneity of the scaling violation probabilities εi’s.
Note further that under the BSC, C and B can be calculated
using Eq. (3), and should satisfy B ≥ 0 and 0 ≤ C < 1. The
latter condition is necessary for the convergence of T , since
otherwise the scaling would not act as a contractor but as an
expander such that αn would diverge to infinity. We point out
that the analysis of more complex arrival, service, and scaling
curves would follow a similar line of argument, and is left for
future work.

2) Fixed-Point Calculation: For illustrative purposes, we
demonstrate the derivation of the arrival curves of retransmis-
sion flows for two cases: a single retransmission case and the
general case of N retransmissions. We focus especially on the
first case, as the second one can be treated as a generalization
by using the same method.

(1) N = 1 ↔ one retransmission flow

We know that α(0) = α, α(1) = S
ε (

α(0) ⊘ β(0)
)

⊘ δW =

S
ε
(

α⊘
[

β − α(1)
]+
)

⊘ δW . It is to be checked whether the

mapping for α(1) is convergent and what is the fixed point of

the mapping α
(1)
∞ . Put differently, if we set the initial input of

α(1) as α
(1)
1 = γCr,b1 , where b1 is the variable of burst needed

to solve the fix-point equations, the task is to check whether
there is a convergent limit b∞ for b1 and what is its value.
Note that the rate of α(1) is Cr because any other rate of α(1)

will be limited to the rate of α (i.e., r) after the deconvolution
α ⊘ [β − α(1)]+, and also after the invocation of the scaling

curve S
ε
(b) = Cb+B.

Next, we perform a step-by-step calculation of the formu-

lation α(1) = S
ε (

α⊘ [β − α(1)]+
)

⊘ δW until we achieve
enough information to assess its convergence and are able to
calculate the fixed-point value b∞ of b1, b2, ... This process is
depicted in Figure 3 and is explained in the following steps:

1. Calculate curve
[

β − α
(1)
1

]+

= βR−Cr,T1
, where T1 is the

latency to be determined. From CrT1 + b1 = R(T1 − T ) we
have

T1 =
RT + b1

R− Cr
.

2. Calculate α ⊘
[

β − α
(1)
1

]+

. Draw a line at point (−T1, b)

with rate equal to the rate of the arrival curve α, which is r.
Now calculate the burst of the above curve - b′2 as

b′2 = rT1 + b .

3. At last, calculate α
(1)
2 = S

ε
(

α⊘
[

β − α
(1)
1

]+
)

⊘ δW as

α
(1)
2 = γCr,b2 with

b2 = Cb′2 +B + CrW = C(rT1 + b) +B + CrW .

Repeating step 1, 2 and 3 for α
(1)
2 we obtain

T2 =
RT + b2

R− Cr
,

b3 = C(rT2 + b) +B + CrW .

Then we repeat this calculation again to obtain b4 = C(rT3+
b)+B+CrW and so on. That means the convergence of α(1)

depends on the sequence of T1, T2, T3, ... We can write this
sequence for integer j > 1 as follows:

T1 =
RT + b1

R− Cr
, · · ·

Tj =
Cr

R− Cr
Tj−1 +

RT + Cb+B + CrW

R− Cr
.

At the same time, we have

bj = (R− Cr)Tj −RT .

For the deconvolution α ⊘
[

β − α(1)
]+

to exist, the fol-
lowing condition must hold

lim
t→∞

[

β − α(1)
]+

(t)

t
≥ lim

t→∞

α(t)

t
=⇒ R− Cr ≥ r

=⇒
Cr

R− Cr
≤ C < 1 .

This is in fact a stability condition for the system. In particular,
R > r+Cr means that the long-term capacity of the server can
satisfy the long-term needs of the original and the retransmitted
flow (recall also our previous assumption that C < 1 to
guarantee stability). Applying the stability condition to

Tj =
Cr

R− Cr
Tj−1 +

RT + Cb+B + CrW

R− Cr
,

we obtain that the sequence of Tj is convergent, i.e., there is
a fixed point T∞ with

T∞ =
RT + Cb+B + CrW

R− 2Cr
.

Finally, we can calculate the arrival curve of the retransmission
flow as

α(1) = γCr,b∞ , where

b∞ = (R− Cr)T∞ −RT .



(2) General N ↔ N retransmission flows

Because the calculation process for N ≥ 2 is very similar
to N = 1 (the only difference is that now we face an
equation system due to α(1), α(2), ..., α(N)), we ignore the
computational details and provide the results directly. First, we
assume the following condition

R >
(

1 + C + C2 + ...+ CN
)

r =
1− CN+1

1− C
r (4)

for the system’s stability. This inequality can be used as a tool
to adjust the server capacity, the input flow rate or maximum
number of retransmissions. If we denote the convergent latency

of
[

β − α(j) − α(j+1) − ...− α(N)
]+

with Tj,∞, for all 1 ≤
j ≤ N , then the fixed-point problem reduces to solving the
following equation system

A× (T1,∞, T2,∞, ..., Tj,∞, ..., TN,∞)t = φ, where

A =























R− 2r
N
∑

i=1

Ci
−r

N
∑

i=2

Ci . . . −r
N
∑

i=N

Ci

−r
N
∑

i=2

Ci R− 2r
N
∑

i=2

Ci . . . −r
N
∑

i=N

Ci

...
...

. . .
...

−r
N
∑

i=N

Ci
−r

N
∑

i=N

Ci . . . R− 2r
N
∑

i=N

Ci























φ =

























RT + b
N
∑

i=1

Ci
+B ·

N−1
∑

p=0

p
∑

q=0

Cq
+ rW ·

∑N

i=1
iCi

RT + b
N
∑

i=2

Ci
+B ·

N−1
∑

p=1

p
∑

q=0

Cq
+ rW ·

∑N

i=2
iCi

...

RT + b
N
∑

i=N

Ci
+B ·

N−1
∑

p=N−1

p
∑

q=0

Cq
+ rW ·

∑N

i=N
iCi

























.

We next use Cramer’s Rule to derive

T1,∞ =
det(A1)

det(A)
, T2,∞ =

det(A2)

det(A)
, ... , TN,∞ =

det(AN )

det(A)
,

where Ai,1≤i≤N is the matrix A with the ith column of A
replaced by φ. If all roots are positive, then a fixed point exists.
In this case, the arrival curves of all N retransmission flows
are given as follows

α(j) = γCjr,bj,∞ , where

bj,∞ = Cjr(Tj,∞ + Tj−1,∞ + ...+ T1,∞)

+Cjb+ (Cj−1 + ...+ C + 1)B + jCjrW .

D. Performance Bounds

In the previous section, we have shown a fixed-point
approach to derive the arrival curves for each retransmission
flow α(i) and, consequently, also the service curves β(i) as seen
by each of these flows. As discussed above, the arguments were
given under a deterministic interpretation of arrival, service,
and scaling curves. However, for the derivation of probabilistic
performance bounds (e.g., the delay of a data unit through
the unreliable link), we now need to take into account the
stochastic nature of the unreliable link and therefore of the
underlying scaling process.

Firstly, let us assume that there exists a sample-path over
which the scaling functions of all the flows, original and
retransmissions, do not violate their sample-path stochastic

scaling curves S
ε

i ’s. If this assumption applies, according to
the calculation described in the previous section, we can firstly

derive the arrival curve for the aggregate arrivals as
∑N

i=0 α
(i).

And the service curve for the aggregate arrivals is β. Now we
obtain the delay bound

∀t : d(t) ≤ h

(

N
∑

i=0

α(i), β

)

.

Note that this delay bound excludes the direct delay contribu-
tions of the feedback for retransmitted packets, though it takes
the feedback loops burstiness increase effect into account (see
also Section V). These delay contributions can simply be added
according to the number of necessary retransmissions and the
maximum feedback delay, but are omitted in the following due
to their rather uninteresting nature.

Secondly, we need to calculate the violation probability
of the above sample-path assumption. As discussed above,
each flow i is subject to a scaling process Si, and all Si’s
form a partition of the overall scaling process S. Given an
i.i.d. overall scaling process S (e.g., the BSC), all Si’s are
i.i.d. as well and mutually independent. A probabilitic delay
bound can be computed by calculating the probability of the
sample-path event that the stochastic scaling curves are not
violated as follows

P

(

d(t) ≤ h

(

N
∑

i=0

α(i), β

))

≥ P

(

N
∧

i=1

{

S
ε

inot violated
}

)

=
N
∏

i=1

P
(

S
ε

inot violated
)

≥ (1− ε)
N
, (5)

by invoking the statistical independence in the second line.
Note that, if the Si’s were not i.i.d. , we could still use the
union bound to compute the violation probability (of course,
resulting in a more conservative bound).

Similar reasoning can be applied to compute the proba-
bilistic backlog bound for all of the flows:

P
(

b(t) ≤ v
(

α(0) + α(1) + ...+ α(i), β
))

≥ (1− ε)
N

,

with statistical independence assumptions.

V. NUMERICAL EXAMPLE

In order to illustrate the application of the model, let us
go through a numerical example in this section. Before the
calculation, we state some necessary assumptions.

Assumptions: Consider the scaling process S to be a BSC
with loss probability p varying from 0.1 to 0.9 (from normal
state to channel collapse). The arrival curve of the input flow is
α = γr,b = γ0.1,3. The service curve is β = βR,T = β1,3. The
service curve of the feedback delay is δW = δ8. The violation
probability of the sample-path stochastic scaling curve is ε =
0.001. The value of W will later be varied from 0 to 40, in
order to illustrate the impact of the feedback delay.
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Figure 4. Arrival, service curves, and delay bounds.

Target of Calculations: We compute probabilistic delay
bounds with different loss probabilities and for different num-
ber of retransmissions N = 1, 2, 3, as well as with varying
feedback delays.

First, in order to illustrate how to derive the arrival curves
for all the retransmission flows, let us pick N = 2 as an
example. From Subsection III-B we know that a sample-path
stochastic scaling curve for a BSC with parameter p can be
calculated as in Eq. (3). Let C = p and B = 1−ε. We can now
use the results from Subsection IV-C to derive the formulae of
arrival curves α(1) and α(2) for the two retransmission flows.
As a result, we know the arrival curves α(1), α(2) and the
left-over service curves β(1), β(2). For example, for p = 0.1,
these are depicted in Figure 4 together with horizontal lines
representing the delay bounds for each retransmission flow.

Comparing the rates of α and α(1), we observe that the
rate of α(1) (i.e., Cr) is much smaller than the rate of α (i.e.,
r); this is because α(1) is the retransmission flow caused by
data loss and the probability of data loss is not too high, which
means that the effect of the retransmission flow is rather weak
(i.e., C << 1). Consequently, the retransmission flow for α(1),
which is α(2), is even weaker. Next we observe from Figure
4 that b > b1 > b2. This is intuitive, since b as the original
flow’s parameter is expected to be greater than b1 and b2.

With the computed values of α(1) and α(2) we can
next calculate the arrival curve for the aggregate flows as
∑2

i=0 α
(i) = γ0.111,5.59. And using Eq. (5) we can now com-

pute the probabilistic delay bound with two retransmissions
(recall that N = 2)

P

(

d(t) ≤ h

(

2
∑

i=0

α(i), β

)

= 8.5902

)

≥ (1− ε)
2
= 0.9980 .

Next, we show the delay bounds for N = 1, 2, 3 and
p = 0.1, 0.2, · · · , 0.9 in Figure 5. In the figure, for each N ,
we plot a curve for p from 0.1 to 0.9. The delay bounds are
expectedly increasing in N and p. Clearly, the more data is lost
and the higher reliability the communication requires (higher
N ), the higher is the delay. Most interestingly, the figure
shows for N = 3 a steep rise for increasing loss probabilities,
whereas for N = 1, 2 the bounds are relatively insensitive
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Figure 5. Delay bounds with retransmission attempts i (i = 1, 2, 3).
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Figure 6. Delay bounds with changing maximum feedback delay (loss
probability p = 0.7).

to the loss probability. Hence, we encounter an interesting
phase transition phenomenon for the impact of the number of
retransmissions on the performance bounds, i.e., there exists
a threshold value for N above which the performance bounds
blow up. As discussed in Subsection IV-D, the feedback delay
is excluded from the total delay bound, such that this blow-
up does not directly and trivially relate to the maximum
feedback delay but is due to queueing effects only. From the
stability condition Eq. (4), we can clearly derive a maximal
N such that the node is still in stable state. A potential
usage of this knowledge could be to dynamically adapt the
maximum number of retransmissions per data unit to control
the tradeoff between delay and reliability according to the
current utilization and loss characteristics of a lossy link.

In Figure 6, we show the impact of the maximum feedback
delay on the delay bounds for N = 1, 2, 3 and W =
0, 1, · · · , 40. The delay bounds are increasing in the maximum
feedback delay for all the three cases. Although we have
excluded the direct contribution of the feedback delay, it still
increases the possibility to cumulate burstiness in the retrans-
mitted flow at the server. Clearly, this cumulated burstiness
eventually increases the delay bound. The higher the maximum
retransmission number, the more often a retransmitted packet



may experience the feedback delay, and thus, the burstier the
aggregate flow becomes. This is illustrated in the Figure 6 by
the increasing slopes for N = 1, 2, 3.

VI. CONCLUSION

In this paper, we made a step forward on the way to model
unreliable networks using the stochastic network calculus.
Based on the stochastic extension of the data scaling element
from deterministic network calculus we showed how to model
and analyze an unreliable link that employs a retransmission-
based loss recovery. Solving this model involved a fixed-
point analysis yielding probabilistic performance bounds. In a
numerical example, we illustrated how to apply the theoretical
results and demonstrated the model’s capabilities to provide
interesting insights into the system behavior. In particular,
we showed that even at small utilizations, a relatively small
number of retransmission attempts already lends itself to a
delay bound’s blow-up. This provides incentives for protocols
to dynamically adapt the maximum number of retransmissions.
Moreover, our model can also reveal the quantitative impact
of the feedback delay on the delay bound of the aggregate
flow. An interesting and desirable future work is to investigate
whether our technique to analyze single unreliable links and
the concatenation principle from network calculus can be
combined to analyze unreliable networks.
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